Skip to main content

Critical Infrastructure Systems: Basic Principles of Monitoring, Control, and Security

  • Chapter
  • First Online:
Book cover Intelligent Monitoring, Control, and Security of Critical Infrastructure Systems

Part of the book series: Studies in Computational Intelligence ((SCI,volume 565))

Abstract

Critical Infrastructures have become an essential asset in modern societies and our everyday tasks are heavily depended on their reliable and secure operation. Critical Infrastructures are systems and assets, whether physical or virtual, so vital to the countries that their incapacity or destruction would have a debilitating impact on security, national economy, national public health or safety, or any combination of these matters. Thus, monitoring, control, and security of these infrastructures are extremely important in order to avoid the disruption of their normal operation (either due to attacks, component faults, or natural disasters) or to ensure that the infrastructure continues to function after a failure event. This chapter aims at presenting the basic principles and new research directions for the intelligent monitoring, control, and security of critical infrastructure systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. USA Patriot Act, Public Law 107-56, 2001. Available online via http://epic.org/privacy/terrorism/hr3162.html. Accessed 22 Dec 2012

  2. EU Directive 2008/114/EC, Identification and designation of European critical infrastructures (2008)

    Google Scholar 

  3. Vision Solutions.: Assessing the financial impact of downtime: understand the factors that contribute to the cost of downtime and accurately calculate its total cost in your organization. White Paper (2008)

    Google Scholar 

  4. Rinaldi, S.: Modeling and simulating critical infrastructures and their interdependencies. In: Proceedings of the 37th International Conference on System Sciences, 00(C):1–8 (2004)

    Google Scholar 

  5. Rinaldi, S., Peerenboom, J., Kelly, T.: Identifying, understanding, and analyzing critical infrastructure interdependencies. IEEE Control Syst. 21(6), 11–25 (2001)

    Article  Google Scholar 

  6. Axelrod, R., Cohen, M.D.: Harnessing Complexity: Organizational Implications of a Scientific Frontier, pp. 32–61. Free Press, New York (1999)

    Google Scholar 

  7. Bagheri, E., Ghorbani, A.A.: The state of the art in critical infrastructure protection: a framework for convergence. Int. J. Crit. Infrastruct. 4(3), 215–244 (2008)

    Article  Google Scholar 

  8. Gou, B., Abur, A.: An improved measurement placement algorithm for network observability. IEEE Trans. Power Syst. 16(4), 819–824 (2001)

    Google Scholar 

  9. Baldwin, T.L., Mili, L., Boisen Jr, M.B., Adapa, R.: Power system observability with minimal phasor measurement. IEEE Trans. Power Syst. 8(2), 707–715 (1993)

    Article  Google Scholar 

  10. Nuqui, R.F., Phadke, A.G.: Phasor measurement unit placement techniques for complete and incomplete observability. IEEE Trans. Power Deliv. 20(4), 2381–2388 (2005)

    Article  Google Scholar 

  11. Milosevic, B., Begovic, M.: Nondominated sorting genetic algorithm for optimal phasor measurement placement. IEEE Trans. Power Syst. 18(1), 69–75 (2003)

    Article  Google Scholar 

  12. Xu, B., Abur, A.: Optimal placement of phasor measurement units for state estimation. Final Project Report. PSERC, Ithaca, Oct 2005

    Google Scholar 

  13. Valverde, G., Chakrabarti, S., Kyriakides, E., Terzija, V.: A constrained formulation for hybrid state estimation. IEEE Trans. Power Syst. 26(3), 1102–1109 (2011)

    Article  Google Scholar 

  14. Chakrabarti, S., Kyriakides, E., Eliades, D.G.: Placement of synchronized measurements for power system observability. IEEE Trans. Power Deliv. 24(1), 12–19 (2009)

    Article  Google Scholar 

  15. Celik, M.K., Liu, W.H.E.: An incremental measurement placement algorithm for state estimation. IEEE Trans. Power Syst. 10(3), 1698–1703 (1995)

    Article  Google Scholar 

  16. Baran, M.E., Zhu, J., Zhu, H., Garren, K.E.: A meter placement method for state estimation. IEEE Trans. Power Syst. 10(3), 1704–1710 (1995)

    Article  Google Scholar 

  17. Asprou, M., Kyriakides, E.: Optimal PMU placement for improving hybrid state estimation accuracy. In: Proceedings of the IEEE, PowerTech 2011, Trondheim, pp. 1–7, June 2011

    Google Scholar 

  18. Rice, M., Heydt, G.T.: Enhanced state estimator: part III: sensor location strategies. Final Project Report. PSERC, Tempe, Nov 2006

    Google Scholar 

  19. Toregas, C., ReVelle, C.: Optimal location under time or distance constraints. Pap. Reg. Sci. 28(1), 131–143 (1972)

    Article  Google Scholar 

  20. Church, R., ReVelle, C.: The maximal covering location problem. Pap. Reg. Sci. 32(1), 101–118 (1974)

    Article  Google Scholar 

  21. Lee, B., Deininger, R.: Optimal locations of monitoring stations in water distribution system. ASCE J. Environ. Eng. 118(1), 4–16 (1992)

    Article  Google Scholar 

  22. Kumar, A., Kansal, M.L., Arora, G.: Identification of monitoring stations in water distribution system. ASCE J. Environ. Eng. 123(8), 746–752 (1997)

    Article  Google Scholar 

  23. Al-Zahrani, M.A., Moeid, K.: Locating optimum water quality monitoring stations in water distribution system. In: Proceedings of ASCE World Water and Environmental Resources, pp. 393–402 (2001)

    Google Scholar 

  24. Berry, J.W., Fleischer, L., Hart, W.E., Phillips, C.A., Watson, J.-P.: Sensor placement in municipal water networks. ASCE J. Water Resour. Plan. Manage. 131(3), 237–243 (2005)

    Article  Google Scholar 

  25. Harmant, P., Nace, A., Kiene, L., Fotoohi, F.: Optimal supervision of drinking water distribution network. In: Proceedings of ASCE Water Resources Planning and Management, pp. 52–60 (1999)

    Google Scholar 

  26. Slay, J., Miller, M.: Lessons learned from the Maroochy water breach. In: Goetz, E., Shenoi, S. (eds.) Critical Infrastructure Protection. Springer, Boston (2008)

    Google Scholar 

  27. Goetz, E., Shenoi, S. (eds) Critical Infrastructure Protection. Springer, Heidelberg (2008)

    Google Scholar 

  28. Meseguer, J., Puig, V., Escobet, T.: Fault diagnosis using a timed discrete-event approach based on interval observers: application to sewer networks. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 40(5), 900–916 (2010)

    Article  Google Scholar 

  29. Tryby, M.E., Boccelli, D.L., Uber, J.G., Rossman, L.A.: Facility location model for booster disinfection of water supply networks. ASCE J. Water Resour. Plan. Manage. 128(5), 322–333 (2002)

    Article  Google Scholar 

  30. Lansey, K., Pasha, F., Pool, S., Elshorbagy, W., Uber, J.: Locating satellite booster disinfectant stations. ASCE J. Water Resour. Plan. Manage. 133(4), 372–376 (2007)

    Article  Google Scholar 

  31. Propato, M., Uber, J.G.: Booster system design using mixed-integer quadratic programming. ASCE J. Water Resour. Plan. Manage. 130(4), 348–352 (2004)

    Article  Google Scholar 

  32. Prasad, T.D., Walters, G.A., Savic, D.A.: Booster disinfection of water supply networks: multiobjective approach. ASCE J. Water Resour. Plan. Manage. 130(5), 367–376 (2004)

    Article  Google Scholar 

  33. Ewald, G., Kurek, W., Brdys, M.A.: Grid implementation of a parallel multiobjective genetic algorithm for optimized allocation of chlorination stations in drinking water distribution systems: Chojnice case study. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 38(4):497–509 (2008)

    Google Scholar 

  34. Hernandez-Castro, S.: Two-stage stochastic approach to the optimal location of booster disinfection stations. Ind. Eng. Chem. Res. 46(19), 6284–6292 (2007)

    Article  Google Scholar 

  35. Oman, P., Schweitzer, E., Frincke, D.: Concerns about intrusions into remotely accessible substation controllers and SCADA systems. In: Proceedings of the 27th Annual Western Protective Relay Conference (2000)

    Google Scholar 

  36. President’s Information Technology Advisory Committee.: Cyber security: a crisis of prioritization. Report to the President, National Coordination Office for Information Technology Research and Development, Arlington (2005)

    Google Scholar 

  37. Luders, S.: CERN tests reveal security flaws with industrial networked devices. The Industrial Ethernet Book, GGH Marketing Communications, Titchfield, pp. 12–23, Nov 2006

    Google Scholar 

  38. Petroleum Safety Authority. www.ptil.no/English/Frontpage.htm

  39. Cherry, S., Langner, R.: How Stuxnet is rewriting the cyberterrorism playbook. In: Proceedings of the IEEE Spectrum, Oct 2010

    Google Scholar 

  40. Berg, M., Stamp, J.: A reference model for control and automation systems in electric power. Technical Report, SAND2005-1000C. Sandia National Laboratories, Albuquerque (2005)

    Google Scholar 

  41. Byres, E., Carter, J., Elramly, A., Hoffman, D.: Worlds in collision: Ethernet on the plant floor. In: Proceedings of the ISA Emerging Technologies Conference (2002)

    Google Scholar 

  42. National Communications System.: Supervisory control and data acquisition (SCADA) systems. Technical Information Bulletin NCS TIB 04-1, Arlington (2004)

    Google Scholar 

  43. Ask, R., et al.: Information security baseline requirements for process control, safety and support ICT systems. OLF Guideline No. 104. Norwegian Oil Industry Association (OLF), Stavanger (2006)

    Google Scholar 

  44. American Gas Association.: Cryptographic protection of SCADA communications; part 1: background, policies and test plan. AGA Report No. 12 (Part 1), Draft 5, Washington DC. www.gtiservices.org/security/AGA12Draft5r3.pdf (2005)

  45. American Gas Association.: Cryptographic protection of SCADA communications; part 2: retrofit link encryption for asynchronous serial communications. AGA Report No. 12 (Part 2), Draft, Washington DC. www.gtiservices.org/security/aga-12p2-draft-0512.pdf (2005)

  46. American Petroleum Institute.: API 1164: SCADA security, Washington DC (2004)

    Google Scholar 

  47. British Columbia Institute of Technology.: Good practice guide on firewall deployment for SCADA and process control networks. National Infrastructure Security Co-ordination Centre, London (2005)

    Google Scholar 

  48. Byres, E., Franz, M., Miller, D.: The use of attack trees in assessing vulnerabilities in SCADA systems. In: Proceedings of the International Infrastructure Survivability Workshop (2004)

    Google Scholar 

  49. Graham, J., Patel, S.: Security considerations in SCADA communication protocols. Technical Report TR-ISRL-04-01. Intelligent System Research Laboratory, Department of Computer Engineering and Computer Science, University of Louisville, Louisville (2004)

    Google Scholar 

  50. Instrumentation Systems and Automation Society.: Security technologies for manufacturing and control systems (ANSI/ISA-TR99.00.01-2004). Research Triangle Park, North Carolina (2004)

    Google Scholar 

  51. Instrumentation Systems and Automation Society.: Integrating electronic security into the manufacturing and control systems environment (ANSI/ISA-TR99.00.02-2004). Research Triangle Park, North Carolina (2004)

    Google Scholar 

  52. Kilman, D., Stamp, J.: Framework for SCADA security policy. Technical Report SAND2005-1002C. Sandia National Laboratories, Albuquerque (2005)

    Google Scholar 

  53. National Institute of Standards and Technology.: System protection profile: industrial control systems v1.0. Gaithersburg, Maryland (2004)

    Google Scholar 

  54. Stouffer, K., Falco, J., Kent, K.: Guide to supervisory control and data acquisition (SCADA) and industrial control systems security—Initial public draft. National Institute of Standards and Technology, Gaithersburg (2006)

    Google Scholar 

  55. Chandia, R., Gonzalez, J., Kilpatrick, T., Papa, M., Shenoi, S.: Security strategies for SCADA networks. In: Goetz, E., Shenoi, S. (eds.) Critical Infrastructure Protection. Springer, Heidelberg (2008)

    Google Scholar 

  56. Chen, J., Patton, R.J.: Robust Model-Based Fault Diagnosis for Dynamic Systems. Kluwer Academic Publishers, London (1999)

    Book  MATH  Google Scholar 

  57. Frank, P.M.: Fault diagnosis in dynamic systems using analytical and knowledge–based redundancy: a survey and some new results. Automatica 26(3), 459–474 (1990)

    Article  MATH  Google Scholar 

  58. Gertler, J.J.: Fault Detection and Diagnosis in Engineering Systems. Marcel Dekker, New York (1998)

    Google Scholar 

  59. Patton, R.J., Frank, P.M., Clark, R.N.: Issues of Fault Diagnosis for Dynamics Systems. Springer, Berlin (2000)

    Book  Google Scholar 

  60. Chung, W.H., Speyer, J.L., Chen, R.H.: A decentralized fault detection filter. ASME J. Dyn. Syst. Meas. Control 123(2), 237–247 (2001)

    Article  Google Scholar 

  61. Olfati-Saber, R.: Distributed Kalman filter with embedded consensus filters. In: Proceedings of the Joint CDC and ECC Conference, Sevilla, Dec 2005

    Google Scholar 

  62. Franco, E., Olfati–Saber, R., Parisini, T., Polycarpou, M.M.: Distributed fault diagnosis using sensor networks and consensus-based filters. In: Proceedings of the 45th IEEE Conference on Decision and Control, pp. 386–391 (2006)

    Google Scholar 

  63. Olfati-Saber, R., Franco, E., Frazzoli, E., Shamma, J.S.: Belief consensus and distributed hypothesis testing in sensor networks. In: Proceedings of the Workshop on Networked Embedded Sensing and Control, University of Notre Dame, IN, Oct 2005

    Google Scholar 

  64. Ding, Y., Elsayed, E., Kumara, S., Lu, J., Niu, F., Shi, J.: Distributed sensing for quality and productivity improvements. IEEE Trans. Autom. Sci. Eng. 3(4), 344–359 (2006)

    Article  Google Scholar 

  65. Isermann, R.: Fault-diagnosis Systems: An Introduction from Fault Detection to Fault Tolerance. Springer, Heidelberg (2006)

    Google Scholar 

  66. Montes de Oca, S., Puig, V., Blesa, J.: Robust fault detection based on adaptive threshold generation using interval LPV observers. Int. J. Adapt. Control Sig. Process. 26(3), 258–283 (2011)

    Google Scholar 

  67. Orjuela, R., Marx, B., Ragot, J., Maquin, D.: Fault diagnosis for nonlinear systems represented by heterogeneous multiple models. In: Proceedings of Conference on Control and Fault-Tolerant Systems (SysTol), pp. 600–605 (2010)

    Google Scholar 

  68. Zhang, X., Parisini, T., Polycarpou, M.: Sensor bias fault isolation in a class of nonlinear systems. IEEE Trans. Autom. Control 50(3), 370–376 (2005)

    Article  MathSciNet  Google Scholar 

  69. Zhang, X.: Sensor bias fault detection and isolation in a class of nonlinear uncertain systems using adaptive estimation. IEEE Trans. Autom. Control 56(5), 1220–1226 (2011)

    Article  Google Scholar 

  70. Narasimhan, S., Vachhani, P., Rengaswamy, R.: New nonlinear residual feedback observer for fault diagnosis in nonlinear systems. Automatica 44(9), 2222–2229 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  71. Yan, X., Edwards, C.: Sensor fault detection and isolation for nonlinear systems based on a sliding mode observer. Int. J. Adapt. Control Sig. Process. 21, 657–673 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  72. Talebi, H., Khorasani, K., Tafazoli, S.: A recurrent neural-network-based sensor and actuator fault detection and isolation for nonlinear systems with application to the satellite’s attitude control subsystem. IEEE Trans. Neural Netw. 20(1), 45–60 (2009)

    Article  Google Scholar 

  73. Rajamani, R., Ganguli, A.: Sensor fault diagnostics for a class of non-linear systems using linear matrix inequalities. Int. J. Control 77(10), 920–930 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  74. Vemuri, A.: Sensor bias fault diagnosis in a class of nonlinear systems. IEEE Trans. Autom. Control 46(6), 949–954 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  75. Samy, I., Postlethwaite, I., Gu, D.: Survey and application of sensor fault detection and isolation schemes. Control Eng. Pract. 19(7), 658–674 (2011)

    Google Scholar 

  76. Mattone, R., De Luca, A.: Nonlinear fault detection and isolation in a three-tank heating system. IEEE Trans. Control Syst. Technol. 14(6), 1158–1166 (2006)

    Article  Google Scholar 

  77. De Persis, C., Isidori, A.: A geometric approach to nonlinear fault detection and isolation. IEEE Trans. Autom. Control 46(6), 853–865 (2001)

    Article  MATH  Google Scholar 

  78. Adjallah, K., Maquin, D., Ragot, J.: Non-linear observer-based fault detection. In: Proceedings of the 3rd IEEE Conference on Control Applications, pp. 1115–1120 (1994)

    Google Scholar 

  79. Rajaraman, S., Hahn, J., Mannan, M.: A methodology for fault detection, isolation, and identification for nonlinear processes with parametric uncertainties. Ind. Eng. Chem. Res. 43(21), 6774–6786 (2004)

    Article  Google Scholar 

  80. Rajaraman, S., Hahn, J., Mannan, M.: Sensor fault diagnosis for nonlinear processes with parametric uncertainties. J. Hazard. Mater. 130(1–2), 1–8 (2006)

    Article  Google Scholar 

  81. Chen, W., Saif, M.: A sliding mode observer-based strategy for fault detection, isolation, and estimation in a class of lipschitz nonlinear systems. Int. J. Syst. Sci. 38(12), 943–955 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  82. Fragkoulis, D., Roux, G., Dahhou, B.: Detection, isolation and identification of multiple actuator and sensor faults in nonlinear dynamic systems: application to a waste water treatment process. Appl. Math. Model. 35(1), 522–543 (2010)

    Article  MathSciNet  Google Scholar 

  83. Gertler, J.: Fault Detection and Diagnosis in Engineering Systems. CRC, Boca Raton (1998)

    Google Scholar 

  84. Polycarpou, M., Trunov, A.: Learning approach to nonlinear fault diagnosis: detectability analysis. IEEE Trans. Autom. Control 45(4), 806–812 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  85. Hakimi, S.: Optimum locations of switching centers and the absolute centers and medians of a graph. Oper. Res. 12(3), 450–459 (1964)

    Article  MATH  Google Scholar 

  86. Berry, J., Fleischer, L., Hart, W., Phillips, C.: Sensor placement in municipal water networks. In: Proceedings of the ASCE World Water and Environmental Resources, pp. 40–49 (2003)

    Google Scholar 

  87. Berry, J., Hart, W., Phillips, C., Uber, J., Watson, J.: Sensor placement in municipal water networks with temporal integer programming models. ASCE J. Water Resour. Plan. Manage. 132(4), 218–224 (2006)

    Article  Google Scholar 

  88. Berry, J., et al.: Designing contamination warning systems for municipal water networks using imperfect sensors. ACSE J. Water Resour. Plan. Manage. 135(4), 253–263 (2009)

    Article  Google Scholar 

  89. Shastri, Y., Diwekar, U.: Sensor placement in water networks: a stochastic programming approach. ASCE J. Water Resour. Plan. Manage. 132(3), 192–203 (2006)

    Article  Google Scholar 

  90. Watson, J.-P., Greenberg, H.J., Hart, W.E.: A multiple-objective analysis of sensor placement optimization in water networks. In: Proceedings of ASCE World Water and Environmental Resources, pp. 456–465 (2004)

    Google Scholar 

  91. Boccelli, D.L., Hart, W.E.: Optimal monitoring location selection for water quality issues. In: Proceedings of the ASCE World Environmental and Water Resources, pp. 522–527 (2007)

    Google Scholar 

  92. Krause, A., Leskovec, J., Guestrin, C., VanBriesen, J., Faloutsos, C.: Efficient sensor placement optimization for securing large water distribution networks. ASCE J. Water Resour. Plan. Manage. 134(6), 516–526 (2008)

    Article  Google Scholar 

  93. Ostfeld, A., et al.: The battle of the water sensor networks (BWSN): A design challenge for engineers and algorithms. ASCE J. Water Resour. Plan. Manage. 134(6), 556–568 (2008)

    Article  Google Scholar 

  94. Preis, A., Ostfeld, A.: Multiobjective contaminant sensor network design for water distribution systems. ASCE J. Water Resour. Plan. Manage. 134(4), 366–377 (2008)

    Article  Google Scholar 

  95. Weickgenannt, M., Kapelan, Z., Blokker, M., Savic, D.A.: Risk-based sensor placement for contaminant detection in water distribution systems. ASCE J. Water Resour. Plan. Manage. 136(6), 629–636 (2010)

    Article  Google Scholar 

  96. Aral, M.M., Guan, J., Maslia, M.L.: Optimal design of sensor placement in water distribution networks. ASCE J. Water Resour. Plan. Manage. 136(1), 5–18 (2010)

    Article  Google Scholar 

  97. Dorini, G., Jonkergouw, P., Kapelan, Z., Savic, D.: SLOTS: Effective algorithm for sensor placement in water distribution systems. ASCE J. Water Resour. Plan. Manage. 136(6), 620–628 (2010)

    Article  Google Scholar 

  98. Hart, W.E., Murray, R.: Review of sensor placement strategies for contamination warning systems in drinking water distribution systems. ASCE J. Water Resour. Plan. Manage. 136(6), 611–619 (2010)

    Article  Google Scholar 

  99. Berry, J., Lin, H., Lauer, E., Phillips, C.: Scheduling manual sampling for contamination detection in municipal water networks. In: Proceedings of the ASCE Water Distribution Systems Analysis. Paper 95, vol. 10, pp. 1–16 (2006)

    Google Scholar 

  100. Hart, W., Berry, J., Riesen, L., Murray, R., Phillips, C., Watson, J.: SPOT: a sensor placement optimization toolkit for drinking water contaminant warning system design. In: Proceedings of ASCE World Water and Environmental Resources, p. 12 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georgios Ellinas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ellinas, G., Panayiotou, C., Kyriakides, E., Polycarpou, M. (2015). Critical Infrastructure Systems: Basic Principles of Monitoring, Control, and Security. In: Kyriakides, E., Polycarpou, M. (eds) Intelligent Monitoring, Control, and Security of Critical Infrastructure Systems. Studies in Computational Intelligence, vol 565. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44160-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44160-2_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44159-6

  • Online ISBN: 978-3-662-44160-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics