Skip to main content

Potassium Channels in Excitable and Non-excitable Cells

  • Chapter
Special Issue on Ionic Channels II

Part of the book series: Reviews of Physiology Biochemistry and Pharmacology ((REVIEWS,volume 115 ))

Abstract

Potassium channels play a crucial role in determining the resting membrane potential, time course, amplitude and polarity of electrical changes in most types of cells. At rest the membrane potential of a typical cell is positive to the potassium equilibrium potential (E K). When K+ channels are activated and open, the cell hyperpolarizes and the opening probability of depolarization-dependent calcium and sodium channels is reduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams PR, Galvan M (1986) Voltage-dependent currents of vertebrate neurons and their role in membrane excitability. Adv Neurol 44:137–170

    PubMed  CAS  Google Scholar 

  • Adams PR, Brown DA, Constanti A (1982 a) M-currents and other currents in bullfrog sympathetic neurons. J Physiol (Lond) 330:537–572

    CAS  Google Scholar 

  • Adams PR, Brown DA, Constanti A (1982 b) Pharmacological inhibition of the M-current. J Physiol (Lond) 332:223–262

    CAS  Google Scholar 

  • Adelman WJ, Senft JP (1966) Voltage clamp studies on the effect of internal cesium ion on sodium and potassium currents in the squid giant axon. J Gen Physiol 50:279

    PubMed  Google Scholar 

  • Andrade R, Malenka RC, Nicoll RA (1986) A G protein couples serotonin and GABAB receptors to the same channels in hippocampus. Science 235:207–211

    Google Scholar 

  • Armando-Hardy M, Ellory JC, Ferreira MG, Flemminger S, Lew VL (1975) Inhibition of the calcium-induced increase in the potassium permeability of human red blood cells by quinine. J Physiol (Lond) 250:32P–33P

    CAS  Google Scholar 

  • Armstrong CM (1966) Time course of TEA+-induced anomalous rectification in squid giant axons. J Gen Physiol 50:491–503

    PubMed  CAS  Google Scholar 

  • Armstrong CM (1971) Interaction of tetraethylammonium ion derivates with the potassium channels of giant axons. J Gen Physiol 58:413–437

    PubMed  CAS  Google Scholar 

  • Armstrong CM, Hille B (1972) The inner quaternary ammonium ion receptor in potassium channels of the node of Ranvier. J Gen Physiol 59:388–400

    PubMed  CAS  Google Scholar 

  • Ashcroft FM (1988) Adenosine 5′-triphosphate-sensitive potassium channels. Annu Rev Neurosci 11:97–118

    PubMed  CAS  Google Scholar 

  • Ashcroft FM, Harrison DE, Ashcroft SJH (1984) Glucose induces closure of single potassium channels in isolated rat pancreatic beta-cells. Nature 312:446–448

    PubMed  CAS  Google Scholar 

  • Axelrod J, Burch RM, Jelsema CL (1988) Receptor-mediated activation of phospholipase A2 via GTP-binding proteins: arachidonic acid and its metabolites as second messengers. Trends Neurosci 11:117–123

    PubMed  CAS  Google Scholar 

  • Baker PF, Knight DE (1981) Calcium control of exocytosis and endocytosis in bovine adrenal medullary cells. Philos Trans R Sod Lond [Biol] 296:83–103

    CAS  Google Scholar 

  • Baker PF, Hodgkin AL, Ridgway EB (1971) Depolarization and calcium entry in squid giant axons. J Physiol (Lond) 218:709–755

    CAS  Google Scholar 

  • Barrett EF, Barrett JN (1976) Separation of two voltage-sensitive potassium currents and demonstration of a tetrodotoxin-resistant calcium current in frog motoneurons. J Physiol (Lond) 255:737–774

    CAS  Google Scholar 

  • Barret JN, Barret EF, Dribin LB (1981) Calcium-dependent slow potassium conductance in rat skeletal myotubes. Dev Biol 82:258–266

    Google Scholar 

  • Barrett JN, Magleby KL, Pallotta BS (1982) Properties of single calcium-activated potassium channels in cultured rat muscle. J Physiol (Lond) 331:211–230

    CAS  Google Scholar 

  • Bartschat DK, French RJ, Nairn AC, Greengard P, Krueger BK (1986) Cyclic AMP-dependent protein kinase modulation of single, calcium-activated potassium channels from rat brain in planar bilayers. Neurosci Abstr 12:1198

    Google Scholar 

  • Bear CE, Petersen OH (1987) l-Alanine evokes opening of single Ca2+-activated K+ channels in rat liver cells. Pflügers Arch 410:342–344

    PubMed  CAS  Google Scholar 

  • Bechern M, Glitsch HG, Pott L (1983) Properties of an inward rectifying K channel in the membrane of guinea-pig atrial cardio balls. Pflügers Arch 399:186–193

    Google Scholar 

  • Begenisich T (1988) The role of divalent cations in potassium channels. Trends Neurosci 11:270–273

    PubMed  CAS  Google Scholar 

  • Benham CD, Bolton TB, Lang RJ, Takewaki T (1986) Calcium-activated potassium channels in single smooth muscle cells of rabbit jejunum and guinea pig mesenteric artery. J Physiol (Lond) 371:45–67

    CAS  Google Scholar 

  • Benson JA, Levitan IB (1983) Serotonin increases an anomalously rectifying K+ current in the Aplysia neuron R15. Proc Natl Acad Sci USA 80:3522–3525

    PubMed  CAS  Google Scholar 

  • Berger W, Grygorcyk R, Schwarz W (1984) Single K+ channels in membrane evaginations of smooth muscle cells. Pflügers Arch 402:18–23

    PubMed  CAS  Google Scholar 

  • Belardetti F, Siegelbaum SA (1988) Up-and down-modulation of single K+ channel function by distinct second messengers. Trends Neurosci 11:232–238

    PubMed  CAS  Google Scholar 

  • Bevan S, Raff M (1985) Voltage-dependent potassium currents in cultured astrocytes. Nature 315:229–232

    PubMed  CAS  Google Scholar 

  • Bezanilla F, Armstrong CM (1972) Negative conductance caused by entry of sodium and cesium ions into the potassium channels of squid axons. J Gen Physiol 60:588–608

    PubMed  CAS  Google Scholar 

  • Bezanilla F, DiPolo R, Caputo C, Rojas H, Torres ME (1985) K+ current in squid axon is modulated by ATP. Biophys J 47:222

    Google Scholar 

  • Blair LAC, Dionne VE (1985) Developmental acquisition of Ca2+-sensitivity by K+ channels in spinal neurons. Nature 315:329–331

    PubMed  CAS  Google Scholar 

  • Blatz AL (1984) Asymmetric proton block of inward rectifier K channels in skeletal muscle. Pflügers Arch 401:402–407

    PubMed  CAS  Google Scholar 

  • Blatz AL, Magleby KL (1984) Ion conductance and selectivity of single calcium-activated potassium channels in cultured rat muscle. J Gen Physiol 84:1–23

    PubMed  CAS  Google Scholar 

  • Blatz LA, Magleby KL (1986) Single apamin-blocked Ca-activated K+ channels of small conductance in cultured rat skeletal muscle. Nature 323:718–720

    PubMed  CAS  Google Scholar 

  • Breitwieser GE, Szabo G (1985) Uncoupling of cardiac muscarinic and β-adrenergic receptors from ion channels by a guanine nucleotide analogue. Nature 317:538–540

    PubMed  CAS  Google Scholar 

  • Brew H, Gray PTA, Mobbs P, Attwell D (1986) Endfeet of retinal glial cells have higher densities of ion channels that mediate K+ buffering. Nature 324:466–468

    PubMed  CAS  Google Scholar 

  • Brezhestovskii PD, Zamoiskii VL, Serebryakov VN, Toptygin AYU, Anotov AS (1985) The high conductance calcium ion activated potassium channel in the membrane of cultivated smooth muscle cells of the human aortic media. Biol Membr 2:487–498

    CAS  Google Scholar 

  • Brezina V, Eckert R, Erxleben C (1987) Suppression of calcium current by an endogenous neuropeptide in neurons of Aplysia Californica. J Physiol (Lond) 388:565–595

    CAS  Google Scholar 

  • Brown AM, Birnbaumer L (1988) Direct G protein gating of ion channels. Am J Physiol 254:H401–H410

    PubMed  CAS  Google Scholar 

  • Brown DA (1988 a) M currents. In: Narahashi T (ed) Ion channels. Plenum, New York, pp 55–94

    Google Scholar 

  • Brown DA (1988b) M-currents: an update. Trends Neurosci 11:294–299

    PubMed  CAS  Google Scholar 

  • Brown DA, Adams PR (1979) Muscarinic modification of voltage-sensitive currents in sympathetic neurones. Neurosci Abstr 5:585

    Google Scholar 

  • Brown DA, Adams PR (1980) Muscarinic suppression of a novel voltage-sensitive K +-current in a vertebrate neurone. Nature 283:673–676

    PubMed  CAS  Google Scholar 

  • Burgess CM, Claret M, Jenkinson DH (1981) Effects of quinine and apamin on the Ca-dependent K permeability of mammalian hepatocytes and red cells. J Physiol (Lond) 317:67–90

    CAS  Google Scholar 

  • Cahalan MD, Chandy KG, DeCoursey TE, Gupta S (1985) A voltage-gated potassium channel in human T lymphocytes. J Physiol (Lond) 358:197–237

    CAS  Google Scholar 

  • Callewaert G, Vereecke J, Carmeliet E (1986) Existence of a calcium-dependent potassium channel in the membrane of cow cardiac Purkinje cells. Pflügers Arch 406:424–426

    PubMed  CAS  Google Scholar 

  • Camardo JS, Shuster MJ, Siegelbaum SA, Kandel ER (1983) Modulation of a specific potassium channel in sensory neurons of Aplysia by serotonin and cAMP-dependent protein phosphorylation. Cold Spring Harbor Symp Quant Biol 48:213–220

    PubMed  CAS  Google Scholar 

  • Cecchi X, Wolff D, Alvarez O, Latorre R (1984) Incorporation of Ca2+-activated K+ channels from rabbit intestinal smooth muscle sarcolemma, into planar bilayers. Biophys J 45:38 a (abstr)

    Google Scholar 

  • Cerbai E, Klockner U, Isenberg G (1988) The alpha subunit of the GTP-binding protein activates muscarinic potassium channels of the atrium. Science 240:1782–1783

    PubMed  CAS  Google Scholar 

  • Chandler WK, Meves H (1965) Voltage clamp experiments on internally perfused giant axons. J Physiol (Lond) 180:788–820

    CAS  Google Scholar 

  • Chandy KG, DeCoursey TE, Cahalan MD, McLaughlin C, Gupta S (1984) Voltage-gated potassium channels are required for human T lymphocyte activation. J Exp Med 160:369–385

    PubMed  CAS  Google Scholar 

  • Chandy KG, DeCoursey TE, Cahalan MD, Gupta S (1985) Ion channels in lymphocytes. J Clin Immunol 5:1–6

    PubMed  CAS  Google Scholar 

  • Choquet D, Sarthou P, Primi D, Cazenave P, Korn H (1987) Cyclic AMP-modulated potassium channels in murine B cells and their precursors. Science 235:1211–1214

    PubMed  CAS  Google Scholar 

  • Christensen O (1987) Mediation of cell volume regulation by Ca2+-influx through stretch-activated channels. Nature 330:66–68

    PubMed  CAS  Google Scholar 

  • Christensen O, Zeuthen T (1987) Maxi K+ channels in leaky epithelia are regulated by intracellular Ca2+, pH and membrane potential. Pflügers Arch 408:249–259

    PubMed  CAS  Google Scholar 

  • Clapham DE, Logothetis DE (1988) Delayed rectifier K+ current in embryonic chick heart ventricle. Am J Physiol 254:H192–H197

    PubMed  CAS  Google Scholar 

  • Codina J, Yatani A, Grenet D, Brown AM, Birnbaumer L (1987) The alpha subunit of the GTP-binding protein GK opens atrial potassium channels. Science 236:442–445

    PubMed  CAS  Google Scholar 

  • Colquhoun D, Hawkes AD (1977) Relaxation and fluctuations of membrane currents that flow through drug-operated channels. Proc R Soc Lond [Biol] 199:231–262

    CAS  Google Scholar 

  • Colquhoun D, Hawkes AD (1981) On the stochastic properties of single ion channels. Proc R Soc Lond [Biol] 211:205–235

    CAS  Google Scholar 

  • Colquhoun D, Hawkes AD (1982) On the stochastic properties of burst of single ion channel openings and of clusters of bursts. Philos Trans R Soc Lond [Biol] 300:1–59

    CAS  Google Scholar 

  • Colquhoun D, Sakmann B (1983) Bursts of openings in transmitter-activated ion channels. In: Sakmann B, Neher E (eds) Single-channel recording. Plenum, New York, pp 345–364

    Google Scholar 

  • Constanti A, Galvan M (1983) M-currents in voltage-clamped olfactory cortex neurones. Neurosci Lett 39:65–70

    PubMed  CAS  Google Scholar 

  • Constanti A, Sim JA (1987) Calcium-dependent potassium conductance in guinea-pig olfactory cortex neurones in vitro. J Physiol (Lond) 387:173–194

    CAS  Google Scholar 

  • Constanti A, Adams PR, Brown DA (1981) Why do barium ions imitate acetylcholine? Brain Res 206:244–250

    PubMed  CAS  Google Scholar 

  • Conti F, Neher E (1980) Single channel recordings of K+ currents in squid axons. Nature 285:140–143

    PubMed  CAS  Google Scholar 

  • Conti F, DeFelice LJ, Wanke E (1975) Potassium and sodium ion current noise in the membrane of the squid giant axon. J Physiol (Lond) 248:45–66

    CAS  Google Scholar 

  • Cook DL, Hales CN (1984) Intracellular ATP directly blocks K+ channels in pancreatic B-cells. Nature 311:271–273

    PubMed  CAS  Google Scholar 

  • Cook DL, Ikeuchi M, Fujimoto (1984) Lowering of pHi inhibits Ca2+-activated K+ channels in pancreatic B-cells. Nature 311:269–273

    PubMed  CAS  Google Scholar 

  • Cook NS (1988) The pharmacology of potassium channels and their therapeutic potential. Trends Physiol Sci 9:21–28

    CAS  Google Scholar 

  • Corkey BE, Duszynski J, Rich TL, Matschinski B, Williamson JR (1986) Regulation of free and bound magnesium in rat hepatocytes and isolated mitochondria. J Biol Chem 261:2567–2574

    PubMed  CAS  Google Scholar 

  • Cornejo M, Guggino SE, Guggino WB (1987) Modification of Ca2+-activated K+ channels in cultured medullary thick ascending limb cells by N-bromoacetamide. J Membr Biol 99:147–155

    PubMed  CAS  Google Scholar 

  • Coronado R, Miller C (1979) Voltage-dependent caesium blockade of a cation channel from fragmented sarcoplasmic reticulum. Nature 280:807–810

    CAS  Google Scholar 

  • Coronado R, Miller C (1982) Conduction and block by organic cations in a K +-selective channel from sarcoplasmic reticulum incorporated into planar phospholipid bilayers. J Gen Physiol 79:529–547

    PubMed  CAS  Google Scholar 

  • Coronado R, Rosenberg RL, Miller C (1980) Ionic selectivity, saturation, and block in a K+-selective channel from sarcoplasmic reticulum. J Gen Physiol 76:425–446

    PubMed  CAS  Google Scholar 

  • Cox DR, Miller HD (1965) The theory of stochastic processes. Methuen, Londen

    Google Scholar 

  • Cull-Candy SG, Usowicz MM (1987) Multiple-conductance channels activated by excitatory amino acids in cerebellar neurons. Nature 325:525–528

    PubMed  CAS  Google Scholar 

  • DeCoursey TE, Chandy KG, Gupta S, Cahalan MD (1984) Voltage-gated K+ channels in human T lymphocytes: a role in mitogenesis? Nature 307:465–468

    PubMed  CAS  Google Scholar 

  • DeCoursey TE, Chandy KG, Gupta S, Cahalan MD (1985) Voltage-dependent ion channels in T-lymphocytes. J Neuroimmunol 10:71–95

    PubMed  CAS  Google Scholar 

  • DeFelice LJ (1981) Introduction to membrane noise. Plenum, New York

    Google Scholar 

  • Douglas WW (1968) Stimulus-secretion coupling: the concept and clues from chromaffin and other cells. Br J Pharmacol 34:451–474

    PubMed  CAS  Google Scholar 

  • Dubinsky JM, Oxford GS (1985) Dual modulation of K channels by thyrotropin-releasing hormone in clonal pituitary cells. Proc Natl Acad Sci USA 82:4282–4286

    PubMed  CAS  Google Scholar 

  • Dubois JM (1983) Potassium currents in the frog node of Ranvier. Prog Biophys Mol Biol 42:1–20

    PubMed  CAS  Google Scholar 

  • Dutar P, Nicoll RA (1988) Stimulation of phosphatidylinositol (PI) turnover may mediate the muscarinic suppression of the M-current in hippocampal pyramidal cells. Neurosci Lett 85:89–94

    PubMed  CAS  Google Scholar 

  • Duty S, Weston AH (1988) The biochemical regulation of potassium channels. Biochem Soc Trans 16:532–534

    PubMed  CAS  Google Scholar 

  • Ewald DA, Williams A, Levitan IB (1985) Modulation of single Ca2+-dependent K+-channel activity by protein phosphorylation. Nature 315:503–506

    PubMed  CAS  Google Scholar 

  • Fahlke CH, Rupperssberg JP, Rüdel R (1988) Simultaneous measurements of the sodium currents in the cell-attached and the whole-cell clamp modes lead to different results. Pflügers Arch 412 [Suppl 1]:22p

    Google Scholar 

  • Farley J, Auerbach S (1986) Protein kinase C activation induces conductance changes in Hermissenda photoreceptors like those seen in associative learning. Nature 319:220–223

    PubMed  CAS  Google Scholar 

  • Farley J, Rudy B (1988) Multiple types of voltage-dependent Ca-activated K channels of large conductance in rat brain synaptosomal membranes. Biophys J 53:919–934

    PubMed  CAS  Google Scholar 

  • Fenwick EM, Marty A, Neher E (1982) Sodium channel in bovine chromaffin cells. J Physiol (Lond) 331:599–635

    CAS  Google Scholar 

  • Field MJ, Giebisch GH (1985) Hormonal control of potassium excretion. Kidney Int 27:379–387

    PubMed  CAS  Google Scholar 

  • Findlay I (1984) A patch-clamp study of potassium channels and whole-cell currents in acinar cells of the mouse lacrimal gland. J Physiol (Lond) 350:179–195

    CAS  Google Scholar 

  • Findlay I (1988) Effects of ADP upon the ATP-sensitive K+ channel in rat ventricular myocytes. J Membr Biol 101:83–92

    PubMed  CAS  Google Scholar 

  • Findlay I, Dunne MJ, Peterson OH (1985 a) High-conductance K+ channel in pancreatic islet cells can be activated and inactivated by internal calcium. J Membr Biol 83:169–175

    PubMed  CAS  Google Scholar 

  • Findlay I, Dunne MJ, Peterson OH (1985 b) ATP-sensitive inward rectifier and voltage-and calcium-activated K+ channels in cultured pancreatic islet cells. J Membr Biol 88:165–172

    PubMed  CAS  Google Scholar 

  • Findlay I, Dunne MJ, Ullrich S, Wollheim CB, Petersen OH (1985 c) Quinine inhibits Ca2+-independent K+ channels whereas tetramethylammonium inhibits Ca2+-activated K+ channels in insulin secreting cells. FEBS Lett 185:4–8

    PubMed  CAS  Google Scholar 

  • Fournier E, Crepel F (1984) Electrophysiological properties of dentate granule cells in mouse hippocampal slices maintained in vitro. Brain Res 311:75–86

    PubMed  CAS  Google Scholar 

  • Fox JA (1987) Ion channel subconductance states. J Membr Biol 97:1–8

    PubMed  CAS  Google Scholar 

  • Friedrich F, Paulmichl M, Kolb HA, Lang F (1988) Potassium channels in renal epitheloid cells (MDCK) activated by serotonin. J Membr Biol 106:149–155

    PubMed  CAS  Google Scholar 

  • Frindt G, Palmer LG (1987) Ca-activated K channels in apical membrane of mammalian CCT, and their role in K secretion. Am J Physiol 252:F458–F467

    PubMed  CAS  Google Scholar 

  • Gallacher DV, Morris AP (1986) A patch-clamp study of potassium currents in resting and acetylcholine-stimulated mouse submandibular acinar cells. J Physiol (Lond) 373:379–395

    CAS  Google Scholar 

  • Gallin EK (1984) Calcium-and voltage-activated potassium channels in human macrophages. Biophys J 46:821–827

    PubMed  CAS  Google Scholar 

  • Gallin EK, Sheeby PA (1985) Evidence for both a calcium-activated potassium conductance and an inward rectifying potassium conductance in macrophages. In: van Furth R (ed) Mononuclear phagocytes. Characteristics, physiology and function. Nijhoff, Boston, pp 379–386

    Google Scholar 

  • Gay LA, Stanfield PR (1978) The selectivity of the delayed potassium conductance of frog skeletal muscle fibers. Pflügers Arch 378:177–179

    PubMed  CAS  Google Scholar 

  • Gögelein H, Greger R (1987) Properties of single K+ channels in the basolateral membrane of rabbit proximal straight tubules. Pflügers Arch 410:288–295

    PubMed  Google Scholar 

  • Goh JW, Pennefather PS (1987) Pharmacological and physiological properties of the after-hyperpolarization current of bullfrog ganglion neurons. J Physiol (Lond) 394:315–330

    CAS  Google Scholar 

  • Golowasch J, Kirkwood A, Miller C (1986) Allosteric effects of Mg2+ on the gating of Ca2+-activated K+ channels from mammalian skeletal muscle. J Exp Biol 124:5–13

    PubMed  CAS  Google Scholar 

  • Gorman ALF, Woolum JC, Cornwall MC (1982) Selectivity of Ca-activated and light-dependent K channels for monovalent cations. Biophys J 38:319–322

    PubMed  CAS  Google Scholar 

  • Gray MA, Tomlins B, Montgomery RAP, Williams AJ (1988) Structural aspects of the sarcoplasmic reticulum K+ channel revealed by gallamine block. Biophys J 54:233–239

    PubMed  CAS  Google Scholar 

  • Grega DS, Werz MA, MacDonald RL (1987) Forskolin and phorbol esters reduce the same potassium conductance of mouse neurons in culture. Science 235:345–348

    PubMed  CAS  Google Scholar 

  • Grinstein S, Dupre A, Rothstein A (1982) Volume regulation by human lymphocytes. J Gen Physiol 79:849–868

    PubMed  CAS  Google Scholar 

  • Guggino SE, Suarez-Isla BA, Guggino WB, Gree N, Sacktor B (1985) The influence of barium on apical membrane potentials and potassium channel activity in cultured rabbit medullary ascending limb cells (MTAL). Fed Proc 44:443–451

    Google Scholar 

  • Guharay F, Sachs F (1984) Stretch activated single ion-channel currents in tissue-cultured embryonic chick skeletal muscle. J Physiol (Lond) 352:685–701

    CAS  Google Scholar 

  • Hagiwara S (1983) Membrane potential-dependent ion channels in cell membrane. Raven, New York

    Google Scholar 

  • Hagiwara S, Takahashi K (1974) The anomalous rectification and cation selectivity of the membrane of a starfish egg cell. J Membr Biol 18:61–80

    PubMed  CAS  Google Scholar 

  • Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflügers Arch 391:85–100

    PubMed  CAS  Google Scholar 

  • Handler JS, Orloff J (1981) Antidiuretic hormone. Annu Rev Physiol 43:611–624

    PubMed  CAS  Google Scholar 

  • Hedrich R, Schroeder JI (1989) The physiology of ion channels and electrogenic pumps in higher plants. Annu Rev Plant Physiol 40:539–569

    Google Scholar 

  • Henderson RM, Graf J, Boyer JL (1988) Inward-rectifying potassium and high conductance anion channels in rat hepatocytes. Am J Physiol

    Google Scholar 

  • Herbert SC, Andreoli TE (1984) Control of NaCl transport in the thick ascending limb. Am J Physiol 246:F745–F756

    Google Scholar 

  • Hermann A, Gorman ALF (1981) Effects of tetraethylammonium on potassium currents in a molluscan neuron. J Gen Physiol 78:87–110

    PubMed  CAS  Google Scholar 

  • Higashida H, Brown DA (1986) Two polyphosphatidylinositide metabolites control two K currents in a neuronal cell. Nature 323:333–335

    PubMed  CAS  Google Scholar 

  • Hille B (1973) Potassium channels in myelinated nerve: selective permability to small cations. J Gen Physiol 61:669–686

    PubMed  CAS  Google Scholar 

  • Hille B (1975) Ionic selectivity of Na and K channels of nerve membranes. In: Eisenman G (ed) Membranes, a series of advances. Dekker, New York, pp 255–323

    Google Scholar 

  • Hille B (1984) Ionic channels of excitable membranes. Sinauer, Sunderland MA, pp 99–116

    Google Scholar 

  • Hille B, Schwarz W (1978) Potassium channels as multi-ion single-file pores. J Gen Physiol 72:409–442

    PubMed  CAS  Google Scholar 

  • Hodgkin AL, Huxlay AF (1952) The components of membrane conductance in the squid giant axon of Logio. J Physiol (Lond) 116:473–496

    CAS  Google Scholar 

  • Horie M, Irisawa H, Noma A (1987) Voltage-dependent magnesium block of adenosine-tri-phosphate-sensitive potassium channel in guinea-pig ventricular cells. J Physiol (Lond) 387:251–272

    CAS  Google Scholar 

  • Horn R (1987) Statistical methods for model discrimination. Applications to gating kinetics and permeation of the acetylcholine receptor channel. Biophys J 51:255–263

    PubMed  CAS  Google Scholar 

  • Horn R, Lange K (1983) Estimating kinetic constants from single channel data. Biophys J 43:207–223

    PubMed  CAS  Google Scholar 

  • Hoshi T, Aldrich RW (1988) Voltage-dependent K+ currents and underlying single K+ channels in pheochromocytoma cells. J Gen Physiol 91:73–106

    PubMed  CAS  Google Scholar 

  • Hoshi T, Garber SS, Aldrich RW (1988) Effect of forskolin on voltage-gated K+ channels is independent of adenylate cyclase activation. Science 240:1652–1655

    PubMed  CAS  Google Scholar 

  • Hugues M, Romey G, Duval D, Vincent JP, Lazdunski M (1982) Apamin as a selective blocker of the Ca-dependent K channel in neuroblastoma cells. Voltage-clamp and biochemical characterization. Proc Natl Acad Sci USA 79:1308–1312

    PubMed  CAS  Google Scholar 

  • Hume JR, Uehara A (1985) Ionic basis of the different action potential configurations of single guinea-pig atrial and ventricular myocytes. J Physiol (Lond) 366:525–544

    Google Scholar 

  • Hunter M, Lopes AG, Boulpaep EL, Cohen B (1984) Single channel recordings of calcium-activated potassium channels in the apical membrane of rabbit cortical collecting tubule. Proc Natl Acad Sci USA 81:4237–4239

    PubMed  CAS  Google Scholar 

  • Hunter M, Lopes AG, Boulpaep EL, Giebisch GH (1986) Regulation of single potassium channels from apical membrane of rabbit collecting tubule. Am J Physiol 251:F725–F733

    PubMed  CAS  Google Scholar 

  • Hunter M, Kawahara K, Giebisch G (1988 a) Calcium-activated epithelial potassium channels. Miner Electrolyte Metab 14:48–57

    PubMed  CAS  Google Scholar 

  • Hunter M, Oberleithner H, Henderson RM, Giebisch G (1988 b) Whole-cell potassium currents in single early distal tubule cells. Am J Physiol 255:F699–F703

    PubMed  CAS  Google Scholar 

  • Inoue R, Kitamura K, Kuriyama H (1985) Two Ca-dependent K-channels classified by the application of tetraethylammonium distribute to smooth muscle membranes of the rabbit portal vein. Pflügers Arch 405:173–179

    PubMed  CAS  Google Scholar 

  • Inoue R, Okabe K, Kitamura K, Kuriyama H (1986) A newly identified Ca2+-dependent K + channel in the smooth muscle membrane of single cells dispersed from the rabbit portal vein. Pflügers Arch 406:138–143

    PubMed  CAS  Google Scholar 

  • Iwatsuki N, Petersen OH (1985) Action of tetraethylammonium on calcium-activated potassium channels in pig pancreatic acinar cells studied by patch-clamp single-channel and whole-cell current recording. J Membr Biol 86:139–144

    PubMed  CAS  Google Scholar 

  • Jones SW (1987) Chicken II luteinizing hormone-releasing hormone inhibits the M-current of bullfrog sympathetic neurons. Neurosci Lett 80:180–184

    PubMed  CAS  Google Scholar 

  • Kaczmarek LK, Levithan (1987) Neuromodulation: the biochemical control of neuronal excitability. Oxford University Press, New York

    Google Scholar 

  • Kakei M, Noma A, Shibasaki T (1985) Properties of adenosine triphosphate-regulated channels in guinea-pig ventricular cells. J Physiol (Lond) 363:441–462

    CAS  Google Scholar 

  • Kamb A, Iverson LE, Tanouye MA (1987) Molecular characterization of Shaker, a Drosophila gene that encodes a potassium channel. Cell 50:405–413

    PubMed  CAS  Google Scholar 

  • Kameyama M, Kiyosue T, Soejima M (1983) Single current analysis of the inward rectifier K current in the rabbit ventricular cells. Jpn J Physiol 33:1039–1056

    PubMed  CAS  Google Scholar 

  • Kameyama M, Kakei M, Sato T, Shibasaki T, Matsuda H, Irisawa H (1984) Intracellular Na + channel in mammalian cardiac cells. Nature 309:354–356

    PubMed  CAS  Google Scholar 

  • Kandel ER, Schwartz JH (1982) Molecular biology of learning: modulation of transmitter release. Science 218:433–443

    PubMed  CAS  Google Scholar 

  • Kandel ER, Tauc L (1966) Anomalous rectification in the metacerebral giant cells and its consequences for synaptic transmission. J Physiol (Lond) 183:287–304

    CAS  Google Scholar 

  • Katz B (1949) Les constants électriques de la membrane du muscle. Arch Sci Physiol 3:285–299

    CAS  Google Scholar 

  • Kawahara K, Hunter M, Giebisch GH (1987) Potassium channels in Necturus proximal tubule. Am J Physiol 253:F488–F494

    PubMed  CAS  Google Scholar 

  • Kawai T, Watanabe M (1986) Blockade of Ca-activated K conductance by apamin in rat sympathetic neurons. Br J Pharmacol 87:225–232

    PubMed  CAS  Google Scholar 

  • Kell MJ, DeFelice LJ (1988) Surface charge near the cardiac inward-rectifier channel measured from single channel conductances. J Membr Biol 102:1–10

    PubMed  CAS  Google Scholar 

  • Kirber MT, Walsh JV jr, Singer JJ (1988) Stretch-activated ion channels in smooth muscle: a mechanism for the initiation of stretch-induced contraction. Pflügers Arch 412:339–345

    PubMed  CAS  Google Scholar 

  • Kirsch GE, Yatani A, Codina J, Birnbaumer L, Brown AM (1988) Alpha-subunit of GK activates atrial K+ channels of chick, rat, and guinea pig. Am J Physiol 254:H1200–H1205

    PubMed  CAS  Google Scholar 

  • Klein M, Camardo J, Kandel ER (1982) Serotonin modulates a specific potassium current in the sensory neurons that show presynaptic facilitation in Aplysia. Proc Natl Acad Sci USA 79:5713–5717

    PubMed  CAS  Google Scholar 

  • Kolb HA (1984) Measuring the properties of single channels in cell membranes. In: Stein WD (ed) Current topics in membranes and transport, vol 21. Academic, New York, pp 133–179

    Google Scholar 

  • Kolb HA, Brown CDA, Murer H (1986) Characterization of a Ca-dependent maxi K channel in the apical membrane of a cultured renal epithelium (JTC-12. p3). J Membr Biol 92:207–215

    PubMed  CAS  Google Scholar 

  • Kolb HA, Paulmichl M, Lang F (1987) Epinephrine activates outward rectifying K channel in Madin-Darby canine kidney cells. Pflügers Arch 408:584–591

    PubMed  CAS  Google Scholar 

  • Kumar NM, Gilula NB (1986) Cloning and characterization of human and rat liver cDNAs coding for a gap junction protein. J Cell Biol 103:116–161

    Google Scholar 

  • Kurachi Y (1985) Voltage-dependent activation of the inward rectifier potassium channel in the ventricular cell membrane of guinea-pig heart. J Physiol (Lond) 366:365–385

    CAS  Google Scholar 

  • Kurachi Y, Nakajima T, Sugimoto T (1986 a) Acetylcholine activation of K+ channels in cell-free membrane of atrial cells. Am J Physiol 251:H681–H684

    PubMed  CAS  Google Scholar 

  • Kurachi Y, Nakajima T, Sugimoto T (1986 b) On the mechanism of activation of muscarinic K+ channels by adenosine in isolated atrial cells: involvement of GTP-binding proteins. Pflügers Arch 407:264–274

    PubMed  CAS  Google Scholar 

  • Labarca P, Coronado R, Miller C (1980) Thermodynamic and kinetic studies of the gating behavior of a K +-selective channel from the sarcoplasmic reticulum membrane. J Gen Physiol 76:397–424

    PubMed  CAS  Google Scholar 

  • Lancaster B, Adams PR (1986) Calcium-dependent current generating the afterhyperpolarization of hippocampal neurons. J Neurophysiol 55:1268–1282

    PubMed  CAS  Google Scholar 

  • Lancaster B, Nicoll RA (1988) Properties of two calcium-activated hyperpolarizations in rat hippocampal neurones. J Physiol (Lond) 389:187–203

    Google Scholar 

  • Lancaster B, Madison DV, Nicoll RA (1986) Charybdotoxin selectively blocks a fast Ca-dependent afterhyperpolarization (AHP) in hippocampal pyramidal cells. Neurosci Abstr 12:560

    Google Scholar 

  • Latorre R (1986 a) Ionic channels in cells and model systems. Plenum, New York

    Google Scholar 

  • Latorre R (1986 b) In: Miller C (ed) Ion channel reconstitution. Plenum, New York, pp 431–467

    Google Scholar 

  • Latorre R, Miller C (1983) Conduction and selectivity in potassium channels. J Membr Biol 71:11–30

    PubMed  CAS  Google Scholar 

  • Latorre R, Vergara C, Hidalgo C (1982) Reconstitution in planar bilayers of Ca2+-dependent potassium channel from transverse tubule membranes isolated from rabbit skeletal muscle. Proc Natl Acad Sci USA 79:805–809

    PubMed  CAS  Google Scholar 

  • Latorre R, Alvarez O, Cecchi X, Vergara C (1985) Properties of reconstituted ion channels. Annu Rev Biophys Biophys Chem 14:79–111

    PubMed  CAS  Google Scholar 

  • Läuger P (1973) Ion transport through pores: a rate-theory analysis. Biochim Biophys Acta 311:423–441

    PubMed  Google Scholar 

  • Läuger P (1985) Ionic channels with conformational substates. Biophys J 47:581–591

    PubMed  Google Scholar 

  • Läuger P (1988) Internal motions in proteins and gating kinetics of ionic channels. Biophys J 53:877–884

    PubMed  Google Scholar 

  • Lee SC, Sabath DE, Deutsch C, Prystowsky MB (1988) Increased voltage-gated potassium conductance during interleukin 2-stimulated proliferation of a mouse helper T lymphocyte clone. J Cell Biol 102:1200–1208

    Google Scholar 

  • Levithan IB (1985) Phosphorylation of ion channels. J Membr Biol 87:177–190

    Google Scholar 

  • Lew VL (1983) (ed) Ca2+-activated K+ channels: collected papers and reviews. Cell Calcium 4:321–518

    Google Scholar 

  • Lew LV, Ferreira HG (1978) Calcium transport and the properties of a calcium-activated potassium channel in red cell membranes. In: Kleint-Zeller A, Bronner F (eds) Current topics in membranes and transport, vol 10. Academic, New York, pp 217–277

    Google Scholar 

  • Liebovitch LS, Fischbarg J, Koniarek JP (1987 a) Ion channel kinetics: a model based on fractal scaling rather than multistate Markov processes. Math Biosci 84:37–68

    Google Scholar 

  • Liebovitch LS, Fischbarg J, Koniarek JP, Todorova I, Wang M (1987b) Fractal model of ion-channel kinetics. Biochim Biophys Acta 896:173–180

    PubMed  CAS  Google Scholar 

  • Linden J, Hollen CE, Patel A (1985) The mechanism by which adenosine and cholinergic agents reduce contractility in rat myocardium. Circ Res 56:728–735

    PubMed  CAS  Google Scholar 

  • Lipkin S, Farley J, Rudy B (1986) Protein kinase C effects on single K channels from mammalian brain. Soc Neurosci Abstr 13:1343

    Google Scholar 

  • Llinas R (1984) Comparative electrobiology of mammalian central neurons. In: Dingledine R (ed) Brain slices. Plenum, New York, pp 7–24

    Google Scholar 

  • Logothetis DE, Kurachi Y, Galper J, Neer EJ, Clapham DE (1987) The beta gamma subunits of GTP-binding proteins activate the muscarinic K+ channel in heart. Nature 325:321–326

    PubMed  CAS  Google Scholar 

  • Lux HD (1983) Observations on single calcium channels — an overview. In: Sakmann BM, Neher E (eds) Single-channel recording. Plenum, New York, pp 437–449

    Google Scholar 

  • Lux HD, Neher E, Marty A (1981) Single channel activity associated with the calcium dependent outward current in Helix pomatia. Pflügers Arch 389:293–295

    PubMed  CAS  Google Scholar 

  • Magleby KL, Pallotta BS (1983 a) Calcium-dependence of open and shut interval distributions from calcium-activated potassium channels in cultured rat muscle. J Physiol (Lond) 344:585–604

    CAS  Google Scholar 

  • Magleby KL, Pallotta BS (1983 b) Burst kinetics of single calcium-activated potassium channels in cultured rat muscle. J Physiol (Lond) 344:605–623

    CAS  Google Scholar 

  • Marchetti C, Premont RT, Brown AM (1988) A whole-cell and single-channel study of the voltage-dependent outward potassium current in avian hepatocytes. J Gen Physiol 91:255–274

    PubMed  CAS  Google Scholar 

  • Marty A (1981) Calcium-dependent channels with large unitary conductance in chromaffin cell membranes. Nature 291:497–500

    PubMed  CAS  Google Scholar 

  • Marty A (1983 a) Ca2+-dependent K+ channels with large unitary conductance. Trends Neurosci 6:262–265

    CAS  Google Scholar 

  • Marty A (1983 b) Blocking of large unitary calcium-dependent potassium currents by internal sodium ions. Pflügers Arch 396:179–181

    PubMed  CAS  Google Scholar 

  • Marty A, Neher E (1982) Ionic channels in cultured rat pancreatic islet cells. J Physiol (Lond) 326:36P–37P

    Google Scholar 

  • Marty A, Neher E (1985) Potassium channels in cultured bovine adrenal chromaffin cells. J Physiol (Lond) 367:117–141

    CAS  Google Scholar 

  • Maruyama Y (1987) A patch-clamp study of mammalian platelets and their voltage-gated potassium current. J Physiol (Lond) 391:467–485

    CAS  Google Scholar 

  • Maruyama Y, Gallagher DV, Peterson OH (1983 a) Voltage and Ca-activated K channel in basolateral acinar cell membranes of mammalian salivary glands. Nature 302:827–829

    PubMed  CAS  Google Scholar 

  • Maruyama Y, Petersen OH, Flanagan P, Pearson GT (1983 b) Quantification of Ca2+-activated K+ channels under hormonal control in pig pancreas acinar cells. Nature 305:228–232

    PubMed  CAS  Google Scholar 

  • Maruyama Y, Moore D, Petersen OH (1985) Calcium-activated cation channel in rat thyroid follicular cells. Biochim Biophys Acta 821:229–232

    PubMed  CAS  Google Scholar 

  • Matsuda H, Saigusa A, Irisawa H (1987) Ohmic conductance through the inwardly rectifying K channel and blocking by internal Mg2+. Nature 325:156–159

    PubMed  CAS  Google Scholar 

  • Matteson DR, Deutsch C (1984) K channels in T lymphocytes: a patch clamp study using monoclonal antibody adhesion. Nature 307:468–471

    PubMed  CAS  Google Scholar 

  • McCann JD, Welsh MJ (1986) Calcium-activated potassium channels in canine airway smooth muscle. J Physiol (Lond) 372:113–127

    CAS  Google Scholar 

  • McManus OB, Magleby KL (1988) Kinetic states and modes of single large-conductance calcium-activated potassium channels in cultured rat skeletal muscle. J Physiol (Lond) 402:79–120

    CAS  Google Scholar 

  • McManus OB, Blatz AL, Magleby KL (1985) Inverse relationship of the durations of adjacent open and shut intervals for Cl and K channels. Nature 317:625–627

    PubMed  CAS  Google Scholar 

  • Meech RW (1978) Calcium-dependent potassium activation in nervous tissues. Annu Rev Biophys Bioeng 7:1–18

    PubMed  CAS  Google Scholar 

  • Methfessel C, Boheim G (1982) The gating of single calcium-dependent potassium channels is described by an activation/blockade mechanism. Biophys Struct Mech 9:35–60

    PubMed  CAS  Google Scholar 

  • Miller C (1982) Bis-quaternary ammonium blockers as structural probes of the sarcoplasmic reticulum K+ channel. J Gen Physiol 79:869–891

    PubMed  CAS  Google Scholar 

  • Miller C (1986) Ion channel reconstitution. Plenum, New York

    Google Scholar 

  • Miller C, Moczydlowski E, Latorre R, Phillips M (1985) Charybdotoxin, a protein inhibitor of single Ca2+-activated K+ channels from mammalian skeletal muscle. Nature 313:316–318

    PubMed  CAS  Google Scholar 

  • Miller C, Latorre R, Reisin I (1987) Coupling of voltage-dependent gating and Ba2+ block in the high-conductance, Ca2+-activated K+ channel. J Gen Physiol 90:427–449

    PubMed  CAS  Google Scholar 

  • Misler S, Falke LC, Gillis K, McDaniel (1986) A metabolite-regulated potassium channel in rat pancreatic B cells. Proc Natl Acad Sci USA 83:7119–7123

    PubMed  CAS  Google Scholar 

  • Moczydlowski E, Latorre R (1983) Gating kinetics of Ca2+-activated potassium channels from rat muscle incorporated into planar lipid bilayers: evidence for two voltage-dependent Ca2+ binding reactions. J Gen Physiol 82:511–542

    PubMed  CAS  Google Scholar 

  • Moczydlowski E, Hall S, Garber SS, Strichartz GS, Miller C (1984) Voltage-dependent blockade of muscle Na+ channels by Guanidinium toxins. J Gen Physiol 84:687–704

    PubMed  CAS  Google Scholar 

  • Neher E (1988) The use of the patch clamp technique to study second messenger-mediated cellular events. Neuroscience 26:727–734

    PubMed  CAS  Google Scholar 

  • Neher E, Sakmann B (1976) Single-channel currents recorded from membrane at denervated frog muscle membrane. Nature 260:799–802

    PubMed  CAS  Google Scholar 

  • Nelson PG, Frank K (1967) Anomalous rectification in cat spinal motoneurons and effect of polarizing currents on excitatory postsynaptic potential. J Neurophysiol 30:1097–1113

    PubMed  CAS  Google Scholar 

  • Neumcke B (1982) Fluctuation of Na and K currents in excitable membranes. Int Rev Neurobiol 23:35–67

    PubMed  CAS  Google Scholar 

  • Noda M, Furutani Y, Takahashi H, Toyosato M, Tanabe T, Shimizu S, Kikyotani S, Kayano T, Hirose T, Inayama S, Numa S (1983) Cloning and sequence analysis of calf cDNA and human genomic DNA encoding α-subunit precursor of muscle acetylcholine receptor. Nature 305:818–823

    PubMed  CAS  Google Scholar 

  • Noda M, Shimizu S, Tanabe T, Takai T, Kayano T, Ikeda T, Takahashi H, Nakayama Y, Minamino N, Kangawa K, Matsuo H, Raftery MA, Hirose T, Inayama S, Hayashida H, Miyata T, Numa S (1984) Primary structure of Electrophorus electricus sodium channel deduced from cDNA sequence. Nature 312:121–127

    PubMed  CAS  Google Scholar 

  • Noda M, Ikeda T, Kayano T, Suzuki H, Takeshima H, Kurasaki M, Takahashi H, Numa S (1986) Existence of distinct sodium channel messenger RNAs in rat brain. Nature 320:188–192

    PubMed  CAS  Google Scholar 

  • Noma A (1983) ATP-regulated K channels in cardiac muscle. Nature 305:147–148

    PubMed  CAS  Google Scholar 

  • Noma A, Shibasaki T (1988) Intracellular ATP and cardiac membrane currents. In: Narahashi T (ed) Ion channels. Plenum, New York

    Google Scholar 

  • Nowak LM, MacDonald RL (1983) Muscarine-sensitive voltage-dependent potassium current in cultured murine spinal cord neurones. Neurosci Lett 35:85–91

    PubMed  CAS  Google Scholar 

  • Obaid AL, Langer D, Salzberg BM (1985) Charybdotoxin (CTX) selectively blocks a calcium-mediated potassium conductance that contributes to the action potential recorded optically from nerve terminals of the frog neurohypophysis. Soc Neurosci Abstr 11:789

    Google Scholar 

  • Ohmori H, Yoshida S, Hagiwara S (1981) Single K channel currents of anomalous rectification in cultured rat myotubes. Proc Natl Acad Sci USA 78:4960–4964

    PubMed  CAS  Google Scholar 

  • Oliveira-Castro GM (1983) Ca2+-sensitive K+ channels in phagocytic cell membranes. Cell Calcium 4:475–492

    PubMed  CAS  Google Scholar 

  • Osterrieder W, Yang QF, Trautwein W (1981) The time course of the muscarinic response to ionophoretic acetylcholine application to the S-A node of the rabbit heart. Pflügers Arch 389:283–291

    PubMed  CAS  Google Scholar 

  • Pallotta BS, Magleby KL, Barrett JN (1981) Single channel recordings of a Ca2+-activated K + current in rat muscle cell culture. Nature 293:471–474

    PubMed  CAS  Google Scholar 

  • Papazian DM, Schwarz TL, Tempel BL, Jan YN, Jan LY (1987) Cloning of genomic and complementary DNA from Shaker, a putative potassium channel gene from Drosophila. Science 237:749–753

    PubMed  CAS  Google Scholar 

  • Parent L, Cardinal J, Sauve R (1988) Single-channel analysis of a K channel at basolateral membrane of rabbit proximal convoluted tubule. Am J Physiol 254:F105–F113

    PubMed  CAS  Google Scholar 

  • Paul DL (1986) Molecular cloning of cDNA for rat liver gap junction protein. J Cell Biol 103:123–134

    PubMed  CAS  Google Scholar 

  • Pennefather P, Jones SW, Acad PR (1985 a) Modulation of repetitive firing in bullfrog sympathetic ganglion cells by two distinct K currents. Neurosci Abstr 11:148

    Google Scholar 

  • Pennefather P, Lancaster B, Adams PR, Nicoll RA (1985 b) Two distinct Ca-dependent K currents in bullfrog sympathetic ganglion cells. Proc Natl Adam Sci USA 82:3040–3044

    CAS  Google Scholar 

  • Pennefather PS, Heisler S, MacDonald JF (1988) A potassium conductance contributes to the action of somatostatin-14 to suppress ACTH secretion. Brain Res 444:346–350

    PubMed  CAS  Google Scholar 

  • Petersen OH (ed) (1980) The electrophysiology of gland cells. Academic, London

    Google Scholar 

  • Petersen OH, Findlay I (1987) Electrophysiology of the pancreas. Physiol Rev 67:1054–1116

    PubMed  CAS  Google Scholar 

  • Petersen OH, Maruyama Y (1984) Calcium-activated potassium channels and their role in secretion. Nature 307:693–696

    PubMed  CAS  Google Scholar 

  • Pfaffinger PJ, Martin JM, Hunter DD, Nathanson NM, Hille B (1985) GTP-binding proteins couple cardiac muscarinic receptors to a K channel. Nature 317:536–538

    PubMed  CAS  Google Scholar 

  • Piomelli D, Shapiro E, Feinmark SJ, Schwartz JH (1987) Metabolites of arachidonic acid in the nervous system of Aplysia: possible mediators of synaptic modulation. J Neurosci 7:3675–3686

    PubMed  CAS  Google Scholar 

  • Rae JL, Levis RA, Eisenberg RS (1988) Ionic channels in ocular epithelia. In: Narahashi T (ed) Ion channels. Plenum, New York, pp 283–327

    Google Scholar 

  • Reeves R, Farley J, Rudy B (1986) cAMP dependent protein kinase opens several K channels from mammalian brain. Soc Neurosci Abstr 13:1343

    Google Scholar 

  • Reuter H (1983) Calcium channels and their modulation by neurotransmitters, enzymes and drugs. Nature 301:569–574

    PubMed  CAS  Google Scholar 

  • Reuter H, Stevens CF (1980) Ion conductance and ion selectivity of potassium channels in snail neurons. J Membr Biol 57:103–118

    PubMed  CAS  Google Scholar 

  • Romey G, Lazdunski M (1984) The coexistence in rat muscle cells of two distinct classes of Ca2+-dependent K+ channels with different pharmacological properties and different physiological functions. Biochem Biophys Res Commun 118:669–674

    PubMed  CAS  Google Scholar 

  • Rorsman P, Trübe G (1985) Glucose dependent K+-channels in pancreatic β-cells are regulated by intracellular ATP. Pflügers Arch 405:305–309

    PubMed  CAS  Google Scholar 

  • Rudy B (1988) Diversity and ubiquity of K channels. Neuroscience 25:729–749

    PubMed  CAS  Google Scholar 

  • Sachs F (1986) Biophysics of mechanoreception. Membr Biochem 6:173–195

    PubMed  CAS  Google Scholar 

  • Sackin H (1987) Stretch-activated potassium channels in renal proximal tubule. Am J Physiol 253:F1253–F1262

    PubMed  CAS  Google Scholar 

  • Sackin H, Palmer LG (1987) Basolateral potassium channels in renal proximal tubule. Am J Physiol 253:F476–487

    PubMed  CAS  Google Scholar 

  • Sahlin K, Harris RC, Hultman E (1975) Creatine kinase equilibrium and lactate content compared with muscle pH in tissue samples obtained after isometric exercise. Biochem J 152:173–180

    PubMed  CAS  Google Scholar 

  • Sakmann B, Trube G (1984 a) Conductance properties of single inwardly rectifying potassium channels in ventricular cells from guinea-pig heart. J Physiol (Lond) 347:641–657

    CAS  Google Scholar 

  • Sakmann B, Trube G (1984 b) Voltage-dependent inactivation of inward-rectifying single channel currents in the guinea-pig heart cell. J Physiol (Lond) 347:659–683

    CAS  Google Scholar 

  • Sakmann B, Noma A, Trautwein W (1983) Acetylcholine activation of single muscarinic K+ channels in isolated pacemaker cells of the mammalian heart. Nature 303:250–253

    PubMed  CAS  Google Scholar 

  • Salkoff L, Butler A, Wei A, Scavarda N, Giffen K, Ifune C, Goodman R, Mandel G (1987) Genomic organization and deduced amino acid sequence of a putative sodium channel gene in Drosophila. Science 237:744–749

    PubMed  CAS  Google Scholar 

  • Sasaki K, Sato M (1987) A single GTP-binding protein regulates K+-channels coupled with dopamine, histamine and acetylcholine receptors. Nature 325:259–262

    PubMed  CAS  Google Scholar 

  • Schwarz TL, Tempel BL, Papazian DM, Jan LY (1988) Multiple potassium-channel components are produced by alternative splicing at the Shaker locus in Drosophila. Nature 331:137–142

    PubMed  CAS  Google Scholar 

  • Schwarz W, Passow H (1983) Ca2+-activated K+ channels in erythrocytes and excitable cells. Annu Rev Physiol 45:359–374

    PubMed  CAS  Google Scholar 

  • Shuster MJ, Camardo JS, Siegelbaum SA, Kandel ER (1986) Modulation of the’ s’ K+ channel by cAMP-dependent protein phosphorylation in cell-free membrane patches. Prog Brain Res 69:119–132

    PubMed  CAS  Google Scholar 

  • Siegelbaum SA (1987) The S-current a background potassium current. In: Kaczmarek LK, Levitan IB (eds) Neuromoulation: the biochemical control of neuronal excitability. Oxford University Press, New York

    Google Scholar 

  • Siegelbaum SA, Camardo JS, Kandel ER (1982) Serotonin and cyclic AMP close single K channels in Aplysia sensory neurones. Nature 299:413–417

    PubMed  CAS  Google Scholar 

  • Sigworth FJ, Sine (1987) Data transformations for improved display and fitting of single-channel dwell time histograms. Biophys J 52:1047–1052

    PubMed  CAS  Google Scholar 

  • Sims SM, Singer JJ, Walsh JV jr (1985) Cholinergic agonists suppress a potassium current in freshly dissociated smooth muscle cells of the toad. J Physiol (Lond) 367:503–529

    CAS  Google Scholar 

  • Spruce AE, Standen NB, Stanfield PR (1985) Voltage-dependent ATP-sensitive potassium channels of skeletal muscle membranes. Nature 316:736–738

    PubMed  CAS  Google Scholar 

  • Squire LG, Petersen OH (1987) Modulation of Ca2+-and voltage-activated K+ channels by internal Mg2+ in salivary acinar cells. Biochim Biophys Acta 899:171–175

    PubMed  CAS  Google Scholar 

  • Stampe P (1985) Proton inactivation of the Ca2+-activated K+ channel in human red cells. Acta Physiol Scand [Suppl 1] 542:124–162

    Google Scholar 

  • Stampe P, Vestergaard-Bogind B (1985) The Ca2+-sensitive K+-conductance of the human red cell membrane is strongly dependent on cellular pH. Biochim Biophys Acta 815:313–321

    PubMed  CAS  Google Scholar 

  • Stanfield PR (1987) Nucleotides such as ATP may control the activity of ion channels. Trends Neurol Sci 10:335–339

    CAS  Google Scholar 

  • Stanfield PR (1988) Intracellular Mg2+ may act as a co-factor in ion channel function. Trends Neurosci 11:475–477

    PubMed  CAS  Google Scholar 

  • Stanfield PR, Nakajima Y, Yamaguchi K (1985) Substance P raises neuronal excitability by reducing inward rectification. Nature 315:498–501

    PubMed  CAS  Google Scholar 

  • Storm JF (1987) Action potential repolarization and a fast after-hyperpolarization in rat hippocampal pyramidal cells. J Physiol (Lond) 365:733–759

    Google Scholar 

  • Tabares L, Lopez-Barneo J, de Miguel C (1985) Calcium-and voltage-activated potassium channels in adrenocortical cell membranes. Biochim Biophys Acta 814:96–102

    PubMed  CAS  Google Scholar 

  • Takumi T, Ohkubo H, Nakanishi S (1988) Cloning of a membrane protein that induces a slow voltage-gated potassium current. Science 242:1042–1045

    PubMed  CAS  Google Scholar 

  • Tanabe T, Takeshima H, Mikami A, Flockerzi V, Takahashi H, Kangawa K, Kojima M, Matsuo H, Hirose T, Numa S (1987) Primary structure of the receptor for calcium channel blockers from skeletal muscle. Nature 328:313–318

    PubMed  CAS  Google Scholar 

  • Taylor PS (1987) Selectivity and patch measurements of A-current channels in Helix aspersa neurons. J Physiol (Lond) 388:437–447

    CAS  Google Scholar 

  • Tempel BL, Papazian DM, Schwarz TL, Jan YN, Jan LY (1987) Sequence of a probable potassium channel component encoded at Shaker locus of Drosophila. Science 237:770–775

    PubMed  CAS  Google Scholar 

  • Tempel BL, Jan YN, Jan LY (1988) Cloning of a probable potassium channel gene from mouse brain. Nature 332:837–839

    PubMed  CAS  Google Scholar 

  • Timpe LC, Schwarz TL, Tempel BL, Papazian DM, Jan YN, Jan LY (1988) Expression of functional potassium channels from Shaker cDNA in Xenopus oocytes. Nature 331:143–145

    PubMed  CAS  Google Scholar 

  • Tokimasa T (1985) Intracellular Ca2+ ions inactivate K+ current in bullfrog sympathetic neurones. Brain Res 337:386–391

    PubMed  CAS  Google Scholar 

  • Trautmann A, Marty A (1984) Activation of Ca-dependent K channels by carbamoyl choline in rat lacrimal glands. Proc Natl Acad Sci USA 81:611–615

    PubMed  CAS  Google Scholar 

  • Trube G, Hescheler J (1983) Potassium channels in isolated patches of cardiac cell membrane. Naunyn-Schmiedebergs Arch Pharmacol 322:R64

    Google Scholar 

  • Trube G, Hescheler J (1984) Inward-rectifying channels in isolated patches of the heart cell membrane: ATP-dependence and comparison with cell-attached patches. Pflügers Arch 401:178–184

    PubMed  CAS  Google Scholar 

  • Tsuji S, Minota S, Kuba K (1987) Regulation of two ion channels by a common muscarinic receptor-transduction system in a vertebrate neuron. Neurosci Lett 81:139–145

    PubMed  CAS  Google Scholar 

  • Ubl J, Murer H, Kolb HA (1988) Ion channels activated by osmotic and mechanical stress in membranes of opossum kidney cells. J Membr Biol 104:223–232

    PubMed  CAS  Google Scholar 

  • Vandenberg CA (1987) Inward rectification of a potassium channel in cardiac ventricular cells depends on internal magnesium ions. Proc Natl Acad Sci USA 84:2560–2564

    PubMed  CAS  Google Scholar 

  • Vergara C, Latorre R (1983) Kinetics of Ca2+-activated K+ channels from rabbit muscle incorporated into planar lipid bilayers: evidence for a Ca2+ and Ba2+ blockade. J Gen Physiol 82:543–568

    PubMed  CAS  Google Scholar 

  • Vergara C, Moczydlowski E, Latorre R (1984) Conduction, blockade and gating in a Ca2+-activated K+ channel incorporated into planar lipid bilayers. Biophys J 45:73–76

    PubMed  CAS  Google Scholar 

  • Volterra A, Siegelbaum SA (1988) Role of two different guanine nucleotide-binding proteins in the antagonistic modulation of the S-type K+ channel by cAMP and arachidonic acid metabolites in Aplysia sensory neurons. Proc Natl Acad Sci USA 85:7810–7814

    PubMed  CAS  Google Scholar 

  • Wagoner PK, Oxford GS (1987) Cation permeation through the voltage-dependent potassium channel in the squid axon. Characteristics and mechanisms. J Gen Physiol 90:261–290

    PubMed  CAS  Google Scholar 

  • Watanabe K, Gola M (1987) Forskolin interaction with voltage-dependent K channels in Helix is not mediated by cyclic nucleotides. Neurosci Lett 78:211–216

    PubMed  CAS  Google Scholar 

  • Weiss JN, Lamp ST (1987) Glycolysis preferentially inhibits ATP-sensitive K+ channels in isolated guinea pig cardiac myocytes. Science 238:67–69

    PubMed  CAS  Google Scholar 

  • Wong BS, Adler M (1986) Tetraethylammonium blockade of calcium-activated potassium channels in clonal anterior pituitary cells. Pflügers Arch 407:279–289

    PubMed  CAS  Google Scholar 

  • Wong BS, Lecar H, Adler M (1982) Single calcium-dependent potassium channels clonal anterior pituitary cells. Biophys J 39:313–317

    PubMed  CAS  Google Scholar 

  • Woodhull AM (1973) Ionic blockade of sodium channels in nerve. J Gen Physiol 61:687–708

    PubMed  CAS  Google Scholar 

  • Yatani A, Codina J, Brown AM, Birnbaumer L (1987) Direct activation of mammalian atrial muscarinic potassium channels by GTP regulatory protein GK. Science 235:207–211

    PubMed  CAS  Google Scholar 

  • Yellen G (1984) Ionic permeation and blockade in Ca2+-activated K+ channels of bovine chromaffin cells. J Gen Physiol 84:157–186

    PubMed  CAS  Google Scholar 

  • Yellen G (1987) Permeation in potassium channels: implications for channel structure. Annu Rev Biophys Biophys Chem 16:227–246

    PubMed  CAS  Google Scholar 

  • Young JA, van Lennep EW (1979) Transport in salivary and salt glands. In: Giebisch G (ed) Transport organs. Springer, Berlin, Heidelberg, New York, pp 563–692 (Membrane transport in biology, vol 4B)

    Google Scholar 

  • Ypey DL, Clapham DE (1984) Development of a delayed-outward rectifying K+ conductance in cultured mouse peritoneal macrophages. Proc Natl Acad Sci USA 81:3083–3087

    PubMed  CAS  Google Scholar 

  • Ypey DL, Ravesloot HP, Buisman HP, Nijweide PJ (1988) Voltage-activated ionic channels and conductances in embryonic chick osteoblast cultures. J Membr Biol 101:141–150

    PubMed  CAS  Google Scholar 

  • Zhang L, Krnjevic K (1987) Apamin depresses selectively the afterhyperpolarization of cat spinal motoneurons. Neurosci Lett 74:58–62

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kolb, HA. (1990). Potassium Channels in Excitable and Non-excitable Cells. In: Special Issue on Ionic Channels II. Reviews of Physiology Biochemistry and Pharmacology, vol 115 . Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-41884-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-41884-0_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-41743-0

  • Online ISBN: 978-3-662-41884-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics