Skip to main content

Abstract

Physiological cell death (PCD) constitutes a strictly regulated process which is responsible for the removal of superfluous, aged, or damaged cells. An abnormal resistance to PCD entails malformations, autoimmune disease, or cancer due to the persistence of superfluous, self-specific, or mutated cells, respectively. In contrast, enhanced removal of cells by PCD participates in acute diseases (intoxications, septic shock, anoxia), as well as in chronic pathologies (neurodegenerative and neuromuscular diseases, AIDS). PCD, whose morphological and biochemical phenotype is referred to as “apoptosis”, is characterized by the action of catabolic enzymes, mostly proteases and nucleases, within the limits of a near-to-intact plasma membrane. Thus, the cell actively contributes to its removal and undergoes a series of stereotyped biochemical and ultrastructural alterations (Table 8.1). Apoptosis is the final outcome of multiple different death-inducing pathways. In mammalian cells, such apoptosis-triggering stimuli include interventions on second messenger systems, ligation of certain receptors (Fas/APO-1/CD95, TGF-R, TNF-R, etc.) or, in the case of obligate growth factor receptors, the absence of receptor occupancy. In addition, suboptimal culture conditions (lack of essential compounds, shortage of nutrients, deficiency of oxygen), mild physical damage (radiotherapy), and numerous toxins (chemotherapy and toxins stricto sensu) can provoke apoptosis.1–5 Thus, apoptosis can result both from physiological and from pathological triggers. In vivo, cells undergoing apoptosis are recognized and removed by phagocytes before they undergo lysis. Phagocytic recognition of apoptotic cells is facilitated by characteristic changes in plasma membrane structure, namely the loss of plasma membrane asymmetry with a consequent aberrant exposure of phosphatidylserine (PS) residues (normally only located in the inner membrane leaflet) on the cell surface.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barr PJ, Tomei LD. Apoptosis and its role in human disease. Biotechnology 1994; 12:487-493.

    Google Scholar 

  2. Thompson CB. Apoptosis in the pathogenesis and treatment of disease. Science 1995; 267: 1456–1462.

    Google Scholar 

  3. Kroemer G. The pharmacology of T cell apoptosis. Adv Immunol 1995; 58: 211–296.

    Google Scholar 

  4. Kroemer G, Petit PX, Zamzami N et al. The biochemistry of apoptosis. FASEB J 1995; 9: 1277–1287.

    Google Scholar 

  5. Wertz IE, Hanley MR. Diverse molecular provocation of programmed cell death. Trends Biochem Sci 1996; 21359-364.

    Google Scholar 

  6. Mitchell P, Moyle J. Estimation of the membrane potential and pH diffrence across the cristal membrane of rat liver mitochondria. Eur J Biochem1969; 7: 471–478.

    Google Scholar 

  7. Kelso A, Metcalf D. T lymphocyte-derived colony-stimulating factors. Advances in Immunol 1990; 48: 69–105.

    Article  CAS  Google Scholar 

  8. Ferrick DA, Ohashi PS, Wallace VA et al. Transgene mice as an in vivo model for self-reactivity. Immunol Rev 1990; 118: 257–283.

    Article  PubMed  CAS  Google Scholar 

  9. Kehrl JH, Wakefield LM, Roberts AB et al. Production of transforming growth factor by human T lymphocytes and its potential role in the regulation of T cell growth. J Exp Med 1986; 163: 1037.

    Article  PubMed  CAS  Google Scholar 

  10. Acuto O, Fabbi M, Smart J et al. Purification and NH2-terminal aminoacid sequencing of the beta subunit of a human T-cell antigen receptor. Proc Natl Acad Sci USA 1984; 81:3851-3857.

    Google Scholar 

  11. Proctor SJ, Jackson G, Carey P et al. Improvement of platelet counts in steroid-unresponsive idiopathic immune thrombocytopenic purpura after short-course therapy with recombinant alpha 2b interferon. Blood1989; 74:i894-i897.

    Google Scholar 

  12. Petit PX, Lecoeur H, Zorn E et al. Alterations of mitochondrial structure and function are early events of dexamethasone-induced thymocyte apoptosis. J Cell Biol 1995; 130: 157–167.

    Article  PubMed  CAS  Google Scholar 

  13. Zamzami N, Marchetti P, Castedo M et al. Reduction in mitochondrial potential constitutes an early irreversible step of programmed lymphocyte death in vivo. J Exp Med 1995; 181: 1661–1672.

    Article  PubMed  CAS  Google Scholar 

  14. Zlotnik A, Ramson J, Frank G et al. IL-4 is a growth factor for activated thymocytes: possible role in T-cell ontogeny. Proc Natl Acad Sci USA 1987; 84: 3856.

    Article  PubMed  CAS  Google Scholar 

  15. Hockenbery DM, Oltvai ZN, Yin X-M et al. Bcl-2 functions in an antioxidant pathway to prevent apoptosis. Cell 1993; 75: 241–251.

    Google Scholar 

  16. Jacobson MD, Burne JF, King MP et al. Bd-2 blocks apoptosis in cells lacking mitochondrial DNA. Nature 1993; 361:365-369.

    Google Scholar 

  17. Kane DJ, Sarafian TA, Anton R et al. Bd-2 inhibition of neural death: decreased generation of reactive oxygen species. Science 1993; 262: 1274–1277.

    Article  PubMed  CAS  Google Scholar 

  18. Skowronek P, Haferkamp O, Rödel G. A fluorescence-microscopic and flowcytometric study of HELA cells with an experimentally induced respiratory deficiency. Biochem Biophys Res Communications 1992; 187: 991–998.

    Article  CAS  Google Scholar 

  19. Marchetti P, Susin SA, Decaudin D et al. Apoptosis-associated derangement of mitochondrial function in cells lacking mitochondrial DNA. Cancer Res 1996; 56: 2033–2038.

    PubMed  CAS  Google Scholar 

  20. Marchetti P, Zamzami N, Susin SA et al. Apoptosis of cells lacking mitochondrial DNA. Apoptosis 1996; 1: 119–125.

    Article  CAS  Google Scholar 

  21. Hockenbery D, Nunez G, Milliman C et al. Bd-2 is an inner mitochondrial membrane protein that blocks programmed cell death. Nature 1990; 348: 334–338.

    Google Scholar 

  22. Lam M, Dubyak G, Chen L et al. Evidence that Bd-2 represses apoptosis by regulating endoplasmic reticulum-associated Cat+ fluxes. Proc Natl Acad Sci USA 1994; 85:6569-6573.

    Google Scholar 

  23. Lancaster JR, Laster SM, Gooding LR. Inhibition of target cell mitochondrial electron transfer by tumor necrosis factor. FEBS Let 1989; 248:169-174.

    Google Scholar 

  24. Petit PX, Susin SA, Zamzami N et al. Mitochondria and programmed cell death: back to the future. FEBS Lett 1996; 396: 7–14.

    Google Scholar 

  25. Zamzami N, Marchetti P, Castedo M et al. Sequential reduction of mitochondrial transmembrane potential and generation of reactive oxygen species in early programmed cell death. J Exp Med 1995; 182: 367–377.

    Article  PubMed  CAS  Google Scholar 

  26. Castedo M, Hirsch T, Susin SA et al. Sequential acquisition of mitochondrial and plasma membrane alterations during early lymphocyte apoptosis. J Immunol 1996; 157: 512–521.

    PubMed  CAS  Google Scholar 

  27. Macho A, Decaudin D, Castedo M et al. Chloromethyl-X-rosamine-An aldehyde-fixable potential-sensitive fluorochrome for the detection of early apoptosis. Cytometry 1996; 25:333-340.

    Google Scholar 

  28. Vayssière J-L, Petit PX, Risler Y et al. Commitment to apoptosis is associated with changes in mitochondrial biogenesis and activity in cell lines conditionally immortalized with simian virus 40. Proc Natl Acad Sci USA 1994; 91: 11752–11756.

    Google Scholar 

  29. Osborne BA, Smith SW, Liu Z-G et al. Identification of genes induced during apoptosis in T cells. Immunol Rev 1994; 142: 301–320.

    Google Scholar 

  30. Liu X, Kim CN, Yang J et al. Induction of apoptic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 1996; 86: 147–157.

    Article  PubMed  CAS  Google Scholar 

  31. Bernardi P, Broekemeier KM, Pfeiffer DR. Recent progress on regulation of the mitochondrial permeability transition pore; a cyclosporin-sensitive pore in the inner mitochondrial membrane. J Bioenergetics Biomembranes 1994; 26509-517.

    Google Scholar 

  32. Gunter TE, Pfeiffer DR. Mechanisms by which mitochondria transport calcium. Am J Physiol 1990; 258: C755 - C786.

    PubMed  CAS  Google Scholar 

  33. Haskins K, Portas M, Bergman B et al. Pancreatic islet-specific T-cell clones from nonobese diabetic mice. Proc Natl Acad Sci USA 1989; 86: 8000–8004.

    Article  PubMed  CAS  Google Scholar 

  34. Mackett M, Smith GL, Moss B. The construction and characterization of vaccinia virus recombinants expressing foreign genes. In: Glover, ed. DNA Cloning: A Practical Approach, Vol II. Oxford, England: SRL Press, 1985.

    Google Scholar 

  35. McEnery MW, Snowman AM, Trifiletti RR et al. Isolation of the mitochondrial benzodiazepine receptor: Association with the voltage-dependent anion channel and the adenine nucleotide carrier. Proc Natl Acad Sci USA 1992; 89: 3170–3174.

    Google Scholar 

  36. Zoratti M, Szabb I. The mitochondrial permeability transition. Biochem Biophys Acta-Rev Biomembranes 1995; 1241: 139–176.

    Google Scholar 

  37. Bernardi P, Petronilli V. The permeability transition pore as a mitochondrial calcium release channel; a critical appraisal. J Bioenerg Biomembr 1996; 28: 129–136.

    Article  Google Scholar 

  38. Brustovetsky N, Klingenberg M. Mitochondrial ADP/ATP carrier can be reversibly converted into a large channel by Cat+. Biochemistry 1996; 35: 8483–8488.

    Google Scholar 

  39. Beutner G, Rück A, Riede B et al. Complexes between kinases, mitochondrial porin, and adenylate translocator in rat brain resemble the permeability transition pore. FEBS Lett 1996; 396: 189–195.

    Article  PubMed  CAS  Google Scholar 

  40. Marchetti P, Castedo M, Susin SA et al. Mitochondrial permeability transition is a central coordinating event of apoptosis. J Exp Med 1996; 184: 1155–1160.

    Article  PubMed  CAS  Google Scholar 

  41. Pastorino JG, Simbula G, Gilfor E et al. Protoporphyrin IX, an endogenous ligand of the peripheral benzodiazepin receptor, potentiates induction of the mitochondrial permeability transition and the killing of culture hepatocytes by rotenone. J Biol Chem 1994; 269: 31041–31046.

    Google Scholar 

  42. Susin SA, Zamzami N, Castedo M et al. Bd-2 inhibits the mitochondrial release of an apoptogenic protease. J Exp Med 1996; 184: 1331–1342.

    Article  PubMed  CAS  Google Scholar 

  43. Marchetti P, Decaudin D, Macho A et al. Redox regulation of apoptosis: impact of thiol redoxidation on mitochondrial function. Eur J Immunol 1996; in press:

    Google Scholar 

  44. Cory S. Regulation of lymphocyte survival by the Bd-2 gene family. Annu Rev Immunol 1995; 13: 513–543.

    Google Scholar 

  45. Reed M, Woelker B, Wang P et al. The C-terminal dfomain of p53 recognizes DNA damaged by ionizing irradiation. Proc Natl Acad Sci USA 1995; 92: 9455–9459.

    Google Scholar 

  46. Yang E, Korsmeyer SJ. Molecular Thanatopsis: A discourse on the Bd-2 family and cell death. Blood 1996; 88: 386–401.

    PubMed  CAS  Google Scholar 

  47. Zhu W, Cowie A, Wasfy GW et al. Bd-2 mutants with restricted subcellular localization reveal spatially distinct pathways for apoptosis in different cell types. EMBO J 1996; 15: 4130–4141.

    PubMed  CAS  Google Scholar 

  48. Zha H, Fisk HA, Yaffe MP et al. structure-function comparisons of the proapoptotic protein Bax from yeast and mammalian cells. Mol Cell Biol 1996; 16: 6494–6508.

    PubMed  CAS  Google Scholar 

  49. Nguyen M, Branton PE, Walton PA et al. Role of membrane anchor domain of Bd-2 in suppression of apoptosis caused by E1B-defective adenovirus. J Biol Chem 1994; 269: 16521–16524.

    Google Scholar 

  50. Greenhalf W, Stephan C, Chaudhuri B. Role of mitochondria and C-terminal membrane anchor of Bd-2 in Bax induced growth arrest and mortality in Sacharomyces cerevisiae. FEBS Lett 1996; 380x69–175.

    Google Scholar 

  51. Shimizu S, Eguchi Y, Kamiike W et al. Bcl-2 blocks loss of mitochondrial membrane potential while ICE inhibitors act at a different step during inhibition of death induced by respiratory chain inhibitors. Oncogene 1996; 13: 21–29.

    PubMed  CAS  Google Scholar 

  52. Decaudin D, Geley S, Hirsdch T et al. Bd-2 and Bcl-XL antagonize the mitochondrial dysfunction preceding nuclear apoptosis induced by chemotherapeutic agents. Cancer Res 1997; Cancer Res 1997; 57: 62–67.

    CAS  Google Scholar 

  53. Xiang J, Chao DT, Korsmeyer SJ. Bax-induced cell death may not require interleukin-1(3-converting enzyme-like proteases. Proc Natl Acad Sci USA 1996; 93: 14559–14563.

    Article  PubMed  CAS  Google Scholar 

  54. Baffy G, Miyashati T, Williamson JR et al. Apoptosis induced by withdrawal of interleukin-3 (IL-3) dependent hematopoietic cell line is associated with repartitioning of intracellular calcium and is blocked by enforced Bd-2 oncogene production. J Biol Chem 1993; 268: 6511–6519.

    PubMed  CAS  Google Scholar 

  55. Murphy AN, Bredesen DE, Cortopassi G et al. Bd-2 potentiates the maximal calcium uptake capacity of neural cell mitochondria. Proc Natl Acad Sci USA 1996; 939893-9898.

    Google Scholar 

  56. Newmeyer DD, Farschon DM, Reed JC. Cell-free apoptosis in xenopus egg extracts: inhibition by Bd-2 and requirement for an organelle fraction enriched in mitochondria. Cell 1994; 79: 353–364.

    Google Scholar 

  57. Marchetti P, Hirsch T, Zamzami N et al. Mitochondrial permeability transition triggers lymphocyte apoptosis. J Immunol 1996; in press:

    Google Scholar 

  58. Zamzami N, Susin SA, Marchetti P et al. Mitochondrial control of nuclear apoptosis. J Exp Med 1996; 183: 1533–1544.

    Article  PubMed  CAS  Google Scholar 

  59. Zamzami N, Marchetti P, Castedo M et al. Inhibitors of permeability transition interfere with the disruption of the mitochondrial transmembrane potential during apoptosis. FEBS Lett 1996; 384: 53–57.

    Google Scholar 

  60. o. Muchmore SW, Sattler M, Liang H et al. X-ray and NMR structure of human Bcl-xL, and inhibitor of programmed cell death. Nature 1996; 381:335-341.

    Google Scholar 

  61. Wang H-G, Rapp UR, Reed JC. Bd-2 targets the protein kinase raf-i to mitochondria. Cell 1996; 87: 1–20.

    Article  CAS  Google Scholar 

  62. Krajewski S, Tanaka S, Takayama S et al. Investigation of the subcellular distribution of the bd-2 oncoprotein: residence in the nuclear envelope, endoplasmic reticulum, and outer mitochondrial membranes. Cancer Res 1993; 534701-4714.

    Google Scholar 

  63. Carayon P, Portier M, Dussossoy D et al. Involvement of peripheral benzodiazepine receptors in the protection of hematopoietic cells against oxygen radical species. Blood 1996; 87: 3170–3178.

    PubMed  CAS  Google Scholar 

  64. Harlow E, Lane D. Antibodies: A laboratory manual Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York 1988.

    Google Scholar 

  65. Lefranc MP, Forster A, Rabbitts TH. Rearrangement of two distinct T-cell gamma-chain variable-region genes in human DNA. Nature 1986; 319: 420–422.

    Article  PubMed  CAS  Google Scholar 

  66. Chung IT, Norris JG, Benveniste EN. Differential tumor necrosis factor a expression by astrocytes from experimental allergic encephalomyelitis-susceptible and–resistant rat strains. J Exp Med 1991; 173: 801–811.

    Article  PubMed  CAS  Google Scholar 

  67. Via CS. Kinetics of T cell activation in acute and chronic forms of murine graft-versus host disease. J Immunol 1991; 146: 2603–2609.

    PubMed  CAS  Google Scholar 

  68. Minn AJ, Vélez P, Schnedel SL et al. Bcl-XL forms an ion channel in synthtic lipid membranes. Nature 1997; 385: 353–357.

    Google Scholar 

  69. Wang HG, Miyashita T, Takayama S et al. Apoptosis regulation by interaction of bd-2 protein and Raf-1 kinase. Oncogene 1994; 9: 2751–2756.

    Google Scholar 

  70. Martinou JC, Dubois-Dauphin-M, Staple JK et al. Overexpression of Bd-2 in transgenic mice protects neurons from naturally occurring cell death and experimental ischemia. Neuron 1994; 13: 1017–1030.

    Article  PubMed  CAS  Google Scholar 

  71. Shimizu S, Eguchi Y, Kamiike W et al. Bcl-2 expression prevents activation of the ICE protease cascade. Oncogene 1996; 12: 2251–2257.

    PubMed  CAS  Google Scholar 

  72. Smiley ST. Intracellular heterogeneity in mitochondrial membrane potential revealed by a J-aggregate-forming lipophilic cation JC-1. Proc Natl Acad Sci USA 1991; 88:3671–3675.

    Google Scholar 

  73. Itoh G, Tamura J, Suzuki M et al. DNA fragmentation of human infarcted myocardial cells demonstrated by the nick end labeling method and DNA agarose gel electrophoresis. Am J Pathol 1995; 1461325–1331.

    Google Scholar 

  74. Simonian NA, Getz RL, Leveque JC et al. Kainate induces apoptosis in neurons. Neuroscience 1996; 74: 675–683.

    Article  PubMed  CAS  Google Scholar 

  75. Kroemer G, Zamzami N, Susin SA. Mitochondrial control of apoptosis. Immunol Today 1997; in press:

    Google Scholar 

  76. Deckwerth TL, Johnson EM. Temporal analysis of events associated with programmed cell death (apoptosis) of sympathetic neurons deprived of nerve growth factor. J Cell Biol 1993; 123: 1207–1222.

    Article  PubMed  CAS  Google Scholar 

  77. Ankarcrona M, Dypbukt JM, Bonfoco E et al. Glutamate-induced neuronal death: a succession of necrosis or apoptosis depending on mitochondrial function. Neuron 1995; 15:961-973.

    Google Scholar 

  78. Ronai Z, Tillotson JK, Traganos F et al. Effects of organic and inorganic selenium compounds on rat mammary tumor cells. Int J Cancer 1995; 63428-434.

    Google Scholar 

  79. Nazareth W, Yaferi N, Crompton M. Inhibition of anoxia induced injury in heart myocytes by cyclosporin A. J Mol Cell Cardiol 1991; 23:1351-1358.

    Google Scholar 

  80. Griffiths EJ, Halestrup AP. Protection by cyclosporin A of ischemia:reperfusioninduced damage in isolated rat hearts. J Mol Cell Cardiol 1993; 25: 1461–1469.

    Google Scholar 

  81. leyssens AM, Crompton AM, Duchen MR. A role of the mitochondrial permeability transition pore in cell injury by reactive oxygen species in isolated rat cardiomyocytes. J Physiol 1996; 494P:P1o9-P110.

    Google Scholar 

  82. Pastorino JG, Snyder JW, Serroni A et al. Cyclosporin and carnitine prevent the anoxic death of cultured hepatocytes by inhibiting the mitochondrial permeability transition. J Biol Chem 1993; 268x3791-13798.

    Google Scholar 

  83. Kass GEN, Juedes MJ, Orrenius S. Cyclosporin A protects hepatocytes against prooxidant-induced cell killing. Biochem Pharmacol 1992; 44: 1995–2003.

    Google Scholar 

  84. Nieminen AL, Saylor AK, Tesfai SA et al. Contribution of the mitochondrial permeability transition to lethal injury after exposure of hepatocytes to tbutyldydroperoxide. Biochem J 1995; 307: 99–106.

    Google Scholar 

  85. Imberti R, Nieminen AL, Herman B et al. Mitochondrial and glycolytic dysfunction in lethal injury to hepatocytes by t-butylhydroperoxide: Protection by fructose, cyclosporin A and trifluoperazine. J Pharmacol Exp Ther 1993; 265392-400.

    Google Scholar 

  86. Costantini P, Petronilli V, Colonna R et al. On the effects of paraquat on isolated mitochondria. Evidence that paraquat causes opening of the cyclosporin A-sensitive permeability transition pore synergistically with nitric oxide. Toxicology 1995; 99: 77–88.

    Article  PubMed  CAS  Google Scholar 

  87. Botla R, Spivey JR, Aguilar H et al. Ursodeoxycholate (UDCA) inhibits the mitochondrial permeability transition induced by glycohenodeoxycholate: A mechanism of UDCA protection. J Pharmacol Exp Ther 1995; 272: 930–938.

    Google Scholar 

  88. Snyder JW, Pastorino JG, Attie AM et al. Protection by cyclosporin A of cultured hepatocytes from the toxic consequences of the loss of mitochondrial energization produced by 1-methyl-4phenylpyridinium. Biochem Pharmacol 1992; 44:833-835.

    Google Scholar 

  89. White RJ, Reynolds IJ. Mitochondrial depolarization in glutamate-stimulated neurons: An early signal specific to excitotoxin exposure. J Neurosci 1996; 16:5688-5697.

    Google Scholar 

  90. Schinder AF, Olson EC, Spitzer NC et al. Mitochondrial dysfunction is a primary event in glutamate neurotoxicity. J Neurosci 1996; 16: 6125–6133.

    PubMed  CAS  Google Scholar 

  91. Packer MA, Miesel R, Murphy MP. Exposure to the parkinsonian neurotoxin 1methyl-4-phenylpyridinium (MPP+) and nitric oxide simultaneously causes Cyclosporin A-sensitive mitochondrial calcium efflux and depolarisation. Biochem Pharmacol 1996; 51: 267–273.

    Article  PubMed  CAS  Google Scholar 

  92. Shiga YH, ONodera H, Matsuo Y et al. Cyclosporin A protects against ischemiareperfusion injury in the brain. Brain Res 1992; 595: 145–148.

    Google Scholar 

  93. Uchino H, Elmer HE, Uchino K et al. Cyclosporin A darmmatically ameliorates CA1 hippocampal damage following transient fore brain ischemia in the rat. Acta Physiol Scand 1995; 155: 469–474.

    Google Scholar 

  94. Van de Water B, Zoeteweij JP, de Bont HJ et al. Role of the mitochondrial calcium in the oxidative stress-induced dissipation of the mitochondrial membrane potential. Studies in isolated proximal tubular cells using the nephrotoxin 1,2dichlorovinyl-L-cysteine. J Biol Chem 1994; 269:14546-14552.

    Google Scholar 

  95. Pastorino JK, Simbula G, Yamamoto K et al. The cytotoxicity of tumor necrosis factor depends on induction of the mitochondrial permeability transition. J Biol Chem 1996; 271:29792-29798.

    Google Scholar 

  96. Beaver JP, Waring P. Thapsigargin induces mitochondrial dysfunction and apoptosis inthe mastocytoma P815 cell line and in mouse thymocytes. Cell Death Diff 1996; 3: 415–424.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Petit, P.X., Kroemer, G. (1998). Mitochondrial Regulation of Apoptosis. In: Singh, K.K. (eds) Mitochondrial DNA Mutations in Aging, Disease and Cancer. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-12509-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-12509-0_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-12511-3

  • Online ISBN: 978-3-662-12509-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics