Skip to main content

Part of the book series: Biotechnology Intelligence Unit ((BIOIU))

Abstract

Exposing the skin to ultraviolet (UV) radiation induces many biologic alterations, including a variety of effects on the immune system (reviewed in refs. 1,2). For example, UV radiation suppresses cell-mediated immune responses and can lead to a state of long-term, antigen-specific, immune suppression. In mice, UV-induced immune suppression contributes to the development of skin cancer. There is evidence that UV-induced alterations in immune function also play a significant role in skin carcinogenesis in humans. In addition, UV-induced immune suppression increases the severity of infectious diseases in animal models,1,3 and may contribute to the pathogenesis of some infectious diseases in humans. Sunscreens are designed primarily to prevent the acute effects of UV radiation.4 Their efficacy is indicated by a sun protection factor (SPF), which is based on their ability to prevent erythema in human skin. The quest for better sunscreens resulted in significant improvements, leading to preparations with SPFs of 40 or more. These preparations are highly protective against the acute effect of UV radiation, i.e., the sunburn reaction. In animal studies, sunscreens also protected against chronic UV-induced skin aging,5 tumor initiation,6,7 and tumor promotion.8

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Morison WL. Effects of ultraviolet radiation on the immune system in humans. Photochem Photobiol 1989; 50:515–524.

    Article  PubMed  CAS  Google Scholar 

  2. Granstein RD. Photoimmunology. Semin Dermatol 1990; 9:16–24.

    PubMed  CAS  Google Scholar 

  3. Garssen J, Goettsch W, De Gruijl F et al. Risk assessment of UVB effects on resistance to infectious diseases. Photochem Photobiol 1996; 64:269–274.

    Article  PubMed  CAS  Google Scholar 

  4. Pathak MA, Fitzpatrick TB, Frenk E. Evaluation of topical agents that prevent sunburn—superiority of para-aminobenzoic acid and its ester in ethyl alcohol. N Engl J Med 1969; 280:1459–1463.

    Article  PubMed  CAS  Google Scholar 

  5. Kligman LH, Akin FJ, Kligman AM. Prevention of ultraviolet damage to the dermis of hairless mice by sunscreens. J Invest Dermatol 1982; 78:181–189.

    Article  PubMed  CAS  Google Scholar 

  6. Kligman LH, Akin FJ, Kligman AM. Sunscreens prevent ultraviolet photocarcinogenesis. J Am Acad Dermatol 1980; 3:30–35.

    Article  PubMed  CAS  Google Scholar 

  7. Wulf HC, Poulsen T, Brodthagen H et al. Sunscreens for delay of ultraviolet induction of skin tumors. J Am Acad Dermatol 1982; 7:194–202.

    Article  PubMed  CAS  Google Scholar 

  8. Synder DS, May M. Ability of PABA to protect mammalian skin from ultraviolet light-induced skin tumors and actinic damage. J Invest Dermatol 1975; 65:543–546.

    Article  PubMed  CAS  Google Scholar 

  9. Granstein RD. Evidence that sunscreens prevent UV radiation-induced immunosuppression in humans. Arch Dermatol 1995; 131:1201–1204.

    Article  PubMed  CAS  Google Scholar 

  10. Young AR, Walker SL. Photoprotection from UVR-induced immunosuppression. In: Krutmann J, Elmets CA, eds. Photoimmunology. London: Blackwell Science Ltd, 1995: 285–294.

    Google Scholar 

  11. Vitaliano PP, Urbach F. The relative importance of risk factors in nonmelanoma carcinoma. Arch Dermatol 1980; 116:454–456.

    Article  PubMed  CAS  Google Scholar 

  12. Kripke ML, Fisher MS. Immunologic parameters of ultraviolet carcinogenesis. J Natl Cancer Inst 1976; 57:211–215.

    PubMed  CAS  Google Scholar 

  13. Streilein JW, Taylor JR, Vincek V et al. Immune surveillance and sunlight-induced skin cancer. Immunol Today 1994; 15:174–179.

    Article  PubMed  CAS  Google Scholar 

  14. Saijo S, Bucana CD, Ramirez KM et al. Deficient antigen presentation and Ts induction are separate effects of ultraviolet irradiation. Cell Immunol 1995; 164:189–202.

    Article  PubMed  CAS  Google Scholar 

  15. Rivas JM, Ullrich SE. Systemic suppression of delayed-type hypersensitivity by supernatants from UV-irradiated keratinocytes: an essential role for keratinocyte-derived interleukin-10. J Immunol 1992; 149:3865–3871.

    PubMed  CAS  Google Scholar 

  16. Donawho CK, Muller HK, Bucana CD, and Kripke ML. Enhanced growth of murine melanoma in ultraviolet-irradiated skin is associated with local inhibition of immune effector mechanisms. J. Immunol 1996; 157:781–786.

    PubMed  CAS  Google Scholar 

  17. Kinlen LF, Sheil AGR, Peto J et al. Collaborative United Kingdom-Australiasian study of cancer in patients treated with immunosuppressive drugs. Br Med J 1979; II:1461–1466.

    Article  Google Scholar 

  18. Boyle J, MacKie RM, Briggs JD et al. Cancer, warts, and sunshine in renal transplant patients: a case-control study. Lancet I 1984:702–705.

    Article  Google Scholar 

  19. Yoshikawa T, Rae V, Bruins-Slot W et al. Susceptibility to effects of UVB radiation on induction of contact hypersensitivity as a risk factor for skin cancer in humans. J Invest Dermatol 1990; 95:530–536.

    Article  PubMed  CAS  Google Scholar 

  20. Dupuy JM, Lafforet D. A defect of cellular immunity in xeroderma pigmentosum. Clin Immunol Immunopathol 1974; 3:52–58.

    Article  PubMed  CAS  Google Scholar 

  21. Wysenbeek AJ, Weiss H, Duczyminer-Kahana M et al. Immunologic alterations in xeroderma pigmentosum patients. Cancer 1986; 58:219–221.

    Article  PubMed  CAS  Google Scholar 

  22. Norris PG, Limb GA, Hamblin AS et al. Immune function, mutant frequency, and cancer risk in the DNA repair defective geno-dermatoses xeroderma pigmentosum, Cockayne’s syndrome, and trichothiodystrophy. J Invest Dermatol 1990; 4:94–100.

    Article  Google Scholar 

  23. Lehmann AR, Bridges BA. Sunlight-induced cancer: some new aspects and implications of the xeroderma pigmentosum model. Br J Dermatol 1990; 122:115–119.

    Article  PubMed  Google Scholar 

  24. Morison WL, Bucana C, Hashem N et al. Impaired immune functions in patients with xeroderma pigmentosum. Cancer Research 1985; 45:3929–3931.

    PubMed  CAS  Google Scholar 

  25. Donawho C, Wolf P. Sunburn, sunscreen, and melanoma. Current Opinion in Oncology 1996; 8:159–166.

    Article  PubMed  CAS  Google Scholar 

  26. Scotto J, Kopf AW, Urbach F. Nonmelanoma skin cancer in four areas of the U.S. Cancer 1974; 34:1333–1338.

    Article  PubMed  CAS  Google Scholar 

  27. Romerdahl CA, Donawho C, Fidler IJ et al. Effect of ultraviolet-B on the in vivo growth of murine melanoma cells. Cancer Res 1988; 48:4007–4010.

    PubMed  CAS  Google Scholar 

  28. Donawho CK, Kripke ML. Evidence that the local effect of ultraviolet radiation on the growth of murine melanomas is immunologically mediated. Cancer Res 1991; 51:4176–4181.

    PubMed  CAS  Google Scholar 

  29. Mukheryi B, Chakraborty NG. Immunobiology and immunotherapy of melanoma. Curr Opin Oncol 1995; 7:175–184.

    Article  Google Scholar 

  30. Donawho CK, Kripke ML. Immunologic factors in melanoma. Clin Dermatol 1992; 10:69–74.

    Article  PubMed  CAS  Google Scholar 

  31. Tefany FJ, Barnetson RS, Halliday GM et al. Immunocytochemical analysis of the cellular infiltrate in primary regressing and nonregressing malignant melanoma. J Invest Dermatol 1991; 97:197–202.

    Article  PubMed  CAS  Google Scholar 

  32. McMichael AJ, Giles GG. Have increases in solar ultraviolet exposure contributed to the rise in incidence of non-Hodgkin’s lymphoma? Br J Cancer 1996; 73:945–950.

    Article  PubMed  CAS  Google Scholar 

  33. Levi F, Randimbison L, Te V-C, La Vecchia C. Non-Hodgkin’s lymphomas, chronic lymphocytic leukaemias and skin cancers. Br J Cancer 1996; 74(1:0:1847–1850.

    Google Scholar 

  34. Spruance S. Pathogenesis of Herpes simplex labialis: experimental induction of lesions with UV light. J Clin Microbiol 1985; 22:366–368.

    PubMed  CAS  Google Scholar 

  35. Wheeler CE. Pathogenesis of recurrent herpes simplex infection. J Invest Dermatol 1975; 65:341–346.

    Article  PubMed  Google Scholar 

  36. Yasumoto S, Hayashi Y, Aurelian L. Immunity to herpes simplex virus type 2: suppression of virus induced immune responses in ultraviolet B irradiated mice. J Immunol 1987; 139:2788–2793.

    PubMed  CAS  Google Scholar 

  37. Howie SEM, Norval M, Maingay J. Exposure to low dose UVB light suppresses delayed type hypersensitivity to herpes simplex virus in mice by suppressor cell induction. J Invest Dermatol 1986; 86:125–128.

    Article  PubMed  CAS  Google Scholar 

  38. Norval M, El-Ghor AA. UV radiation and mouse models of herpes simplex virus infection. Photochem Photobiol 1996; 64:242–245.

    Article  PubMed  CAS  Google Scholar 

  39. Denkins YM, Kripke ML. Effect of UV irradiation on lethal infection of mice with Candida albicans. Photochem Photobiol 1993; 57:266–271.

    Article  PubMed  CAS  Google Scholar 

  40. Denkins Y, Fidler IJ, Kripke ML. Exposure of mice to UVB radiation suppresses delayed hypersensitivity to Candida albicans. Photochem Photobiol 1989; 49:615–619.

    Article  PubMed  CAS  Google Scholar 

  41. Jeevan A, Kripke ML. Effect of a single exposure to ultraviolet radiation on Mycobacterium bovis Bacillus Calmette-Guerin infection in mice. J Immunol 1989; 143:2837–2843.

    PubMed  CAS  Google Scholar 

  42. Cestari TF, Kripke ML, Baptista PL et al. Ultraviolet radiation decreases the granulomatous response to lepromin in humans. J Invest Dermatol 1995; 105:8–13.

    Article  PubMed  CAS  Google Scholar 

  43. Giannini SH. Suppression of pathogenesis in cutaneous Leishmaniasis by UV irradiation. Infect Immun 1986; 51:838–843.

    PubMed  CAS  Google Scholar 

  44. Giannini SH. Effects of Ultraviolet B irradiation on cutaneous Leishmaniasis. Parasitology Today 1992; 8:44–48.

    Article  PubMed  CAS  Google Scholar 

  45. Brown EL, Rivas JM, Ullrich SE et al. Modulation of the immunity to Borrelia burgdorferi by ultraviolet irradiation: differential effect on Th-1- and Th2 type immune responses. Eur J Immunol 1995; 25:3017–3022.

    Article  PubMed  CAS  Google Scholar 

  46. Duvic M, Ulmer R, Crane M et al. Treatment of HIV+ patients with UVB is associated with a significant increase in p24 antigen levels. J Invest Dermatol 1995; 104:581 (abstr.).

    Article  Google Scholar 

  47. Adams ML, Houpt KR, Cruz PDJ. Is phototherapy safe for HIV-infected individuals? Photochem Photobiol 1996; 64:234–237.

    Article  PubMed  CAS  Google Scholar 

  48. Zmudzka BZ, Miller SA, Jacobs ME et al. Medical UV exposures and HIV activation. Photochem Photobiol 1996; 64:246–253.

    Article  PubMed  CAS  Google Scholar 

  49. Zmudzka BZ, Beer JZ. Activation of human immunodeficiency virus by ultraviolet radiation. Photochem Photobiol 1990; 52:1153–1162.

    Article  PubMed  CAS  Google Scholar 

  50. Tschachler E, Groh E, Popovic M et al. Epidermal Langerhans cells— a target for HTLV-III/LAV infection. J Invest Dermatol 1987; 88:233–237.

    Article  PubMed  CAS  Google Scholar 

  51. Clerici M, Shearer GM. UV light exposure and HIV replication. Science 1992; 258:1070–1071.

    PubMed  CAS  Google Scholar 

  52. Ullrich SE. Does exposure to UV radiation induce a shift to a Th-2-like immune reaction? Photochem Photobiol 1996; 64:254–258.

    Article  PubMed  CAS  Google Scholar 

  53. Smith KJ, Skelton HG, Yeager J. Ultraviolet radiation therapy and HIV disease. J Am Acad Dermatol 1995; 33:841–842.

    Article  PubMed  CAS  Google Scholar 

  54. Buchness MR, Lim HW, Hatcher VA et al. Eosinophilic pustular folliculitis in the acquired immunodeficiency syndrome: treatment with ultraviolet B phototherapy. N Engl J Med 1987; 318:1183–1186.

    Article  Google Scholar 

  55. Pardo RJ, Bogaert MA, Penneys NS et al. UVB phototherapy of the pruritic papular eruption of the acquired immunodeficiency syndrome. J Am Acad Dermatol 1992; 26:423–428.

    Article  PubMed  CAS  Google Scholar 

  56. Fisher MS, Kripke ML. Suppressor T lymphocytes control the development of primary skin cancers in UV-irradiated mice. Science 1982; 216:1133–1134.

    Article  PubMed  CAS  Google Scholar 

  57. Noonan FP, De Fabo EC, Kripke ML. Suppression of contact hypersensitivity and its relationship to UV-induced suppression of tumor immunity. Photochem Photobiol 1981; 34:683–689.

    PubMed  CAS  Google Scholar 

  58. Stingl G, Gazze-Stingl LA, Aberer W et al. Antigen presentation by murine epidermal Langerhans cells and its alterations by UVB light. J Immunol 1981; 127:1707–1713.

    PubMed  CAS  Google Scholar 

  59. Kurimoto I, Streilein JW. Cis-urocanic acid suppression of contact hypersensitivity induction is mediated via tumor necrosis factor-a. J Immunol 1992; 148:3072–3078.

    PubMed  CAS  Google Scholar 

  60. Robertson B, Gahring L, Newton R et al. In vivo administration of IL-1 to normal mice decreases their capacity to elicit contact hypersensitivity responses: Prostaglandins are involved in this modification of immune function. J Invest Dermatol 1987; 88:380–387.

    Article  PubMed  CAS  Google Scholar 

  61. Schwarz T, Urbanska A, Gschnait F et al. UV-irradiated epidermal cells produce a specific inhibitor of IL-1 activity. J Immunol 1987; 138:1457–1463.

    PubMed  CAS  Google Scholar 

  62. Kim T-Y, Kripke ML, Ullrich SE. Immunosuppression by factors released from UV-irradiated epidermal cells: selective effects on the generation of contact and delayed hypersensitivity after exposure to UVA or UVB radiation. J Invest Dermatol 1990; 94:26–32.

    Article  PubMed  CAS  Google Scholar 

  63. Ullrich SE. The role of epidermal cytokines in the generation of cutaneous immune reactions and ultraviolet radiation-induced immune suppression. Photochem Photobiol 1995; 62:389–401.

    Article  PubMed  CAS  Google Scholar 

  64. Jeevan A, Ullrich SE, De Gracia M et al. Mechanism of UVB-induced suppression of the immune response to Mycobacterium bovis Bacillus Calmette-Guerin: role of cytokines on macrophage function. Photochem Photobiol 1996; 64:259–266.

    Article  PubMed  CAS  Google Scholar 

  65. De Fabo EC, Noonan FP. Mechanism of immune suppression by ultraviolet irradiation in vivo. I. Evidence for the existence of a unique photoreceptor in skin and its role in photoimmunology. J Exp Med 1983; 157:84–98.

    Article  Google Scholar 

  66. Applegate LA, Ley RD, Alcalay J et al. Identification of the molecular target for the suppression of contact hypersensitivity by ultraviolet radiation. J Exp Med 1989; 170:1117–1131.

    Article  PubMed  CAS  Google Scholar 

  67. Kripke ML, Cox PA, Alas LG et al. Pyrimidine dimers in DNA initiate systemic immunosuppression in UV-irradiated mice. Proc Natl Acad Sci USA 1992; 89:7516–7520.

    Article  PubMed  CAS  Google Scholar 

  68. Wolf P, Cox P, Yarosh DB et al. Sunscreens and T4N5 liposome differ in their ability to protect against UV-induced sunburn cell formation, alterations of dendritic epidermal cells, and local suppression of contact hypersensitivity. J Invest Dermatol 1995; 104:287–292.

    Article  PubMed  CAS  Google Scholar 

  69. Norval M, Simpson TJ, Bardshiri et al. Urocanic acid analogues and the suppression of the delayed type hypersensitivity response to herpes simplex virus. Photochem Photobiol 1989; 49:633–639.

    Article  PubMed  CAS  Google Scholar 

  70. Moodycliffe AM, Bucana CD, Kripke ML et al. Differential effects of a monoclonal antibody to cis-urocanic acid on the suppression of delayed and contact hypersensitivity following ultraviolet irradiation. J Immunol 1996; 157:2891–2899.

    PubMed  CAS  Google Scholar 

  71. Hersey P, MacDonald M, Burns C et al. Analysis of the effect of a sunscreen agent on the suppression of natural killer cell activity induced in human subjects by radiation from solarium lamps. J Invest Dermatol 1987; 88:271–276.

    Article  PubMed  CAS  Google Scholar 

  72. Aubin F, Kripke ML. Effect of ultraviolet A radiation on cutaneous immune cells. In: Urbach F, ed. Biological Responses to Ultraviolet A Radiation. Overland Park: Valdenmar Publishing Company, 1992: 239–247.

    Google Scholar 

  73. De Fabo EC, Reilly DC, Noonan FP. Mechanism of UVA effects on immune function: preliminary studies. In: Urbach F, ed. Biological Responses to Ultraviolet A Radiation. Overland Park: Valdenmar Publishing Company, 1992: 227–237.

    Google Scholar 

  74. Bestak R, Barnetson RSC, Nearn MR et al. Sunscreen protection of contact hypersensitivity responses from chronic solar-simulated ultraviolet irradiation correlates with the absorption spectrum of the sunscreen. J Invest Dermatol 1995; 105:345–351.

    Article  PubMed  CAS  Google Scholar 

  75. Stenberg C, Larkö O. Sunscreen application and its importance for the sun protection factor. Arch Dermatol 1985; 121:1400–1402.

    Article  PubMed  CAS  Google Scholar 

  76. Bech-Thomsen N, Wulf HG. Sunbathers’ application of sunscreen is probably inadequate to obtain the sun protection factor assigned to the preparation. Photodermatol Photoimmunol Photomed 1992–93; 9:242–244.

    Google Scholar 

  77. Walker SL, Morris J, Chu AC et al. Relationship between the ability of sunscreens containing 2-ethylhexyl-4’-methoxycinnamate to protect against inflammation, depletion of epidermal Langerhans (Ia +) cells and suppression of alloactivating capacity of murine skin in vivo. J Photochem Photobiol B Biol 1994; 22:29–36.

    Article  CAS  Google Scholar 

  78. Gurish MF, Roberts LK, Krueger GG et al. The effects of various sunscreen agents on skin damage and the induction of tumor susceptibility in mice subjected to ultraviolet irradiation. J Invest Dermatol 1981; 76:246–251.

    Article  PubMed  CAS  Google Scholar 

  79. Lynch DH, Gurish MF, Daynes RA. Relationship between epidermal Langerhans cell density, ATPase activity and the induction of contact hypersensitivity. J Immunol 1981; 126:1892–1897.

    PubMed  CAS  Google Scholar 

  80. Fisher MS, Menter JM, Willis I. Ultraviolet radiation-induced suppression of contact hypersensitivity in relation to Padimate O and oxybenzone. J Invest Dermatol 1989; 92:337–341.

    Article  PubMed  CAS  Google Scholar 

  81. Reeve VE, Bosnic M, Boehm-Wilcox C et al. Differential protection by two sunscreens from UV radiation-induced immunosuppression. J Invest Dermatol 1991; 97:624–628.

    Article  PubMed  CAS  Google Scholar 

  82. Ho KKL, Halliday GM, Barnetson RSC. Sunscreens protect epidermal Langerhans cells and Thy-1 + but not local contact sensitization from the effects of ultraviolet light. J Invest Dermatol 1992; 98:720–724.

    Article  PubMed  CAS  Google Scholar 

  83. Wolf P, Donawho CK, Kripke ML. Effect of sunscreens on UV radiation-induced enhancement of melanoma growth in mice. J Natl Cancer Inst 1994; 86:99–105.

    Article  PubMed  CAS  Google Scholar 

  84. Reeve VE, Boehm-Wilcox C, Bosnic M et al. Differential photo-immunoprotection by sunscreens is unrelated to epidermal cis uro-canic formation in hairless mice. J Invest Dermatol 1994; 103:801–806.

    Article  PubMed  CAS  Google Scholar 

  85. Morison WL. The effect of a sunscreen containing para-aminoben-zoic acid on the systemic immunologic alterations induced in mice by exposure to UVB radiation. J Invest Dermatol 1984; 83:405–408.

    Article  PubMed  CAS  Google Scholar 

  86. Wolf P, Yarosh DB, Kripke ML. Effects of sunscreens and a DNA excision repair enzyme on ultraviolet radiation-induced inflammation, immune suppression, and cyclobutane pyrimidine dimer formation in mice. J Invest Dermatol 1993; 101:523–527.

    Article  PubMed  CAS  Google Scholar 

  87. Wolf P, Donawho CK, Kripke ML. Analysis of the protective effect of different sunscreens on ultraviolet radiation-induced local and systemic suppression of contact hypersensitivity and inflammatory responses in mice. J Invest Dermatol 1993; 100:254–259.

    Article  PubMed  CAS  Google Scholar 

  88. Morison WL, Pike RA, Kripke ML. Effect of sunlight and its component wavebands on contact hypersensitivity in mice and guinea pigs. Photodermatol 1985; 2:195–204.

    PubMed  CAS  Google Scholar 

  89. Roberts LK, Beasley DG. Commercial sunscreen lotions prevent ultraviolet-radiation-induced immune suppression of contact hypersensitivity. J Invest Dermatol 1995; 105:339–344.

    Article  PubMed  CAS  Google Scholar 

  90. Roberts LK, Beasley DG, Learn DB et al. Ultraviolet spectral energy differences affect the ability of sunscreen lotions to prevent ultraviolet-radiation-induced immunosuppression. Photochem Photobiol 1996; 63:874–884.

    Article  PubMed  CAS  Google Scholar 

  91. Morison WL, Kelley SP. Sunlight suppressing rejection of 280- to 320-nm UV-radiation induced skin tumors in mice. J Natl Cancer Inst 1985; 74:525–527.

    PubMed  CAS  Google Scholar 

  92. Walker SL, Young AR. Sunscreens offer the same UVB protection factors for inflammation and immunosuppression in the mouse. J Invest Dermatol: 1997; 108:133–138.

    Article  PubMed  CAS  Google Scholar 

  93. Miyagi T, Bhutto AM, Nonaka S. The effects of sunscreens on UVB erythema and Langerhans cell depression. J Dermatol 1994; 21:645–651.

    PubMed  CAS  Google Scholar 

  94. Donawho CK, Wolf P, Kripke ML. Enhanced development of murine melanoma in UV-irradiated skin: UV dose response, waveband dependence, and relation to inflammation. Melanoma Res 1994; 4:93–100.

    Article  PubMed  CAS  Google Scholar 

  95. Donawho CK, Kripke ML. Lack of correlation between UV-induced enhancement of melanoma development and local suppression of contact hypersensitivity. Exp Dermatol 1992; 1:20–26.

    Article  PubMed  CAS  Google Scholar 

  96. Allen JM, Gossett CJ, Allen SK. Photochemical formation of singlet molecular oxygen in illuminated aqueous solutions of several commercially available sunscreen active ingredients. Chem Res Toxicol 1996; 9:605–609.

    Article  PubMed  CAS  Google Scholar 

  97. Learn DB, Beasley DG, Giddens LD et al. Minimum doses of ultraviolet radiation required to induce murine skin edema and immunosuppression are different and depend on the ultraviolet emission spectrum of the source. Photochem Photobiol 1995; 62:1066–1075.

    Article  PubMed  CAS  Google Scholar 

  98. Wolf P, Kripke ML. Sunscreens and immunosuppression. J Invest Dermatol 1996; 106:1152–1153.

    Article  PubMed  CAS  Google Scholar 

  99. Mommas AM, Van Praag MCG, Bavinck JNB et al. Analysis of the protective effect of topical sunscreens on the UVB-radiation-induced suppression of the mixed-lymphocyte reaction. J Invest Dermatol 1990; 95:313–316.

    Article  Google Scholar 

  100. Van Praag MCG, Out-Luyting C, Claas FHJ et al. Effect of topical sunscreens on the UV-radiation-induced suppression of the alloactivating capacity in human skin in vivo. J Invest Dermatol 1991; 97:629–633.

    Article  PubMed  Google Scholar 

  101. Edwards EKJ, Edwards EKS, Frank BL et al. The effect of an ultraprotective sunscreen on Langerhans cell alteration induced by ultraviolet light in human skin. Int J Dermatol 1986; 25:327–329.

    Article  PubMed  Google Scholar 

  102. Elmets CA, Vargas A, Oresajo C. Photoprotective effects of sunscreens in cosmetics on sunburn and Langerhans cell photodamage. Photodermatol Photoimmunol Photomed 1992; 9:113–120.

    PubMed  CAS  Google Scholar 

  103. Whitemore SE, Morison WL. Prevention of UVB-induced immunosuppression in humans by a high sun protection factor sunscreen. Arch Dermatol 1995; 131:1128–1133.

    Article  Google Scholar 

  104. LeVee G, Oberheiman JL, Cowell K et al. Effect of sunscreen on human immunosuppression by simulated solar radiation. J Invest Dermatol 1995; 104:600 (abstr.).

    Google Scholar 

  105. Krien PM, Moyal D. Sunscreens with broad-spectrum absorption decrease the trans to cis photoisomerization of urocanic acid in the human stratum corneum after multiple UV light exposures. Photochem Photobiol 1994; 60:280–287.

    Article  PubMed  CAS  Google Scholar 

  106. Ley RD, Applegate LA. Ultraviolet radiation-induced histopathologic changes in the skin of the marsupial Monodelphis domestica. II. Quantitative studies of the photoreactivation of induced hyperplasia and sunburn cell formation. J Invest Dermatol 1985; 85:365–367.

    Article  PubMed  CAS  Google Scholar 

  107. De Rijcke S, Heenen M. Decrease of ultraviolet-induced DNA injury in human skin by p-aminobenzoic acid esters. Dermatologica 1989; 179:196–199.

    Article  PubMed  Google Scholar 

  108. Lowe NJ, Breedings J. Evaluation of sunscreen protection by measurement of epidermal DNA synthesis. J Invest Dermatol 1980; 174:181–182.

    Article  Google Scholar 

  109. Van Prag MC, Roza L, Boom BW et al. Determination of the photoprotective efficacy of a topical sunscreen against UVB-induced DNA damage in human epidermis. J Photochem Photobiol B 1993; 19:129–134.

    Article  Google Scholar 

  110. Freeman S, Ley RD, Ley KD. Sunscreen protection against UV-induced pyrimidine dimers in DNA of human skin in situ. Photo-dermatol 1988; 5:243–247.

    CAS  Google Scholar 

  111. Hodges NDM, Moss SH, Davies DJG. The sensitizing effect of a sunscreen agent, p-aminobenzoic acid, on near UV-induced damage in a repair deficient strain of Escherichia coli. Photochem Photobiol 1977; 26:493–498.

    Article  PubMed  CAS  Google Scholar 

  112. Knowland J, McKenzie EA, McHugh PJ et al. Sunlight-induced mutagenicity of a common sunscreen ingredient. FEBS Lett 1993; 324:309–313.

    Article  PubMed  CAS  Google Scholar 

  113. Shimoi K, Nakamura Y, Noro T et al. Methyl cinnamate derivatives enhance UV-induced mutagenesis due to the inhibition of DNA excision repair in Escherichia coli B/r. Mutat Res 1985; 146:15–22.

    Article  PubMed  CAS  Google Scholar 

  114. Sutherland BM. P-aminobenzoic acid sunlamp sensitization of pyrimidine dimer formation and transformation in human cells. Photochem Photobiol 1982; 36:95–97.

    Article  PubMed  CAS  Google Scholar 

  115. Sutherland JC, Griffin KP. P-Aminobenzoic acid can sensitize the formation of pyrimidine dimers in DNA: direct chemical evidence. Photochem Photobiol 1984; 40:391–394.

    Article  PubMed  CAS  Google Scholar 

  116. Long SD, Little JB. Sunscreen agents induce DNA repair activity in mouse embryo fibroblasts. J Environ Pathol Toxicol Oncol 1984; 5:193–200.

    PubMed  CAS  Google Scholar 

  117. Hruza LL, Pentland AP. Mechanisms of UV-induced inflammation. J Invest Dermatol 1993; 100(suppl):35–41.

    Article  Google Scholar 

  118. Kligman LH, Akin FJ, Kligman AM. The contributions of UVA and UVB to connective tissue damage in hairless mice. J Invest Dermatol 1985; 84:272–276.

    Article  PubMed  CAS  Google Scholar 

  119. Sterenborg HJCM, Van der Leun JC. Tumorigenesis by a long wavelength UV-A source. Photochem Photobiol 1990; 51:325–330.

    Article  PubMed  CAS  Google Scholar 

  120. Autier P, Dore JF, Lejeune F et al. Cutaneous malignant melanoma and exposure to sunlamps or sunbeds: An EORTC multicenter case-control study in Belgium, France and Germany. Int J Cancer 1995; 58:809–813.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wolf, P., Kripke, M.L. (1997). Immune Aspects of Sunscreens. In: Gasparro, F.P. (eds) Sunscreen Photobiology: Molecular, Cellular and Physiological Aspects. Biotechnology Intelligence Unit. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-10135-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-10135-3_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-10137-7

  • Online ISBN: 978-3-662-10135-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics