Skip to main content

Stoffaustausch an Membranen

  • Chapter
Membranverfahren

Part of the book series: VDI-Buch ((CHEMTECH))

  • 871 Accesses

Zusammenfassung

Wie schon bei der Diskussion der Triebkraft angeklungen ist (Kap. 1, Membranprozesse — Triebkräfte und Transportwiderstände), kann die Leistung der Membranverfahren unter Umständen erheblich überschätzt werden, wenn nur der Stofftransport in der aktiven Membranschicht in Betracht gezogen wird.

The erratum of this chapter is available at http://dx.doi.org/10.1007/978-3-662-08653-7_17

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Bird RB, Stewart WE, Lightfoot EN (1960) Transport Phenomena. John Wiley and Sons, New York

    Google Scholar 

  2. Brotz W (1954) Über die Vorausberechnung der Absorptionsgeschwindigkeit von Gasen in strömenden Flüssigkeiten. Chem Eng Technol 26: 470

    CAS  Google Scholar 

  3. Cabbasud C, Labrorie S, Durand-Bourlier L, Laine J M (2001) Air sparging in ultrafiltration hollow fibers: relationship between flux enhancement, cake characteristics and hydrodynamic parameters. J Membr Sc 181: 57–69

    Article  Google Scholar 

  4. Chang S, Fane AG (2000) Filtration of biomass with axial inter-fiber upward slug flow: performance and mechanisms. J Membrane Sc 180: 57–68

    Article  CAS  Google Scholar 

  5. Da Costa AR, Fane AG, Wiley DE (1994) Spacer characterization and pressure drop modelling in spacer-filled channels for ultrafiltration. J Membr Sc 87: 79–98

    Article  Google Scholar 

  6. Dytnerski YI (1984) Concentration Polarization in Membrane Separations. Department of Chemical Engineering, Mendeleer Institute of Chemical Technology, 9 Musskaya sg., Moscow A- 47

    Google Scholar 

  7. Fernandez RC, Semiat R, Dukler AE (1983) Hydrodynamic model for gas-liquid slug flow in vertical tubes, AIChE J 29 (6): 981–989

    Article  Google Scholar 

  8. Fuller EN, Shettler PD, Giddings JC (1966) Ind Eng Chem 58: 18

    Article  CAS  Google Scholar 

  9. Gruber R (2001) Radial Mass Transfer Enhancement in Bubble-Train Flow. Dissertation, RWTH Aachen

    Google Scholar 

  10. Isaacson MS, Sonin AA (1976) Sherwood Number and Friction Factor Correlations for Electrodialysis Systems with Application to Process Optimization. Ind Eng Chem Process Des Develop 15 (2)

    Google Scholar 

  11. Kay JM, Nedderman RM (1985) Fluid Mechanics and Transfer Processes: Chapter 19 Two phase flow. Cambridge University Press

    Google Scholar 

  12. Kimura S, Sourirajan S (1968) Concentration Polarization Effects in Reverse Osmosis Using Porous Cellulose Acetate Membranes. Ind Eng Chem Process Des Develop 7 (1): 42

    Article  Google Scholar 

  13. Klatt S (1993) Zum Einsatz der Pervaporation im Umfeld der chemischen Industrie. Dissertation, RWTH Aachen

    Google Scholar 

  14. Klinkhammer B, Melin T (2000) Inorganic Membrane Module Design: Modelling of Fluid Dymnamics Proceedings of ICIM-6, Montpellier

    Google Scholar 

  15. Kortenbusch M (1990) Zum Stofftransport bei der deckschichtbildenden Querstromfiltration kolloidaler Suspensionen. Dissertation, RWTH Aachen

    Google Scholar 

  16. Linton WH, Sherwood TK (1950) Chem Eng Progr 46: 258

    CAS  Google Scholar 

  17. Mulder M (1998) Basic Principles of Membrane Technology, 2nd edn Dordrechts

    Google Scholar 

  18. Psaume R, Aptel P, Aurelle Y, Mora YC, Bersillion JL (1988) Pervaporation: Importance of Concentration Polarization in the Extraction of Trace Organics from Water. J Membr Sc 36: 373

    Google Scholar 

  19. Rautenbach R, Albrecht R (1980) Separation of Organic Binary Mixtures by Pervaporation. J Membr Sci 7: 203–223

    Article  CAS  Google Scholar 

  20. Schlichting H (1982) Grenzschicht-Theorie. 8. Auflage, Friedrich Riegels, Karlsruhe

    Google Scholar 

  21. Schock G, Miguel A (1987) Mass Transfer and Pressure Loss in Spiral Wound Modules. Desalination 64: 339–352

    Article  CAS  Google Scholar 

  22. Sherwood TK, Pigford RL, Wilke CR (1975) Mass Transfer. McGraw-Hill Chemical Engineering Series

    Google Scholar 

  23. Sieder EN, Tate GE (1936) Heat Transfer and Pressure Drop of Liquids in Tubes. Ind Eng Chem 28: 1429

    Article  CAS  Google Scholar 

  24. Sommer S, Klinkhammer B, Melin T (2002) Integrated System Design for Dewatering of Solvents with Microporous Silica Membranes. Desalination 149: 15–21

    Article  CAS  Google Scholar 

  25. Struck A (1998) Untersuchung und Optimierung von Hohlfasermodulen für die Stickstoffanreicherung durch Gaspermeation. Dissertation, RWTH Aachen

    Google Scholar 

  26. Taha T, Cui Z F (2001) CFD modelling of gas-sparged ultrafiltration in tubular membranes. J Membr Sc 210: 13–27

    Article  Google Scholar 

  27. Welsch K (1992) Gaspermeation - Membranwerkstoffe, Stofftransport und Anwendungsbeispiele. Dissertation, RWTH Aachen

    Google Scholar 

  28. Wilcox DC (1993) Turbulence Modeling for CFD. DCW Industries Inc. La Canada, California

    Google Scholar 

  29. Wilke C R, Chang P (1955) AIChE J 1: 264

    Article  CAS  Google Scholar 

  30. Winograd A, Solan M, Toreau (1975) Mass Transfer in Narrow Chanels in the Presence of Turbulence Promoters. Desalination 13: 171

    Google Scholar 

  31. VDI-Wärmeatlas (2000) 8. Auflage, Abschnitt G, VDI-Verlag, Düsseldorf

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Melin, T., Rautenbach, R. (2004). Stoffaustausch an Membranen. In: Membranverfahren. VDI-Buch. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-08653-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-08653-7_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-08654-4

  • Online ISBN: 978-3-662-08653-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics