Skip to main content

Protoplanetary Disk, Chemistry

  • Reference work entry
  • First Online:
  • 35 Accesses

Definition

Protoplanetary disks (PPDs) surrounding young stars are short-lived (∼1–10 Myr), compact (∼10–1,000 AU) rotating reservoirs of gas and dust. Disks are believed to be the birthplaces of planetary systems, where tiny grains are assembled into pebbles, planetesimals, and eventually planets, asteroids, and comets. The evolution of gas and grain growth in disks is related to the redistribution and transport of angular momentum, which is thought to be governed by magnetohydrodynamical turbulence. The intense high-energy radiation from one or more young stars and strong spatial and temporal variations in the physical conditions (accretion rate, temperature, density, grain sizes) make a variety of chemical processes active in protoplanetary disks. In PPDs, simple molecules are rapidly produced in the gas phase via ion-molecule and neutral-neutral reactions. The more complex (organic) species in disks are slowly synthesized on and in the icy mantles of dust grains and later are...

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   1,299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References and Further Reading

  • Acke B et al (2010) Spitzer’s view on aromatic and aliphatic hydrocarbon emission in Herbig Ae stars. Astrophys J 718:558

    ADS  Google Scholar 

  • Aikawa Y, Herbst E (1999) Molecular evolution in protoplanetary disks. Two-dimensional distributions and column densities of gaseous molecules. Astron Astrophys 351:233

    ADS  Google Scholar 

  • Aikawa Y, Umebayashi T, Nakano T, Miyama SM (1999) Evolution of molecular abundances in protoplanetary disks with accretion flow. Astrophys J 519:705–725. doi:10.1086/307400

    Article  ADS  Google Scholar 

  • Aikawa Y, Momose M, Thi W-F et al (2003) Interferometric observations of formaldehyde in the protoplanetary disk around LkCa 15. Publ Astron Soc Jpn 55:11

    ADS  Google Scholar 

  • Aikawa Y et al (2012) AKARI observations of ice absorption bands towards edge-on young stellar objects. Astron Astrophys 38:57

    Google Scholar 

  • Asvany O, Schlemmer S, Gerlich D (2004) Deuteration of CHn+ (n = 3–5) in collisions with HD measured in a low-temperature ion trap. Astrophys J 617:685

    ADS  Google Scholar 

  • Bergin E, Calvet N, D’Alessio P, Herczeg GJ (2003) The effects of UV continuum and Lyα radiation on the chemical equilibrium of T Tauri disks. Astrophys J 591:L159–L162

    ADS  Google Scholar 

  • Bergin EA, Aikawa Y, Blake GA, van Dishoeck EF (2007) The chemical evolution of protoplanetary disks. In: Reipurth B, Jewitt D, Keil K (eds) Protostars and planets V. University of Arizona Press, Tucson, pp 751–766, 951

    Google Scholar 

  • Bergin E et al (2010) Sensitive limits on the abundance of cold water vapor in the DM Tauri protoplanetary disk. Astron Astrophys 521:L33

    ADS  Google Scholar 

  • Bergin E et al (2013) An old disk still capable of forming a planetary system. Nature 493:644

    ADS  Google Scholar 

  • Bisschop SE, Fraser HJ, Öberg KI, van Dishoeck EF, Schlemmer S (2006) Desorption rates and sticking coefficients for CO and N2 interstellar ices. Astron Astrophys 449:1297

    ADS  Google Scholar 

  • Bitner MA, Richter MJ, Lacy JH et al (2007) TEXES observations of pure rotational H2 emission from AB Aurigae. Astrophys J 661:L69

    ADS  Google Scholar 

  • Bockelee-Morvan D, Woodwart CE, Kelley MS, Wooden DH (2009) Water in comets 71P/Clark and C/2004 B1 (linear) with Spitzer. Astrophys J 696:1075

    ADS  Google Scholar 

  • Bonev BP et al (2013) Evidence for two modes of water release in comet 103P/Hartley 2: distributions of column density, rotational temperature, and ortho-para ratio. Icarus 222:740

    ADS  Google Scholar 

  • Bouwman J, Henning T, Hillenbrand LA et al (2008) The formation and evolution of planetary systems: grain growth and chemical processing of dust in T Tauri systems. Astrophys J 683:479–498

    ADS  Google Scholar 

  • Chapillion E, Dutrey A, Guilloteau S et al (2012) Chemistry in disks. VII. First detection of HC3N in protoplanetary disks. Astrophys J 756:58

    ADS  Google Scholar 

  • Cortes SR, Meyer MR, Carpenter JM et al (2009) Grain growth and global structure of the protoplanetary disk associated with the mature classical T Tauri star, PDS 66. Astrophys J 697:1305–1315

    ADS  Google Scholar 

  • Dalgarno A, Black JH (1976) Molecule formation in the interstellar gas. Rep Prog Phys 39:573

    ADS  Google Scholar 

  • Dartois E, Dutrey A, Guilloteau S (2003) Structure of the DM Tau outer disk: probing the vertical kinetic temperature gradient. Astron Astrophys 399:773–787

    ADS  Google Scholar 

  • Day JMD, Ash RD, Liu Y et al (2009) Early formation of evolved asteroidal crust. Nature 457(7226):179–182

    ADS  Google Scholar 

  • Draine BT, Bertoldi F (1996) Structure of stationary photodissociation fronts. Astrophys J 468:269

    ADS  Google Scholar 

  • Dutrey A, Guilloteau S, Guelin M (1997) Chemistry of protosolar-like nebulae: the molecular content of the DM Tau and GG Tau disks. Astron Astrophys 317:L55

    ADS  Google Scholar 

  • Dutrey A, Guilloteau S, Ho P (2007a) Interferometric spectroimaging of molecular gas in protoplanetary disks. In: Reipurth B, Jewitt D, Keil K (eds) Protostars and planets V. University of Arizona Press, Tucson, p 495

    Google Scholar 

  • Dutrey A, Henning T, Guilloteau S et al (2007b) Chemistry in disks. I. Deep search for N2H+ in the protoplanetary disks around LkCa 15, MWC 480, and DM Tauri. Astron Astrophys 464:615–623

    ADS  Google Scholar 

  • Ehrenfreund, Charnley (2000) Annual Reviews in Astronomy & Astrophysics 38:427

    Google Scholar 

  • Elsila JE, Glavin DP, Dworkin JP (2009) Cometary glycine detected in samples returned by Stardust. Meteorit Planet Sci 44:1323

    ADS  Google Scholar 

  • Fedele D, van den Acker ME, Henning T, Jayawardhana R, Oliveira JM (2010) Timescale of mass accretion in pre-main-sequence stars. Astron Astrophys 510:72

    Google Scholar 

  • Fedele D et al (2012) Warm H2O and OH in the disk around the Herbig star HD 163296. Astron Astrophys 544:L9

    ADS  Google Scholar 

  • Fedele D et al (2013) DIGIT survey of far-infrared lines from protoplanetary disks. II. [OI], [CII], OH, H2O and CH+. Astron Astrophys 559:77–99

    Google Scholar 

  • Fukagawa M et al (2004) Spiral structure in the circumstellar disk around AB Aurigae. Astrophys J 605:L53

    ADS  Google Scholar 

  • Garrod RT, Herbst E (2006) Formation of methyl formate and other organic species in the warm-up phase of hot molecular cores. Astron Astrophys 457:927

    ADS  Google Scholar 

  • Gerlich D, Herbst E, Roueff E (2002) H3++HD ↔ H2D++H2: low-temperature laboratory measurements and interstellar implications. Planet Space Sci 50:1275

    ADS  Google Scholar 

  • Gorti U, Dullemond CP, Hollenbach D (2009) Time evolution of viscous circumstellar disks due to photoevaporation by far-ultraviolet, extreme-ultraviolet, and X-ray radiation from the central star. Astrophys J 705:1237

    ADS  Google Scholar 

  • Grady CA et al (2013) Spiral arms in the asymmetrically illuminated disk of MWC 758 and constraints on giant planets. Astrophys J 762:48

    ADS  Google Scholar 

  • Guilloteau St, Dutrey A, Pietu V, Boehler Y (2011) A dual-frequency sub-arcsecond study of proto-planetary disks at mm wavelengths: first evidence for radial variations of the dust properties. Astron Astrophys 529:105

    Google Scholar 

  • Guilloteau St et al (2012) Chemistry in disks. VIII. The CS molecule as an analytic tracer of turbulence in disks. Astron Astrophys 548:70

    Google Scholar 

  • Hasegawa TI, Herbst E, Leung CM (1992) Models of gas-grain chemistry in dense interstellar clouds with complex organic molecules. Astrophys J Suppl Ser 82:167

    ADS  Google Scholar 

  • Henning T, Meeus G (2011) Dust processing and mineralogy in protoplanetary accretion disks. In: Garcia PJV (ed) Physical processes in circumstellar disks around young stars. Chicago University Press, p 114

    Google Scholar 

  • Henning T et al (2010) Chemistry in disks. III. Photochemistry and x-ray driven chemistry probed by the ethynyl radical (CCH) in DM Tau, LkCa 15, and MWC 480. Astrophys J 714:1511

    ADS  Google Scholar 

  • Herbst E (1985) An update of and suggested increase in calculated radiative association rate coefficients. Astrophys J 291:226

    ADS  Google Scholar 

  • Herbst E, Klemperer W (1973) The formation and depletion of molecules in dense interstellar clouds. Astrophys J 185:505

    ADS  Google Scholar 

  • Hogerheijde M et al (2011) Detection of the water reservoir in a forming planetary system. Science 334:338

    ADS  Google Scholar 

  • Hollenbach D, Salpeter EE (1971) Surface recombination of hydrogen molecules. Astrophys J 163:155, http://astrochemistry.net

    ADS  Google Scholar 

  • Hughes AM et al (2011) Empirical constraints on turbulence in protoplanetary accretion disks. Astrophys J 727:85

    ADS  Google Scholar 

  • Kastner JH, Zuckerman B, Weintraub DA, Forveille T (1997) X-ray and molecular emission from the nearest region of recent star formation. Science 277:67

    ADS  Google Scholar 

  • Lahuis F, van Dishoeck EF, Boogert ACA et al (2006) Hot organic molecules toward a young low-mass star: a look at inner disk chemistry. Astrophys J 636:L145

    ADS  Google Scholar 

  • Le Petit F, Nehmé C, Le Bourlot J, Roueff E (2006) A model for atomic and molecular interstellar gas: the meudon PDR code. Astrophys J Suppl Ser 164:506

    ADS  Google Scholar 

  • Lee H-H, Herbst E, des Forets GP, Roueff E, Le Bourlot J (1996) Photodissociation of H2 and CO and time dependent chemistry in inhomogeneous interstellar clouds. Astron Astrophys 311:690

    ADS  Google Scholar 

  • Leger A, Jura M, Omont A (1985) Desorption from interstellar grains. Astron Astrophys 144:147

    ADS  Google Scholar 

  • Lin DNC, Papaloizou J (1980) On the structure and evolution of the primordial solar nebula. MNRAS 191:37

    ADS  Google Scholar 

  • Min M, Flynn G (2010) Dust composition in protoplanetary disks. In: Apai D, Lauretta D (eds) Protoplanetary dust: astrophysical and cosmochemical perspectives. Cambridge University Press, Cambridge, pp 160–191

    Google Scholar 

  • Öberg KI, Fuchs GW, Awad Z et al (2007) Photodesorption of CO ice. Astrophys J 662:L23

    ADS  Google Scholar 

  • Oberg KI, Qi C, Wilner DJ, Hogerheijde MR (2012) Evidence for multiple pathways to deuterium enhancements in protoplanetary disks. Astrophys J 749:162. doi:10.1088/0004-637X/749/2/162

    Article  ADS  Google Scholar 

  • Pascucci I, Hollenbach D, Najita J et al (2007) Detection of [Ne II] emission from young circumstellar disks. Astrophys J 663:383

    ADS  Google Scholar 

  • Payne MJ, Lodato G (2007) The potential for Earth-mass planet formation around brown dwarfs. MNRAS 381:1597

    ADS  Google Scholar 

  • Piétu V, Dutrey A, Guilloteau S (2007) Probing the structure of protoplanetary disks: a comparative study of DM Tau, LkCa 15, and MWC 480. Astron Astrophys 467:163–178

    ADS  Google Scholar 

  • Podio L et al (2013) Water vapor in the protoplanetary disk of DG Tau. Astrophys J 766:L5

    ADS  Google Scholar 

  • Pollack JB, Hollenbach D, Beckwith S, Simonelli DP, Roush T, Fong W (1994) Composition and radiative properties of grains in molecular clouds and accretion disks. Astrophys J 421:615

    ADS  Google Scholar 

  • Pontoppidan KM, Dullemond CP, van Dishoeck EF et al (2005) Ices in the edge-on disk CRBR 2422.8-3423: Spitzer spectroscopy and Monte Carlo radiative transfer modeling. Astrophys J 622:463

    ADS  Google Scholar 

  • Qi C, Kessler JE, Koerner DW, Sargent AI, Blake GA (2003) Continuum and CO/HCO+ emission from the disk around the T Tauri star LkCa 15. Astrophys J 597:986

    ADS  Google Scholar 

  • Qi C et al (2006) CO J = 6–5 observations of TW Hya with the SMA. Astrophys J L636:L157

    ADS  Google Scholar 

  • Qi C, Wilner DJ, Aikawa Y, Blake GA, Hogerheijde MR (2008) Resolving the chemistry in the disk of TW Hydrae. I. Deuterated species. Astrophys J 681:1396–1407

    ADS  Google Scholar 

  • Qi C et al (2013) First detection of c-C3H2 in a circumstellar disk. Astrophys J L765:L14

    ADS  Google Scholar 

  • Rodmann J, Henning T, Chandler CJ, Mundy LG, Wilner DJ (2006) Large dust particles in disks around T Tauri stars. Astron Astrophys 446:211–221

    ADS  Google Scholar 

  • Salyk C, Pontoppidan KM, Blake GA et al (2008) H2O and OH gas in the terrestrial planet-forming zones of protoplanetary disks. Astrophys J 676:L49–L52

    ADS  Google Scholar 

  • Salyk C et al (2011) A Spitzer survey of mid-infrared molecular emission from protoplanetary disks. II. Correlations and local thermal equilibrium models. Astrophys J 731:130

    ADS  Google Scholar 

  • Semenov D, Wiebe D, Henning T (2004) Reduction of chemical networks. II. Analysis of the fractional ionisation in protoplanetary discs. Astron Astrophys 417:93

    ADS  Google Scholar 

  • Semenov D, Pavlyuchenkov Y, Henning T, Wolf S, Launhardt R (2008) Chemical and thermal structure of protoplanetary disks as observed with ALMA. Astrophys J 673:L195–L198

    ADS  Google Scholar 

  • Smith IWM, Herbst E, Chang Q (2004) Rapid neutral-neutral reactions at low temperatures: a new network and first results for TMC-1. MNRAS 350:323

    ADS  Google Scholar 

  • Terada H et al (2007) Detection of water ice in edge-on protoplanetary disks: HK Tauri B and HV Tauri C. Astrophys J 667:303

    ADS  Google Scholar 

  • Teske JK et al (2011) Measuring organic molecular emission in disks with low-resolution Spitzer spectroscopy. Astrophys J 734:27

    ADS  Google Scholar 

  • Thiemens MH, Heidenreich JE III (1983) The mass-independent fractionation of oxygen: a novel isotope effect and its possible cosmo-chemical implications. Science 219:1073

    ADS  Google Scholar 

  • Tielens AGGM, Hagen W (1982) Model calculations of the molecular composition of interstellar grain mantles. Astron Astrophys 114:245

    ADS  Google Scholar 

  • van Dishoeck EF (1988) Photodissociation and photoionization processes. In: Millar T, Williams D (eds) ASSL, rate coefficients in astrochemistry. Kluwer, Dordrecht, pp 49–72

    Google Scholar 

  • van Dishoeck EF (2004) ISO spectroscopy of gas and dust: from molecular clouds to protoplanetary disks. Annu Rev Astron Astrophys 42:119

    ADS  Google Scholar 

  • van Dishoeck EF, Jonkheid B, van Hemert MC (2006) Photoprocesses in protoplanetary disks. In: Sims IR, Williams DA (eds) Chemical evolution of the Universe, Faraday discussion, Royal Society of Chemistry, Cambridge, UK, vol 133. pp 231–244

    Google Scholar 

  • van Dishoeck EF, Bergin EA, Lis DC, Lunine JI (2014) Water: from clouds to planets. In: Beuther H, Klessen R, Dullemond C, HenningTh (eds) Protostars and planets VI. University of Arizona Press, Tucson (in press)

    Google Scholar 

  • van Zadelhoff G-J, Aikawa Y, Hogerheijde MR, van Dishoeck EF (2003) Axi-symmetric models of ultraviolet radiative transfer with applications to circumstellar disk chemistry. Astron Astrophys 397:789

    ADS  MATH  Google Scholar 

  • Vasyunin AI, Semenov D, Henning T et al (2008) Chemistry in protoplanetary disks: a sensitivity analysis. Astrophys J 672:629

    ADS  Google Scholar 

  • Wakelam V, Herbst E, Selsis F (2006) The effect of uncertainties on chemical models of dark clouds. Astron Astrophys 451:551

    ADS  Google Scholar 

  • Wakelam V et al (2011) A KInetic database for astrochemistry (KIDA). Astrophys J Suppl Ser 199:21

    ADS  Google Scholar 

  • Willacy K, Langer WD (2000) The importance of photoprocessing in protoplanetary disks. Annu Rev Astron Astrophys 49:67

    Google Scholar 

  • Willams JP, Ciesza LA (2011) Protoplanetary disks and their evolution. Astrophys J 544:903

    Google Scholar 

  • Woodall J, Agúndez M, Markwick-Kemper AJ, Millar TJ (2007) The UMIST database for astrochemistry. Astron Astrophys 466:1197

    ADS  Google Scholar 

  • Woodwart CE, Kelley MS, Bockelee-Morvan D, Gehrz RD (2007) Water in comet C/2003 K4 (LINEAR) with Spitzer. Astrophys J 671:1065

    ADS  Google Scholar 

  • Wozniakiewicz PJ, Kearsley AT, Ishii HA et al (2012) The origin of crystalline residues in Stardust Al foils: surviving cometary dust or crystallized impact melts? Meteorit Planet Sci 47:660

    ADS  Google Scholar 

  • Zasowski G, Kemper F, Watson DM et al (2009) Spitzer infrared spectrograph observations of class I/II objects in Taurus: composition and thermal history of the circumstellar ices. Astrophys J 694:459–478

    ADS  Google Scholar 

  • Zhang K, Pontoppidan KM, Salyk C, Blake GA (2013) Evidence for a snow line beyond the transitional radius in the TW Hya protoplanetary disk. Astrophys J 766:82

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry Semenov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Semenov, D. (2015). Protoplanetary Disk, Chemistry. In: Gargaud, M., et al. Encyclopedia of Astrobiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44185-5_1300

Download citation

Publish with us

Policies and ethics