Skip to main content

Active Space and the Role of Amplitude in Plant-Borne Vibrational Communication

  • Chapter
  • First Online:
Studying Vibrational Communication

Part of the book series: Animal Signals and Communication ((ANISIGCOM,volume 3))

Abstract

Unlike airborne signals, substrate-borne vibrational signals are confined within the size and shape of their medium of communication, which in the case of small arthropods often coincides with the host plant. By following the substrate continuity, a vibrational signal creates a more or less complex active space network that enables communication between individuals. Due to the heterogeneity of plants, physical properties of the substrate can vary in the efficiency of signal transmission and in the diffusion of signals along the tissues. Under such circumstances, the identification and location of a potential partner may be a difficult task. Amplitude cues can be of great importance in orientation to the source of a vibrational signal by providing information about both direction and distance. As examples, we present two case studies on mating behavior of a leafhopper and a planthopper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acheampong S, Mitchell BK (1997) Quiescence in the Colorado potato beetle, Leptinotarsa decemlineata. Entomol Exp Appl 82:83–89

    Article  Google Scholar 

  • Amon T, Čokl A (1990) Transmission of the vibratory song of the bug Nezara viridula (Pentatomidae, Heteroptera) on the Hedera helix plant. Scopolia (Suppl. 1):133–141

    Google Scholar 

  • Barth FG (2002) A spider’s world. Senses and behaviour. Springer, Berlin

    Google Scholar 

  • Baurecht D, Barth FG (1992) Vibratory communication in spiders. J Comp Physiol A 171:231–243

    Article  Google Scholar 

  • Bell PD (1980) Transmission of vibrations along plant stems: implications for insect communication. J New York Entomol S 88:210–216

    Google Scholar 

  • Bell WJ (1990) Searching behaviour patterns in insects. Annu Rev Entomol 35:417–467

    Google Scholar 

  • Brenowitz EA (1982) The active space of red-winged blackbird song. J Comp Physiol A 147:511–522

    Article  Google Scholar 

  • Brownell P, Farley RD (1979) Orientation to vibrations in sand by the nocturnal scorpion Paruroctonus mesaensis: mechanism of target localization. J Comp Physiol A 131:31–38

    Article  Google Scholar 

  • Claridge MF, Nixon GA (1986) Oncopsis flavicollis (L.) associated with tree birches (Betula): a complex of biological species or a host plant utilization polymorphism? Biol J Linn Soc 27:381–397

    Article  Google Scholar 

  • Casas J, Bacher S, Tautz J, Meyhöfer R, Pierre D (1998) Leaf vibrations and air movements in a leafminer-parasitoid system. Biol Control 11:147–153

    Article  Google Scholar 

  • Castellanos I, Barbosa P (2006) Evaluation of predation risk by a caterpillar using substrate-borne vibrations. Anim Behav 72:461–469

    Article  Google Scholar 

  • Cocroft RB (1996) Insect defense vibrational signals. Nature 382:679–680

    Article  Google Scholar 

  • Cocroft RB (2001) Vibrational communication and the ecology of group-living, herbivorous insects. Amer Zool 41:1215–1221

    Article  Google Scholar 

  • Cocroft RB, Rodriguez RL (2005) The behavioral ecology of insect vibrational communication. Bioscience 55:323–334

    Article  Google Scholar 

  • Cocroft RB, Tieu TD, Hoy RR, Miles RN (2000) Directionality in the mechanical response to substrate vibration in a treehopper (Hemiptera: Membracidae: Umbonia crassicornis). J Comp Physiol A 186:695–705

    Article  CAS  PubMed  Google Scholar 

  • Cocroft RB, Shugart HJ, Konrad KT, Tibbs K (2006) Variation in plant substrates and its consequences for insect vibrational communication. Ethology 112:779–789

    Article  Google Scholar 

  • Cocroft RB, Rodriguez RL, Hunt RE (2008) Host shifts, the evolution of communication, and speciation in the Enchenopa binotata species complex of treehoppers. In: Tilmon KJ (ed) Specialization, speciation and radiation: the evolutionary biology of herbivorous insects. University of California Press, Berkeley, pp 88–100

    Google Scholar 

  • Cocroft RB, Rodriguez RL, Hunt RE (2010) Host shifts and signal divergence: mating signals covary with host use in a complex of specialized plant-feeding insects. Biol J Linn Soc 99:60–72

    Article  Google Scholar 

  • Čokl A (1988) Vibratory signal transmission in plants as measured by laser vibrometry. Period Biol 90:193–196

    Google Scholar 

  • Čokl A, Otto C, Kalmring K (1985) The processing of directional vibratory signals in the ventral nerve cord of Locusta migratoria. J Comp Physiol A 156:45–52

    Article  Google Scholar 

  • Čokl A, McBrien HL, Millar JG (2001) Comparison of substrate-borne vibrational signals of two stink bug species, Acrosternum hilare and Nezara viridula (Heteroptera: Pentatomidae). Ann Entomol Soc Am 94:471–479

    Article  Google Scholar 

  • Čokl A, Virant-Doberlet M (2003) Communication with substrate-borne signals in small plant-dwelling insects. Annu Rev Entomol 48:29–50

    Article  PubMed  Google Scholar 

  • Čokl A, Zorovic M, Millar JG (2007) Vibrational communication along plants by the stink bugs Nezara viridula and Murgantia histrionica. Behav Process 75:40–54

    Article  Google Scholar 

  • Dall SRX, Johnstone RA (2002) Managing uncertainty: information and insurance under the risk of starvation. Phil Trans R Soc Lond B 357:1519–1526

    Article  Google Scholar 

  • Dawkins R, Krebs JR (1978) Animal signals: information or manipulation. In: Krebs JR, Davies NB (eds) Behavioural ecology: an evolutionary approach. Blackwell Scientific, Oxford, pp 282–309

    Google Scholar 

  • De Groot M, Čokl A, Virant-Doberlet M (2010) Effects of heterospecific and conspecific vibrational signal overlap and signal-to-noise ratio on male responsiveness in Nezara viridula (L.). J Exp Biol 213:3213–3222

    Article  PubMed  Google Scholar 

  • De Luca PA, Morris GK (1998) Courtship communication in meadow Katydids: female preference for large male vibrations. Behaviour 135:777–793

    Article  Google Scholar 

  • Eriksson A, Anfora G, Lucchi A, Virant-Doberlet M, Mazzoni V (2011) Inter-plant vibrational communication in a leafhopper insect. PLoS ONE 6(5):e19692

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Eriksson A, Anfora G, Lucchi A, Lanzo F, Virant-Doberlet M, Mazzoni V (2012) Exploitation of insect vibrational signals reveals a new method of pest management. PLoS ONE 7(3):e32954

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fellowes MDE, Van Alphen M, Jervis MA (2005) Foraging behaviour. In: Jervis MA, Kidd NAC (eds) Insects as natural enemies: a practical perspective, 2nd edn. Springer, Dordrecht, pp 1–71

    Chapter  Google Scholar 

  • Gillham MC (1992) Variation in acoustic signals within and among leafhoppers species of the genus Alebra (Homoptera, Cicadellidae). Biol J Linn Soc 45:1–15

    Article  Google Scholar 

  • Gogala M, Razpotnik R (1974) An oscillographic-sonagraphic method in bioacoustical research. Biol Vestn 22:209–216

    Google Scholar 

  • Grieshop MJ, Brunner JF, Jones VP, Bello NM (2010) Recapture of codling moth (Lepidoptera: Tortricidae) males: influence of lure type and pheromone background. J Econ Entomol 103:1242–1249

    Article  PubMed  Google Scholar 

  • Hergenröder R, Barth FG (1983) The release of attack and escape behavior by vibratory stimuli in a wandering spider (Cupiennius salei Keys.) J Comp Physiol 152:347-358

    Google Scholar 

  • Hill PSM (2008) Vibrational communication in animals. Harvard University Press, Cambridge

    Google Scholar 

  • Hunt RE (1994) Vibrational signals associated with mating behavior in the treehopper Enchenopa binotata Say (Hemiptera: Membracidae). J New York Entomol Soc 102:266–270

    Google Scholar 

  • Hunt RE, Nault LR (1991) Roles of interplant movement, acoustic communication, and phototaxis in mate-location behavior of the leafhopper Graminella nigrifrons. Behav Ecol Sociobiol 28:315–320

    Article  Google Scholar 

  • Ichikawa T, Ishii S (1974) Mating signal of the brown planthopper, Nilaparvata lugens Stål (Homoptera: Delphacidae): vibration of the substrate. Appl Ent Zool 9:196–198

    Google Scholar 

  • Ioriatti C, Anfora G, Tasin M, De Cristofaro A, Witzgall P, Lucchi A (2011) Chemical ecology and management of Lobesia botrana (Lepidoptera: Tortricidae). J Econ Entomol 104:1125–1137

    Article  CAS  PubMed  Google Scholar 

  • Joyce AL, Hunt RE, Bernal JS, Vinson SB (2008) Substrate influences mating success and transmission of courtship vibrations for the parasitoid Cotesia marginiventris. Entomol Exp Appl 127:39–47

    Article  Google Scholar 

  • Keuper A, Kühne R (1983) The acoustic behaviour of the bushcricket Tettigonia cantans II. Transmission of airborne-sound and vibration signals in the biotope. Behav Process 8:125–145

    Article  CAS  Google Scholar 

  • Kocarek P (2009) Sound production and chorusing behaviour in larvae of Icosium tomentosum. Cent Eur J Biol 4:422–426

    Article  Google Scholar 

  • Legendre F, Marting PR, Cocroft R (2012) Competitive masking of vibrational signals during mate searching in a treehopper. Anim Behav 83:361–368

    Article  Google Scholar 

  • Magal C, Schöller M, Tautz J, Casas J (2000) The role of leaf structure in vibration propagation. J Acoust Soc Am 108:2412–2418

    Article  CAS  PubMed  Google Scholar 

  • Mazzoni V, Lucchi A, Čokl A, Prešern J, Virant-Doberlet M (2009a) Disruption of the reproductive behaviour of Scaphoideus titanus by playback of vibrational signals. Entomol Exp Appl 133:174–185

    Article  Google Scholar 

  • Mazzoni V, Prešern J, Lucchi A, Virant-Doberlet M (2009b) Reproductive strategy of the Nearctic leafhopper Scaphoideus titanus Ball (Hemiptera: Cicadellidae). Bull Entomol Res 99:401–413

    Article  PubMed  Google Scholar 

  • Mazzoni V, Lucchi A, Ioriatti C, Doberlet-Virant M, Anfora G (2010) Mating behavior of Hyalesthes obsoletus. Ann Entomol Soc Am 103:813–822

    Article  Google Scholar 

  • McNett GD, Cocroft RB (2008) Host shifts favor vibrational signal divergence in Enchenopa binotata treehoppers. Behav Ecol 19:650–656

    Article  Google Scholar 

  • McVean A, Field LH (1996) Communication by substrate vibration in the New Zealand tree weta, Hemideina femorata (Stenopelmatidae: Orthoptera). J Zool Lond 239:101–122

    Article  Google Scholar 

  • Meyhöfer R, Casas J (1999) Vibratory stimuli in host location by parasitic wasps. J Insect Physiol 45:967–971

    Article  PubMed  Google Scholar 

  • Meyhöfer R, Casas J, Dorn S (1994) Host localization by a parasitoid using leafminer vibrations: characterizing the vibrational signals produced by the leafmining host. Physiol Entomol 19:349–359

    Article  Google Scholar 

  • Meyhöfer R, Casas J, Dorn S (1997) Vibration-mediated interactions in a host-parasitoid system. Proc R Soc Lond B 264:261–266

    Article  Google Scholar 

  • Michelsen A (1998) Biophysics of sound localization in insects. In: Hoy RR, Popper AN, Fay RR (eds) Comparative hearing: insects. Springer, New York, pp 18–62

    Google Scholar 

  • Michelsen A, Fink F, Gogala M, Traue D (1982) Plants as transmission channels for insect vibrational songs. Behav Ecol Sociobiol 11:269–281

    Article  Google Scholar 

  • Miklas N, Stritih N, Čokl A, Virant-Doberlet M, Renou M (2001) The influence of substrate on male responsiveness to the female calling song in Nezara viridula. J Insect Behav 14:313–332

    Article  Google Scholar 

  • Oldfield BP (1980) Accuracy of orientation in female crickets, Teleogryllus oceanicus (Gryllidae): dependence on song spectrum. J Comp Physiol 141:93–99

    Article  Google Scholar 

  • Otten H, Wäckers F, Battini M, Dorn S (2001) Efficiency of vibrational sounding in the parasitoid Pimpla turionellae is affected by female size. Anim Behav 61:671–677

    Article  Google Scholar 

  • Polajnar J, Čokl A (2008) The effect of vibratory disturbance on sexual behaviour of the southern green stink bug Nezara viridula (Heteroptera, Pentatomidae). Cent Eur J Biol 3:189–197

    Article  Google Scholar 

  • Polajnar J, Eriksson A, Rossi Stacconi MV, Lucchi A, Anfora G, Virant-Doberlet M, Mazzoni V (submitted) The process of pair formation mediated by substrate-borne vibrations in a small insect

    Google Scholar 

  • Pollack G (2000) Who, what, where? Recognition and localization of acoustic signals by insects. Curr Opin Neurobiol 10:763–767

    Article  CAS  PubMed  Google Scholar 

  • Rendall D, Owren MJ, Ryan MJ (2009) What do animal signals mean? Anim Behav 78:233–240

    Article  Google Scholar 

  • Roberts JA, Taylor PW, Uetz GW (2007) Consequences of complex signaling: predator detection of multimodal cues. Behav Ecol 18:236–240

    Article  Google Scholar 

  • Ryan MJ (1988) Energy, calling and selection. Amer Zoologist 28:885–898

    Google Scholar 

  • Römer H, Lang A, Hartbauer M (2010) The signaller’s dilemma: a cost–benefit analysis of public and private communication. PLoS ONE 5(10):e13325

    Article  PubMed Central  PubMed  Google Scholar 

  • Sattman DA, Cocroft RB (2003) Phenotypic plasticity and repeatability in the mating signals of Enchenopa treehoppers, with implications for reduced gene flow among host-shifted populations. Ethology 109:981–994

    Article  Google Scholar 

  • Saxena KN, Kumar H (1984) Acoustic communication in the sexual behaviour of the leafhopper, Amrasca devastans. Physiol Entomol 9:77–86

    Article  Google Scholar 

  • Schmidt KA, Dall SRX, Van Gils JA (2010) The ecology of information: an overview on the ecological significance of making informed decisions. Oikos 119:304–316

    Article  Google Scholar 

  • Shaw KC (1976) Sounds and associated behavior of Agallia constricta and Agalliopsis novella (Homoptera: Auchenorrhyncha: Cicadellidae). J Kans Entomol Soc 49:1–17

    Google Scholar 

  • Shaw KC, Carlson OV (1979) Morphology of the tymbal organ of the potato leafhopper Empoasca fabae Harris (Homoptera: Cicadellidae). J Kans Entomol Soc 52:701–711

    Google Scholar 

  • Shaw KC, Vargo A, Carlson OV (1974) Sounds and associated behavior of some species of Empoasca. J Kans Entomol Soc 47:284–307

    Google Scholar 

  • Stewart KW, Zeigler DD (1984) The use of larval morphology and drumming in Plecoptera systematics, and further studies of drumming behaviour. Ann Limnol 20:105–114

    Article  Google Scholar 

  • Stiling PD (1980) Competition and coexistence among Eupteryx leafhoppers (Hemiptera: Cicadellidae) occurring on stinging nettles (Urtica dioica). J Anim Ecol 49:793–805

    Article  Google Scholar 

  • Stritih N, Virant Doberlet M, Čokl A (2000) Green stink bug Nezara viridula detects differences in amplitude between courtship song vibrations at stem and petiolus. Pflug Arch Eur J Phy 439 (Suppl.):R190–R192

    Google Scholar 

  • Sullivan-Beckers L, Cocroft RB (2009) The importance of female choice, male–male competition, and signal transmission as causes of selection on male mating signals. Evolution 11:3158–3171

    Google Scholar 

  • Swatek CA, Gibson JS, Cocroft RB (2011) Use of an amplitude gradient during vibration localization by a small plant-dwelling insect. Ecological Society of America Annual Meeting (abstract). Available online from: http://eco.confex.com/eco/2011/webprogram/Paper30908.html. Cited 8 August 2013

  • Tishechkin DY (2006) Acoustic characters in the classification of higher taxa of Auchenorrhyncha (Hemiptera). In: Drosopoulos S, Claridge MF (eds) Insect sound and communication. Physiology, behaviour, ecology and evolution. Taylor and Francis, Boca Raton, pp 319–329

    Google Scholar 

  • Tishechkin DY (2007) New data on vibratory communication in jumping plant lice of the families Aphalaridae and Triozidae (Homoptera, Psyllinea). Entomol Rev 87:394–400

    Article  Google Scholar 

  • Ulyshen MD, Mankin RW, Chen Y, Duan JJ, Poland TM, Bauer LS (2011) Role of emerald ash borer (Coleoptera: Buprestidae) larval vibrations in host-quality assessment by Tetrastichus planipennisi (Hymenoptera: Eulophidae). J Econ Entomol 104:81–86

    Article  PubMed  Google Scholar 

  • Virant-Doberlet M, King RA, Polajnar J, Symondson WOC (2011) Molecular diagnostics reveal spiders that exploit prey vibrational signals used in sexual communication. Mol Ecol 20:2204–2216

    Article  PubMed  Google Scholar 

  • Virant-Doberlet M, Čokl A, Zorović M (2006) Substrate vibrations for orientation: from behaviour to physiology. In: Drosopoulos S, Claridge MF (eds) Insect sound and communication. Physiology, behaviour, ecology and evolution. Taylor and Francis, Boca Raton, pp 81-97

    Google Scholar 

  • Zuk M, Kolluru GR (1998) Exploitation of sexual signals by predators and parasitoids. Q Rev Biol 73:415–438

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valerio Mazzoni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mazzoni, V., Eriksson, A., Anfora, G., Lucchi, A., Virant-Doberlet, M. (2014). Active Space and the Role of Amplitude in Plant-Borne Vibrational Communication. In: Cocroft, R., Gogala, M., Hill, P., Wessel, A. (eds) Studying Vibrational Communication. Animal Signals and Communication, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43607-3_8

Download citation

Publish with us

Policies and ethics