Abstract
Soft robots are implied to be inherently safe, and thus "compatible", not only with human coworkers in a production environment, but also with the "family around the house". Such soft robots today still hold numerous new challenges for their design and control, for their commanding and supervision approaches as well as for human-robot interaction concepts. The research field of eRobotics is currently underway to provide a modern basis for efficient soft robotic developments. The objective is to effectively use electronic media - hence the "e" at the beginning of the term – to achieve the best possible advance in the research field. A key feature of eRobotics is its capability to join multiple process simulation components under one "software roof" to build "Virtual Testbeds", i.e. to alleviate the dependancy on physical prototypes and to provide a comprehensive tool chain support for the analysis, development, testing, optimization, deployment and commanding of soft robots.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Atorf L, Schluse M, Rossmann J (2014) Simulation-based optimization, reasoning, and control: The eRobotics approach towards intelligent robots. In: Int. Symp. on Artificial Intelligence, Robotics and Automation in Space (i-SAIRAS), to be published
Blochwitz T, Otter M, Arnold M, Bausch C, Clauß C, Elmqvist H, Junghanns A, Mauss J, Monteiro M, Neidhold T, et al (2011) The functional mockup interface for tool inde-pendent exchange of simulation models. In: 8th International Modelica Conference, pp 20–22
Borutzky W (2006) Bond graph modeling and simulation of mechatronic systems: An in-troduction into the methodology. In: 20th European Conference on Modeling and Simula-tion (ECMS)
Broenink JF (1999) Introduction to physical systems modelling with bond graphs. URL http://www.ce.utwente.nl/bnk/papers/BondGraphsV2.pdf
Busch M (2012) Zur effizienten Kopplung von Simulationsprogrammen. Kassel Univer-sity Press GmbH
Coppelia Robotics Software (2014) V-rep. URL http://www.coppeliarobotics.com
Dassault Systems (2014) Delmia software. URL: http://www.3ds.com/de/produkte-und-services/delmia/loesungen/alle-delmia-loesungen/
Dolinsky JU (2001) The development of a genetic programming method for kinematic robot calibration. Dissertation, Liverpool John Moores University
Featherstone R (2008) Rigid Body Dynamics Algorithms, vol 49. Springer New York
Ferraguti F, Golinelli N, Secchi C, Preda N, Bonfe M (2013) A component-based soft-ware architecture for control and simulation of robotic manipulators. In: Emerging Tech-nologies & Factory Automation (ETFA), IEEE
Festo AG & Co KG (2012) Bionic Handling Assistant. URL http://www.festo.com/net/SupportPortal/Files/42050/Brosch%5C_FC%5C_BHA%5C_3%5C_0%5C_EN%5C_lo.pdf. Accessed 2014-16–05
Fisette P, Samin J (1993) Robotran: Symbolic generation of multi-body system dynamic equations. In: Advanced Multibody System Dynamics, Springer, pp 373–378
Germann JM, Maesani A, Floreano D, Stöckli M (2013) Soft cell simulator: A tool to study soft multi-cellular robots. In: Int. Conference on Robotics and Biomimetics, IEEE, EPFL-CONF-196284, pp 1300–1305
Giorelli M, Renda F, Calisti M, Arienti A, Ferri G, Laschi C (2012) A two dimensional inverse kinetics model of a cable driven manipulator inspired by the octopus arm. In: Int. Conf. on Robotics and Automation (ICRA), IEEE, pp 3819–3824
Hiller J, Lipson H (2014) Voxcad. URL http://www.voxcad.com/
Hiller J, Lipson H (2014) Dynamic simulation of soft multimaterial 3d-printed objects. Soft Robotics 1(1):88–101
Iida F, Laschi C (2011) Soft robotics: Challenges and perspectives. Procedia Computer Science 7:99–102
Jung TJ (2009) Methoden der Mehrkörperdynamiksimulation als Grundlage realitätsna-her virtueller Welten. Dissertation, RWTH Aachen University
Kaigom EG, Rossmann J (2013) A new eRobotics approach: Simulation of adaptable joint admittance control. In: Int. Conf. on Mechatronics and Automation (ICMA), IEEE, pp 550–555
Kaigom EG, Rossmann J (2013) Simulation of actuated and controlled robot manipula-tors. International Journal of Mechatronics and Automation (IJMA)) 3(3):191–202
Lipson H (2013) Challenges and opportunities for design, simulation, and fabrication of soft robots. Soft Robotics 1(P):21–27
Müller R, Esser M, Janßen C, Vette M (2010) Systemidentifikation für Montagezellen-Erhöhte Genauigkeit und bedarfsgerechte Rekonfiguration. wt Werkstattstechnik online 100(9):687–691
Open Source Robotics Foundation (2014) Gazebosim homepage. URL http://gazebosim.org/
Ott C, Albu-Schäffer A, Kugi A, Hirzinger G (2003) Decoupling based Cartesian imped-ance control of flexible joint robots. In: Int. Conf. on Robotics and Automation (ICRA), IEEE, pp 3101–3107
Pfeifer R, Marques HG, Iida F (2013) Soft robotics: the next generation of intelligent ma-chines. In: Int. Conf. on Artificial Intelligence, AAAI Press, pp 5–11
Process Simulate Software (2014) Processsimulate. URL http://www.plm.automation.siemens.com/de_de/products/tecnomatix/robotics_automation/robotexpert.shtml
Renda F, Cianchetti M, Giorelli M, Arienti A, Laschi C (2012) A 3d steady-state model of a tendon-driven continuum soft manipulator inspired by the octopus arm. Bioinspira-tion & biomimetics 7(2):025,006
Robinson G, Davies J (1999) Continuum robots - a state of the art. In: Int. Conf. on Ro-botics and Automation (ICRA), IEEE
Roos E, Behrens A, Anton S (1997) Rds-realistic dynamic simulation of robots. In: Int. Symp. on Industrial Robots, Int. Fed. of Robotics & Robotic Industries, vol 28, pp 17–27
Rossdeutscher M, Zuern M, Berger U (2010) Virtual robot program development for as-sembly processes using rigid-body simulation. In: Int. Conf. on Computer Supported Co-operative Work in Design, IEEE, pp 417–422
Rossmann J, Schluse M, Jung T, Rast M (2009) Close to reality simulation of bulk solids using a kind of 3d cellular automaton. In: Int. Design Engineering Technical Conf. & Computers and Information in Engineering Conf. (IDETC/CIE), ASME
Rossmann J, Wischnewski R, Stern O (2010) A comprehensive 3-d simulation system for the virtual production. In: Int. Industrial Simulation Conference (ISC), pp 109–116
Rossmann J, Steil T, Springer M (2012) Validating the camera and light simulation of a virtual space robotics testbed by means of physical mockup data. In: Int. Symp. on Artifi-cial Intelligence, Robotics and Automation in Space (i-SAIRAS)
Rossmann J, Schluse M, Schlette C, Waspe R (2013) A new approach to 3d simulation technology as enabling technology for erobotics. In: Int. Simulation Tools Conf. & EXPO (SIMEX), pp 39–46
Rudolph J, Woittennek F (2008) An algebraic approach to parameter identification in lin-ear infinite dimensional systems. In: Mediterranean Conf. on Control and Automation, IEEE, pp 332–337
Siemens (2014) Robcad. URL http://www.plm.automation.siemens.com/de_de/products/tecnomatix/robotics_automation/robcad/
Siemens PLM Software (2014) Robotexpert. URL http://www.plm.automation.siemens.com/de_de/products/tecnomatix/robotics_automation/robotexpert.shtml
Song P, Trinkle JC, Kumar V, Pang JS (2004) Design of part feeding and assembly pro-cesses with dynamics. In: Int. Conf. in Robotics and Atomation (ICRA), IEEE, vol 1, pp 39–44
Trivedi D, Rahn CD (2014) Model-based shape estimation for soft robotic manipulators: The planar case. Mechanisms and Robotics 6:021,005-1-021,005–10
Trivedi D, Rahn CD, Kier WM, Walker ID (2008) Soft robotics: Biological inspiration, state of the art, and future research. Applied Bionics and Biomechanics 5(3):99–117
Vukobratovic M (2009) Dynamics and robust control of robot-environment interaction, vol 2. World Scientific
Wahl FM, Thomas U (2002) Robot programming-from simple moves to complex robot tasks. Institute for Robotics and Process Control, Technical University of Braunschweig
Yoo YH, Jung T, Römmermann M, Rast M, Kirchner F, Rossmann J, & Center RI (2010). Developing a virtual environment for extraterrestrial legged robot with focus on lunar crater exploration. In Proceeding of 10th International Symposium on Artificial In-telligent, Robotics and Automation in Space, vol. 29, No. 01.9.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Roßmann, J., Schluse, M., Rast, M., Kaigom, E., Cichon, T., Schluse, M. (2015). Simulation Technology for Soft Robotics Applications. In: Verl, A., Albu-Schäffer, A., Brock, O., Raatz, A. (eds) Soft Robotics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44506-8_10
Download citation
DOI: https://doi.org/10.1007/978-3-662-44506-8_10
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-44505-1
Online ISBN: 978-3-662-44506-8
eBook Packages: EngineeringEngineering (R0)