Skip to main content

Mechanismen der Translationskontrolle in Eukaryonten

  • Chapter
Grundlagen der Molekularen Medizin

Zusammenfassung

Das Ribosom ist eine komplexe, biologische Maschine, die den genetischen Kode der mRNA in Protein übersetzt. Dieser mehrstufige Prozess wird als Translation bezeichnet und ist ein essenzieller und vielfach regulierter Schritt in der Genexpression. Die Translation kann durch physiologische und pathophysiologische Faktoren beeinflusst werden.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Alderete JP, Jarrahian S, Geballe AP (1999) Translational effects of mutations and polymorphisms in a repressive upstream open reading frame of the human cytomegalovirus UL4 gene. J Virol 73: 8330–8337

    PubMed  CAS  Google Scholar 

  • Anthony B, Carter P, De Benedetti A (1996) Overexpression of the protooncogene-translation factor eIF4E in breast carcinoma cell lines. Int J Cancer 65: 858–863

    Article  PubMed  CAS  Google Scholar 

  • Bachmann F, Bänzinger R, Burger MM (1997) Cloning of a novel protein overexpressed in human mammary carcinoma. Cancer Res 57: 988–994

    PubMed  CAS  Google Scholar 

  • Barber GN, Thompson S, Lee TG et al. (1994) The 58-kilodalton inhibitor of the interferon induced ds-RNA activated protein kinase is a tetratricopeptide repeat protein with oncogenic properties. Proc Natl Acad Sci USA 91: 4278–4282

    Article  PubMed  CAS  Google Scholar 

  • Barker DD, Wang C, Moore J, Dickinson LK, Lehmann R (1992) Pumilio is essential for function but not for distribution of the Drosophila abdominal determinant Nanos. Genes Dev 6: 2312–2326

    Article  PubMed  CAS  Google Scholar 

  • Barton MK, Schedl TB, Kimble J (1987) Gain-of-function mutations of fem-3, a sex-determination gene in Caenorhabditis elegans. Genetics 115: 107–119

    PubMed  CAS  Google Scholar 

  • Beaumont C, Leneuve P, Devaux I et al. (1995) Mutation in the iron responsive element of the L ferritin mRNA in a family with dominant hyperferritinaemia and cataract. Nat Genet 11: 444–446

    Article  PubMed  CAS  Google Scholar 

  • Belsham GJ, Jackson RJ (2000) Translation initiation on picornavirus RNA. In: Sonenberg N, Hershey JBW, Mathews MB (eds) Translational control of gene expression. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp 869–900

    Google Scholar 

  • Bergsten SE, Gavis ER (1999) Role for mRNA localization in translational activation but not spatial restriction of na-nos RNA. Development 126: 659–669

    PubMed  CAS  Google Scholar 

  • Berry MJ (2000) Recoding UGA as selenocystein. In: Sonenberg N, Hershey JBW, Mathews MB (eds) Translational control of gene expression. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp 763–784

    Google Scholar 

  • Berry MJ, Banu L, Larsen PR (1991a) Type I iodothyronine deiodinase is a selenocysteine-containing enzyme. Nature 349: 438–440

    Article  PubMed  CAS  Google Scholar 

  • Berry MJ, Banu L, Chen YY et al. (1991b) Recognition of UGA as a selenocysteine codon in type I deiodinase requires sequences in the 3’ untranslated region. Nature 353: 273–276

    Article  PubMed  CAS  Google Scholar 

  • Berry MJ, Banu L, Harney JW, Larsen PR (1993) Functional characterization of the eukaryotic SECIS elements which direct selenocysteine insertion at UGA codons. EMBO J 12: 3315–3322

    PubMed  CAS  Google Scholar 

  • Binder R, Horowitz JA, Basilion JP, Koeller DM, Klausner RD, Harford JB (1994) Evidence that the pathway of transferrin receptor mRNA degradation involves an endonucleolytic cleavage within the 3’ UTR and does not involve poly(A) tail shortening. EMBO J 13: 1969–1980

    PubMed  CAS  Google Scholar 

  • Bischoff JR, Samuel CE (1989) Mechanism of interferon action. Activation of the human P1/eIF2a protein kinase by individual retrovirus s-class mRNAs: s1 mRNA is a potent activator relative to s4 mRNA. Virology 172: 106–115

    Article  PubMed  CAS  Google Scholar 

  • Borman AM, Kean KM (1997) Intact eukaryotic initiation factor 4G is required for hepatitis A virus internal initiation of translation. Virology 237: 129–136

    Article  PubMed  CAS  Google Scholar 

  • Brass N, Heckel D, Sabin U, Pfreundschuh M, Sybrecht GW, Meese E (1997) Translation initiation factor eIF-4y is encoded by an amplified gene and induces an immune response in squamous lung carcinoma. Hum Mol Genet 6: 33–39

    Article  PubMed  CAS  Google Scholar 

  • Bucher P (1990) Weight matrix descriptions of four eukaryotic RNA polymerase II promoter elements derived from 502 unrelated promoter sequences. J Mol Biol 212: 563578

    Google Scholar 

  • Bushell M, Poncet D, Marissen WE et al. (2000 a) Cleavage of polypeptide chain initiation factor eIF4GI during apoptosis in lymphoma cells: characterisation of an internal fragment generated by caspase-3-mediated cleavage. Cell Death Differ 7: 628–636

    Google Scholar 

  • Bushell M, Wood W, Clemens MJ, Morley SJ (2000b) Changes in integrity and association of eukaryotic protein synthesis initiation factors during apoptosis. Eur J Biochem 267: 1083–1091

    Article  PubMed  CAS  Google Scholar 

  • Cardinali B, Fiore L, Campioni N, De Dominicis A, Pierandrei-Amaldi P (1999) Resistance of ribosomal protein mRNA translation to protein synthesis shutoff induced by poliovirus. J Virol 73: 7070–7076

    PubMed  CAS  Google Scholar 

  • Castagnetti S, Hentze MW, Ephrussi A, Gebauer F (2000) Control of oskar mRNA translation by Bruno in a novel cell-free system from Drosophila ovaries. Development 127: 1063–1068

    PubMed  CAS  Google Scholar 

  • Chang JS, Tan L, Schedl P (1999) The Drosophila CPEB homolog, orb, is required for oskar protein expression in oocytes. Dev Biol 215: 91–106

    Article  PubMed  CAS  Google Scholar 

  • Chen JJ, London IM (1995) Regulation of protein synthesis by heme-regulated eIF2a kinase. Trends Biochem Sci 20: 105–108

    Article  PubMed  CAS  Google Scholar 

  • Colthurst DR, Campbell DG, Proud CG (1987) Structure and regulation of eucaryotic initiation factor eIF-2. Eur J Biochem 166: 357–363

    Article  PubMed  CAS  Google Scholar 

  • Cornelis S, Bruynooghe Y, Denecker G, Van Huffel S, Tinton S, Beyaert R (2000) Identification and characterization of a novel cell cycle-regulated internal ribosome entry site. Mol Cell 5: 597–605

    Article  PubMed  CAS  Google Scholar 

  • Craig D, Howell MT, Gibbs CL, Hunt T, Jackson RJ (1992) Plasmid cDNA-directed protein synthesis in a coupled eukaryotic in vitro transcription-translation system. Nucleic Acids Res 20: 4987–4995

    Article  PubMed  CAS  Google Scholar 

  • Craig AW, Haghighat A, Yu AT, Sonenberg N (1998) Interaction of polyadenylate-binding protein with the eIF4G homologue PAIP enhances translation. Nature 392: 520523

    Google Scholar 

  • Crucs S, Chatterjee S, Gavis ER (2000) Overlapping but distinct RNA elements control repression and activation of nanos translation. Mol Cell 5: 457–467

    Article  PubMed  CAS  Google Scholar 

  • Cuesta R, Laroia G, Schneider RJ (2000a) Chaperone hsp27 inhibits translation during heat shock by binding eIF4G and facilitating dissociation of cap-initiation complexes. Gen & Dev 14: 1460–1470

    CAS  Google Scholar 

  • Cuesta R, Xi Q, Schneider RJ (2000 b) Adenovirus-specific translation by displacement of kinase Mnkl from cap-initiation complex eIF4F. EMBO J 19: 3465–3474

    Google Scholar 

  • Dahanukar A, Walker JA, Wharton RP (1999) Smaug, a novel RNA-binding protein that operates a translational switch in Drosophila. Mol Cell 4: 209–218

    Article  PubMed  CAS  Google Scholar 

  • De Benedetti A, Joshi B, Graff JR, Zimmer SG (1994) CHO cells transformed by the initiation factor 4 E display increased c-myc expression but require overexpression of Max for tumorigenicity. Mol Cell Differ 2: 347–371

    Google Scholar 

  • Degnin CR, Schleiss MR, Cao J, Geballe AP (1993) Translational inhibition mediated by a short upstream open reading frame in the human cytomegalovirus gpUL4 (gp48) transcript. J Virol 67: 5514–5521

    PubMed  CAS  Google Scholar 

  • Delepine MNM, Barrett T, Golamaully M, Lathrop GM, Julier C (2000) EIF2AK3, encoding translation initiation factor 2-alpha kinase 3, is mutated in patients with Wolcott-Rallison syndrome. Nat Genet 25: 406–409

    Article  PubMed  CAS  Google Scholar 

  • Dever TE, Chen JJ, Barber GN et al. (1993) Mammalian elf-2a kinases functionally substitute for GCN2 in the GCN4 translational control mechanism in yeast. Proc Natl Acad Sci USA 90: 4616–4620

    Article  PubMed  CAS  Google Scholar 

  • Doniach T (1986) Activity of the sex-determining gene tra-2 is modulated to allow spermatogenesis in the C. elegans hermaphrodite. Genetics 114: 53–76

    PubMed  CAS  Google Scholar 

  • Donze O, Jagus R, Koromilas AE, Hershey JW, Sonenberg N (1995) Abrogation of translation initiation factor eIF-2 phosphorylation causes malignant transformation of NIH 3T3 cells expression. EMBO J 14: 3828–3834

    PubMed  CAS  Google Scholar 

  • Dostie J, Ferraiuolo M, Pause A, Adam SA, Sonenberg N (2000) A novel shuttling protein, 4E-T, mediates the nuclear import of the mRNA 5’ cap-binding protein, eIF4E. EMBO J 19: 3142–3156

    Article  PubMed  CAS  Google Scholar 

  • Duncan R, Hershey JW (1989) Protein synthesis and protein phosphorylation during heat stress, recovery, and adaption. J Cell Biol 109: 1467–1481

    Article  PubMed  CAS  Google Scholar 

  • Duncan R, Milburn SC, Hershey JWB (1987) Regulated phosphorylation and low abundance of HeLa cell initiation factor eIF-4F suggests a role in translational control. J Biol Chem 262: 380–388

    PubMed  CAS  Google Scholar 

  • Eberle J, Krasagakis K, Orfanos CE (1997) Translation initiation factor eIF-4AI mRNA is consistently overexpressed in human melanoma cells in vitro. Int J Cancer 71: 396401

    Google Scholar 

  • Ephrussi A, Lehmann R (1992) Induction of germ cell formation by oskar. Nature 358: 387–392

    Article  PubMed  CAS  Google Scholar 

  • Ephrussi A, Dickinson LK, Lehmann R (1991) Oskar organizes the germ plasm and directs localization of the posterior determinant nanos. Cell 66: 37–50

    Article  PubMed  CAS  Google Scholar 

  • Farrell PJ, Balkow K, Hunt T, Jackson RJ, Trachsel H (1977) Phosphorylation of initiation factor eIF-2 and the control of reticulocyte protein synthesis. Cell 11: 187–200

    Article  PubMed  CAS  Google Scholar 

  • Feigenblum D, Schneider RJ (1996) Cap-binding protein (eukaryotic initiation factor 4 E) and 4E-inactivating protein BP-1 independently regulate cap-dependent translation. Mol Cell Biol 16: 5450–5457

    PubMed  CAS  Google Scholar 

  • Fox CA, Sheets MD, Wickens MP (1989) Poly(A) addition during maturation of frog oocytes: distinct nuclear and cytoplasmic activities and regulation by the sequence UUUUUAU. Genes Dev 3: 2151–2162

    Article  PubMed  CAS  Google Scholar 

  • Futterer J, Kiss-Laszlo Z, Hohn T (1993) Nonlinear ribosome migration on cauliflower mosaic virus 35 S RNA. Cell 73: 789–802

    Article  PubMed  CAS  Google Scholar 

  • Galabru J, Hovanessia A (1987) Autophosphorylation of the protein kinase dependent double-stranded RNA. J Biol Chem 262:15 538–15 544

    Google Scholar 

  • Gallegos M, Ahringer J, Crittenden S, Kimble J (1998) Repression by the 3’ UTR of fem-3, a sex-determining gene, relies on a ubiquitous mog-dependent control in Caenorhabditis elegans. EMBO J 17: 6337–6347

    Article  PubMed  CAS  Google Scholar 

  • Gallie DR, Lewis NJ, Marzluff WF (1996) The histone 3’-terminal stem-loop is necessary for translation in Chinese hamster ovary cells. Nucleic Acids Res 24: 1954–1962

    Article  PubMed  CAS  Google Scholar 

  • Gavis ER, Lunsford L, Bergsten SE, Lehmann R (1996) A conserved 90 nucleotide element mediates translational repression of nanos RNA. Development 122: 2791–800

    PubMed  CAS  Google Scholar 

  • Geballe AP, Sachs MS (2000) Translational control by upstream open reading frames. In: Sonenberg N, Hershey JBW, Mathews MB (eds) Translational control of gene expression. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp 595–614

    Google Scholar 

  • Gingras A-C, Svitkin Y, Belsham GJ, Pause A, Sonenberg N (1996) Activation of the translational suppressor 4E-BP1 following infection with encephalomyocarditis virus and poliovirus. Proc Natl Acad Sci USA 93: 5578–5583

    Article  PubMed  CAS  Google Scholar 

  • Gingras A-C, Raught B, Sonenberg N (1999) eIF4 initiation factors: effectors of mRNA recruitment to ribosomes and regulators of translation. Annu Rev Biochem 68: 913–963

    Google Scholar 

  • Girelli D, Corrocher R, Bisceglia L et al. (1995) Molecular basis for the recently described hereditary hyperferritine- mia-cataract syndrome: a mutation in the iron-responsive element of ferritin L-subunit gene. Blood 86: 4050–4053

    PubMed  CAS  Google Scholar 

  • Goodwin EB, Okkema PG, Evans TC, Kimble J (1993) Translational regulation of tra-2 by its 3 untranslated region controls sexual identity in C. elegans. Cell 75: 329–339

    Article  PubMed  CAS  Google Scholar 

  • Goodwin EB, Hofstra K, Hurney CA, Mango S, Kimble J (1997) A genetic pathway for regulation of tra-2 translation. Development 124: 749–758

    PubMed  CAS  Google Scholar 

  • Goossen B, Hentze MW (1992) Position is the critical determinant for function of iron-responsive elements as translational regulators. Mol Cell Biol 12: 1959–1966

    PubMed  CAS  Google Scholar 

  • Gradi A, Svitkin YV, Imataka H, Sonenberg N (1998) Proteolysis of human eukaryotic translation initiation factor eIF4GII, but not eIF4GI, coincides with the shutoff of host protein synthesis after poliovirus infection. Proc Natl Acad Sci USA 95: 11089–11094

    Article  PubMed  CAS  Google Scholar 

  • Grant AG, Flomen RM, Tizard ML, Grant DA (1992) Differential screening of a human pancreatic adenocarcinoma lambd gtl 1 expression library has identified increased transcription of elongation factor EF-1 alpha in tumor cells. Int J Cancer 50: 740–745

    Article  PubMed  CAS  Google Scholar 

  • Guerra-Peraza O, Tapia M de, Hohn T, Hemmings-Mieszczak M (2000) Interaction of the cauliflower mosaic virus coat protein with the pregenomic RNA leader. J Virol 74: 2067–2072

    Article  PubMed  CAS  Google Scholar 

  • Gunkel N, Yano T, Markussen FH, Olsen LC, Ephrussi A (1998) Localization-dependent translation requires a functional interaction between the 5’ and 3’ ends of oskar mRNA. Genes Dev 12: 1652–1664

    Article  PubMed  CAS  Google Scholar 

  • Hake LE, Richter JD (1994) CPEB is a specificity factor that mediates cytoplasmic polyadenylation during Xenopus oocyte maturation. Cell 79: 617–627

    Article  PubMed  CAS  Google Scholar 

  • Harding HP, Zhang Y, Ron D (1999) Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature 397: 271–274

    Article  PubMed  CAS  Google Scholar 

  • Harigai M, Miyashita T, Hanada M, Reed JC (1996) A cis-acting element in the BCL-2 gene controls expression through translational mechanisms. Oncogene 12: 13691374

    Google Scholar 

  • Hemmings-Mieszczak M, Hohn T (1999) A stable hairpin preceded by a short open reading frame promotes nonlinear ribosome migration on a synthetic mRNA leader. RNA 5: 1149–1157

    Article  PubMed  CAS  Google Scholar 

  • Hemmings-Mieszczak M, Hohn T, Preiss T (2000) Termination and peptide release at the upstream ORF are required for downstream translation on synthetic shunt-competent mRNA leaders. Mol Cell Biol 20: 6212–6223

    Article  PubMed  CAS  Google Scholar 

  • Henis-Korenblit S, Strumpf NL, Goldstaub D, Kimchi A (2000) A novel form of DAPS protein accumulates in apoptotic cells as a result of caspase cleavage and internal ribosome entry site-mediated translation. Mol Cell Biol 20: 496–506

    Article  PubMed  CAS  Google Scholar 

  • Hentze MW (1997) eIF4G: a multipurpose ribosome adapter? Science 275:500–501

    Google Scholar 

  • Hentze MW, Kulozik AE (1999) A perfect message: RNA sur- veillance and nonsense mediated decay. Cell 96: 307–310

    Google Scholar 

  • Hentze MW, Caughman SW, Rouault TA et al. (1987) Identification of the iron-responsive element for the translational regulation of human ferritin mRNA. Science 238: 1570–1573

    Article  PubMed  CAS  Google Scholar 

  • Hershey JWB, Merrick WC (2000) Pathway and mechanism of initiation of protein synthesis. In: Sonenberg N, Hershey JBW, Mathews MB (eds) Translational control of gene expression. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp 33–88

    Google Scholar 

  • Heys SD, Park KG, McNurlan MA et al. (1991) Measurement of tumor protein synthesis in vivo in human colorectal and breast cancer. Clin Sci 80: 587–593

    PubMed  CAS  Google Scholar 

  • Hill KE, Lloyd RS, Burk RF (1993) Conserved nucleotide sequences in the open reading frame and 3’ untranslated region of selenoprotein P mRNA. Proc Natl Acad Sci USA 90: 537–541

    Article  PubMed  CAS  Google Scholar 

  • Hinnebusch AG (2000) Mechanism and regulation of initiator methionyl-tRNA binding to ribosomes. In: Sonenberg N, Hershey JBW, Mathews MB (eds) Translational control of gene expression. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp 185–245

    Google Scholar 

  • Holcik M, Sonenberg N, Korneluk RG (2000) Internal ribosome initiation of translation and the control of cell death. Trends Genet 16: 469–473

    Article  PubMed  CAS  Google Scholar 

  • Huarte J, Stutz A, O’Connell ML et al. (1992) Transient translational silencing by reversible mRNA deadenylation. Cell 69: 1021–1030

    Article  PubMed  CAS  Google Scholar 

  • Hunt T (1989) On the translational control of suicide in red cell. Trends Biochem Sci 14: 393–394

    Article  PubMed  CAS  Google Scholar 

  • Iizuka N, Najita L, Franzusoff A, Sarnow P (1994) Cap-dependent and cap-independent translation by internal initiation of mRNAs in cell extracts prepared from Saccharomyces cerevisiae. Mol Cell Biol 14: 7322–7330

    PubMed  CAS  Google Scholar 

  • Imataka H, Sonenberg N (1997) Human eukaryotic translation initiation factor 4G (eIF4G) possesses two separate and independent binding sites for eIF4A. Mol Cell Biol 17: 6940–6947

    PubMed  CAS  Google Scholar 

  • Imataka H, Olsen HS, Sonenberg N (1997) A new translational regulator with homology to eukaryotic translation initiation factor 4G. EMBO J 16: 817–825

    Article  PubMed  CAS  Google Scholar 

  • Imataka H, Gradi A, Sonenberg N (1998) A newly identified N-terminal amino acid sequence of human eIF4G binds poly(A)-binding protein and functions in poly(A)-dependent translation. EMBO J 17: 7480–7489

    Article  PubMed  CAS  Google Scholar 

  • Jackson RJ (2000) Comparative View of Initiation Site Selection Mechanisms. In: Sonenberg N, Hershey JBW, Mathews MB (eds) Translational control of gene expression. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp 185–244

    Google Scholar 

  • Jan E, Motzny CK, Graves LE, Goodwin EB (1999) The STAR protein, GLD-1, is a translational regulator of sexual identity in Caenorhabditis elegans. EMBO J 18: 258–269

    Article  PubMed  CAS  Google Scholar 

  • Johannes G, Carter MS, Eisen MB, Brown PO, Sarnow P (1999) Identification of eukaryotic mRNAs that are translated at reduced cap binding complex eIF4F concentrations using a cDNA microarray. Proc Natl Acad Sci USA 96:13 118–13 123

    Google Scholar 

  • Jones AR, Francis R, Schedl T (1996) GLD-1, a cytoplasmic protein essential for oocyte differentiation, shows stage-and sex-specific expression during Caenorhabditis elegans germline development. Dev Biol 180: 165–183

    Article  PubMed  CAS  Google Scholar 

  • Kevil CG, De Benedetti A, Payne DK, Coe LL, Laroux FS, Alexander JS (1996) Translational regulation of vascular permeability factor by eukaryotic initiation factor 4E: implications for tumor angiogenesis. Int J Cancer 65: 785790

    Google Scholar 

  • Kim-Ha J, Kerr K, Macdonald PM (1995) Translational regulation of oskar mRNA by bruno, an ovarian RNA-binding protein, is essential. Cell 81: 403–412

    Article  PubMed  CAS  Google Scholar 

  • Kolupaeva VG, Pestova TV, Hellen CU, Shatsky IN (1998) Translation eukaryotic initiation factor 4G recognizes a specific structural element within the internal ribosome entry site of encephalomyocarditis virus RNA. J Biol Chem 273:18 599–18 604

    Google Scholar 

  • Koromilas AE, Roy S, Barber GN, Katze MG, Sonenberg N (1992) Malignant transformation of a mutant of the IFNinducible dsRNA-dependent protein kinase. Science 257: 1685–1689

    Article  PubMed  CAS  Google Scholar 

  • Kostura M, Mathews MB (1989) Purification and activation of the double-stranded RNA-dependent eIF-2 kinase DAI. Mol Cell Biol 9: 1576–1586

    PubMed  CAS  Google Scholar 

  • Kozak M (1978) How do eucaryotic ribosomes select initiation regions in messenger RNA? Cell 15: 1109–1123

    Article  PubMed  CAS  Google Scholar 

  • Kozak M (1986) Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes. Cell 44: 283–292

    Article  PubMed  CAS  Google Scholar 

  • Kozak M (1991) An analysis of vertebrate mRNA sequences: intimations of translational control. J Cell Biol 115: 887903

    Google Scholar 

  • Kozak M (1999) Initiation of translation in prokaryotes and eukaryotes. Gene 234: 187–208

    Article  PubMed  CAS  Google Scholar 

  • Kraemer B, Crittenden S, Gallegos M et al. (1999) NANOS-3 and FBF proteins physically interact to control the sperm-oocyte switch in Caenorhabditis elegans. Curr Biol 9: 1009–1018

    Article  PubMed  CAS  Google Scholar 

  • Kuge H, Richter JD (1995) Cytoplasmic 3’ poly(A) addition induces 5’ cap ribose methylation: implications for translational control of maternal mRNA. EMBO J 14: 63016310

    Google Scholar 

  • Lamphear BJ, Kirchweger R, Skern T, Rhoads RE (1995) Mapping of functional domains in eukaryotic protein synthesis initiation factor 4G (eIF4G) with picornaviral proteases. J Biol Chem 270: 21975–21983

    Article  PubMed  CAS  Google Scholar 

  • Lawrence JC Jr, Abraham RT (1997) PHAS/4E-BPs as regulators of mRNA translation and cell proliferation. Trends Biochem Sci 22: 345–349

    Article  PubMed  CAS  Google Scholar 

  • Lazaris-Karatzas A, Montine KS, Sonenberg N (1990) Malignant transformation by a eukaryotic initiation factor subunit that binds to mRNA 5’cap. Nature 345: 544–547

    Article  PubMed  CAS  Google Scholar 

  • Lazaris-Karatzas A, Smith MR, Frederickson RM, Jaramillo ML, Sonenberg N (1992) Ras mediates translation initiation factor 4E-induced malignant transformation. Genes Dev 6: 1631–1642

    Article  PubMed  CAS  Google Scholar 

  • Lehmann R, Nusslein-Volhard C (1991) The maternal gene nanos has a central role in posterior pattern formation of the Drosophila embryo. Development 112: 679–691

    PubMed  CAS  Google Scholar 

  • Levi-Strumpf N, Deiss LP, Berissi H, Kimchi A (1997) DAP-5, a novel homolog of eukaryotic translation initiation factor 4G isolated as a putative modulator of gamma interferone-induced programmed cell death. Mol Cell Biol 17: 1615–1625

    Google Scholar 

  • Li BD, Liu L, Dawson M, De Benedetti A (1997) Overexpression of eucaryotic translation initiation factor 4E (eIF4E) in breast carcinoma. Cancer 79: 2385–2390

    Article  PubMed  CAS  Google Scholar 

  • Lie YS, Macdonald PM (1999) Apontic binds the translational repressor Bruno and is implicated in regulation of oskar mRNA translation. Development 126: 1129–1138

    PubMed  CAS  Google Scholar 

  • Lindquist S, Petersen R (1990) Selective translation and degradation of heat-shock messenger RNAs in Drosophila. Enzyme 44: 1–4

    Google Scholar 

  • Lomakin IB, Hellen CU, Pestova TV (2000) Physical association of eukaryotic initiation factor 4G (eIF4G) with eIF4A strongly enhances binding of eIF4G to the internal ribosomal entry site of encephalomyocarditis virus and is required for internal initiation of translation. Mol Cell Biol 20: 6019–6029

    Article  PubMed  CAS  Google Scholar 

  • Macdonald PM (1992) The Drosophila pumilio gene: an unusually long transcription unit and an unusual protein. Development 114: 221–232

    PubMed  CAS  Google Scholar 

  • Macejak DG, Sarnow P (1991) Internal initiation of translation mediated by the 5’ leader of a cellular mRNA. Nature 353: 90–94

    Article  PubMed  CAS  Google Scholar 

  • Mader S, Lee H, Pause A, Sonenberg N (1995) The translation initiation factor eIF-4E binds to a common motif shared by the translation factor eIF-4 gamma and the translational repressors 4E-binding proteins. Mol Cell Biol 15: 4990–4997

    PubMed  CAS  Google Scholar 

  • Maquat LE, Kinniburgh AJ, Rachmilewitz EA, Ross J (1981) Unstable beta-globin mRNA in mRNA-deficient beta thalassemia. Cell 27: 543–553

    Article  PubMed  CAS  Google Scholar 

  • Markussen FH, Breitwieser W, Ephrussi A (1997) Efficient translation and phosphorylation of Oskar require Oskar protein and the RNA helicase Vasa. Cold Spring Harb Symp Quant Biol 62: 13–17

    Article  PubMed  CAS  Google Scholar 

  • Mathews MB, Sonenberg N, Hershey JWB (2000) Origins and principles of translational control. In: Sonenberg N, Hershey JBW, Mathews MB (eds) Translational control of gene expression. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp 1–32

    Google Scholar 

  • McGrew LL, Dworkin-Rastl E, Dworkin MB, Richter JD (1989) Poly(A) elongation during Xenopus oocyte maturation is required for translational recruitment and is mediated by a short sequence element. Genes Dev 3: 803815

    Google Scholar 

  • McKusick VA, Amberger JS (1994) The morbid anatomy of the human genome: chromosomal location of mutations causing disease. J Med Genet 31: 265–279

    Article  PubMed  CAS  Google Scholar 

  • Meisenberg G, Simmons WH (1998) Principles of medical biochemistry. Mosby, St Louis, MO

    Google Scholar 

  • Melefors O, Goossen B, Johansson HE, Stripecke R, Gray NK, Hentze MW (1993) Translational control of 5-aminolevulinate synthase mRNA by iron-responsive elements in erythroid cells. J Biol Chem 268: 5974–5978

    PubMed  Google Scholar 

  • Mendez R, Hake LE, Andersson T, Littlepage LE, Ruderman JV, Richter JD (2000 a) Phosphorylation of CPE binding factor by Eg2 regulates translation of c-mos mRNA. Nature 404: 302–307

    Google Scholar 

  • Mendez R, Murthy KGK, Ryan K, Manley JL, Richter J (2000 b) Phosphorylation of CPEB by Eg2 mediates the recruitment of CPSF into an active cytoplasmic polyadenylation complex. Mol Cell 6: 1253–1259

    Google Scholar 

  • Merrick WC, Nyborg J (2000) The protein biosynthesis elongation cycle. In: Sonenberg N, Hershey JBW, Mathews MB (eds) Translational control of gene expression. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp 89–126

    Google Scholar 

  • Meurs E, Chong K, Galabru J et al. (1990) Molecular cloning and characterization of human double-stranded RNA activated protein kinase induced by interferon. Cell 62: 379390

    Google Scholar 

  • Meyuhas O, Hornstein E (2000) Translational control of TOP mRNAs. In: Sonenberg N, Hershey JBW, Mathews MB (eds) Translational control of gene expression. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp 671–694

    Google Scholar 

  • Minshall N, Walker J, Dale M, Standart N (1999) Dual roles of p82, the clam CPEB homolog, in cytoplasmic polyadenylation and translational masking. RNA 5: 27–38

    Article  PubMed  CAS  Google Scholar 

  • Miyagi Y, Sugiyama A, Asai A, Okazuki T, Kuchino Y, Kerr S (1995) Elevated levels of eukaryotic initiation factor eIF4E mRNA in a broad spektrum of transformed cell lines. Cancer Lett 91: 247–252

    Article  PubMed  CAS  Google Scholar 

  • Mize GJ, Ruan H, Low JJ, Morris DR (1998) The inhibitory upstream open reading frame from mammalian S-adeno- sylmethionine decarboxylase mRNA has a strict sequence specificity in critical positions. J Biol Chem 273: 32 50032 555

    Google Scholar 

  • Morimoto RI (1998) Regulation of the heat shock transcriptional response: cross talk between a family of heat shock factors, molecular chaperones and negative regulators. Genes Dev 12: 3788–3796

    Article  PubMed  CAS  Google Scholar 

  • Morris DR, Geballe AP (2000) Upstream open reading frames as regulators of mRNA translation. Mol Cell Biol 20: 8635–8642

    Article  PubMed  CAS  Google Scholar 

  • Muckenthaler M, Gray NK, Hentze MW (1998) IRP-1 binding to ferritin mRNA prevents the recruitment of the small ribosomal subunit by the cap-binding complex eIF4E Mol Cell 1: 383–388

    Google Scholar 

  • Murata Y, Wharton RP (1995) Binding of pumilio to maternal hunchback mRNA is required for posterior patterning in Drosophila embryos. Cell 80: 747–756

    Article  PubMed  CAS  Google Scholar 

  • Nagy E, Maquat LE (1998) A rule for termination codon position within intron-contaning genes: when nonsense affects RNA abundance. Trends Biochem Sci 23: 198–199

    Article  PubMed  CAS  Google Scholar 

  • Nathan CA, Franklin S, Abreo FW et al. (1997) Expression of eIF4E during head and neck tumorigenesis: possible role in angiogenesis. Laryngoscope 109: 1253–1258

    Article  Google Scholar 

  • Nupponen NN, Porkka K, Kakkola L et al. (1999) Amplification and overexpression of p40 subunit of eukaryotic translation initiation factor 3 in breast and prostate cancer. Am J Pathol 154: 1777–1783

    Article  PubMed  CAS  Google Scholar 

  • Oh B, Hwang S, McLaughlin J, Solter D, Knowles BB (2000) Timely translation during the mouse oocyte-to-embryo transition. Development 127: 3795–3803

    PubMed  CAS  Google Scholar 

  • Ortega LG, McCotter MD, Henry GL, McCormack SJ, Tho-mis DC, Samuel CE (1996) Mechanisms of interferon action: biochemical and genetic evidence for the intermolecular association of the RNA-dependent protein kinase PKR from human cells. Virology 215: 31–39

    Article  PubMed  CAS  Google Scholar 

  • Ostareck DH, Ostareck-Lederer A, Wilm M, Thiele BJ, Mann M, Hentze MW (1997) mRNA silencing during erythroid differentiation: hnRNP K and hnRNP El regulate 15–1ipoxygenase translation from the 3’ end. Cell 89: 597–606

    Google Scholar 

  • Ostareck DH, Ostareck-Lederer A, Shatsky IN, Hentze MW (2001) Lipoxygenase mRNA silencing in erythroid differentiation. The 3’UTR regulatory complex controls 60 S ribosomal subunit joining. Cell 104: 281–290

    Article  PubMed  CAS  Google Scholar 

  • Panniers R, Henshaw EC (1984) Mechanism of inhibition of polypeptide chain initiation in heat shock Ehrlich cells involves reduction of eukaryotic translation initiation factor 4F activity. J Biol Chem 260: 9648–9653

    Google Scholar 

  • Pause A, Belsham GJ, Gingras AC et al. (1994) Insulin-dependent stimulation of protein synthesis by phosphorylation of a regulator of 5’-cap function. Nature 371: 762–767

    Article  PubMed  CAS  Google Scholar 

  • Pe’ery T, Mathews MB (2000) Viral translational strategies and host defense mechanisms. In: Sonenberg N, Hershey JBW, Mathews MB (eds) Translational control of gene expression. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp 371–424

    Google Scholar 

  • Pelham HR, Jackson RJ (1976) An efficient mRNA-dependent translation system from reticulocyte lysates. Eur J Biochem 67: 247–256

    Article  PubMed  CAS  Google Scholar 

  • Pelletier J, Sonenberg N (1988) Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA. Nature 334: 320–325

    Article  PubMed  CAS  Google Scholar 

  • Pestova TV, Hellen CU, Shatsky IN (1996a) Canonical eukaryotic initiation factors determine initiation of translation by internal ribosomal entry. Mol Cell Biol 16: 6859–6869

    PubMed  CAS  Google Scholar 

  • Pestova TV, Shatsky IN, Hellen CU (1996b) Functional dissection of eukaryotic initiation factor 4F: the 4A subunit and the central domain of the 4G subunit are sufficient to mediate internal entry of 43 S preinitiation complexes. Mol Cell Biol 16: 6870–6878

    PubMed  CAS  Google Scholar 

  • Pestova TV, Shatsky IN, Fletcher SP, Jackson RJ, Hellen CU (1998) A prokaryotic-like mode of cytoplasmic eukaryotic ribosome binding to the initiation codon during internal translation initiation of hepatitis C and classical swine fever virus RNAs. Genes Dev 12: 67–83

    Article  PubMed  CAS  Google Scholar 

  • Pestova TV, Lomakin IB, Lee JH, Choi SK, Dever TE, Hellen CUT (2000) The ribosomal subunit joining reaction in eukaryotes requires eIFSB. Nature 403: 332–335

    Article  PubMed  CAS  Google Scholar 

  • Piron M, Vende P, Cohen J, Poncet D (1998) Rotavirus RNA-binding protein NSP3 interacts with eIF4GI and evicts the poly(A) binding protein from eIF4F. EMBO J 17: 5811–5821

    Article  PubMed  CAS  Google Scholar 

  • Polymenis M, Schmidt EV (1997) Coupling of cell division to cell growth by translational control of the G1 cyclin CLN3 in yeast. Genes Dev 19: 2522–2531

    Article  Google Scholar 

  • Preiss T, Hentze MW (1998) Dual function of the messenger RNA cap structure in poly(A)-tail-promoted translation in yeast. Nature 392: 516–520

    Article  PubMed  CAS  Google Scholar 

  • Preiss T, Hentze MW (1999) From factors to mechanisms: translation and translational control in eukaryotes. Curr Opin Genet Dev 9: 515–521

    Article  PubMed  CAS  Google Scholar 

  • Preiss T, Muckenthaler M, Hentze MW (1998) Poly(A)-tailpromoted translation in yeast: implications for translational control. RNA 4: 1321–1331

    Article  PubMed  CAS  Google Scholar 

  • Pyronnet S, Imataka H, Gingras A-C, Fukunaga R, Hunter T, Sonenberg N (1999) Human eukaryotic translation initiation factor 4G (eIF4G) recruits Mnkl to phosphorylate eIF4E. EMBO J 18: 270–279

    Article  PubMed  CAS  Google Scholar 

  • Pyronnet S, Pradayrol L, Sonenberg N (2000) A cell cycle-dependent internal ribosome entry site. Mol Cell 5: 607616

    Google Scholar 

  • Raught B, Gingras A-C, Gygi SP et al. (2000 a) Serum-stimulated, rapamycin-sensitive phosphorylation sites in the eukaryotic translation initiation factor 4GI. EMBO J 19: 434–444

    Google Scholar 

  • Raught B, Gingras A-C, Sonenberg N ( 2000 b) Regulation of ribosomal recruitment in eukaryotes. In: Sonenberg N, Hershey JBW, Mathews MB (eds) Translational control of gene expression. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp 295–370

    Google Scholar 

  • Ron D, Harding HP (2000) PERK and translational control by stress in the endoplasmatic reticulum. In: Sonenberg N, Hershey JBW, Mathews MB (eds) Translational control of gene expression. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp 547–560

    Google Scholar 

  • Rosenwald IB, Lazaris-Karatzas A, Sonenberg N, Schmidt EV (1993a) Elevated levels of cyclin D1 protein in response to increased expression of eukaryotic initiation factor 4A. Mol Cell Biol 13: 7358–7363

    PubMed  CAS  Google Scholar 

  • Rosenwald IB, Rhoads RE, Callanan LD, Isselbacher KJ, Schmidt EV (1993 b) Increased expression of eukaryotic translation initiation factors eIf4E and eIF2a in response to growth induction by c-myc. Proc Natl Acad Sci USA 90: 6175–6178

    Google Scholar 

  • Rousseau D, Kaspar R, Rosenwald IB, Gehrke L, Sonenberg N (1996) Translation initiation of ornithine decarboxylase and nucleocytoplasmic transport of cyclin D1 mRNA are increased in cells overexpressing eukaryotic initiation factor 4E. Proc Natl Acad Sci USA 93: 1065–1070

    Article  PubMed  CAS  Google Scholar 

  • Ryabova LA, Hohn T (2000) Ribosome shunting in the cauliflower mosaic virus 35 S RNA leader is a special case of reinitiation of translation functioning in plant and animal systems. Genes Dev 14: 817–829

    PubMed  CAS  Google Scholar 

  • Samuel CE, Kuhen KL, George CX, Ortega LG, Rende-Fournier R, Tanaka H (1997) The PKR protein kinase–an interferon-inducible regulator of cell growth and differentiation. Int J Hematol 65: 227–237

    Article  PubMed  CAS  Google Scholar 

  • Sarnow P (1989) Translation of glucose-regulated protein 78/ immunoglobulin heavy-chain binding protein mRNA is increased in poliovirus-infected cells at a time when cap-dependent translation of cellular mRNAs is inhibited. Proc Natl Acad Sci USA 86: 5795–5799

    Article  PubMed  CAS  Google Scholar 

  • Schedl T, Kimble J (1988) fog-2, a germ-line-specific sex determination gene required for hermaphrodite spermatogenesis in Caenorhabditis elegans. Genetics 119: 43–61

    Google Scholar 

  • Schewe T, Halangk W, Hiebsch C, Rapoport SM (1975) A lipoxygenase in rabbit reticulocytes which attacks phospholipids and intact mitochondria. FEBS Lett 60: 149–152

    Article  PubMed  CAS  Google Scholar 

  • Schibler U, Kelley DE, Perry RP (1977) Comparison of methylated sequences in messenger RNA and heterogeneous nuclear RNA from mouse L cells. J Mol Biol 115: 695–714

    Article  PubMed  CAS  Google Scholar 

  • Schneider RJ (2000) Translation during heat shock. In: Sonenberg N, Hershey JBW, Mathews MB (eds) Translational control of gene expression. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp 581–593

    Google Scholar 

  • Shantz LM, Pegg AE (1994) Overproduction of ornithine decarboxylase caused by relief of translational repression is associated with neoplastic transformation. Cancer Res 54: 3213–3216

    Google Scholar 

  • Sheets MD, Wu M, Wickens M (1995) Polyadenylation of cmos mRNA as a control point in Xenopus meiotic maturation. Nature 374: 511–516

    Article  PubMed  CAS  Google Scholar 

  • Shi YAJ, Liang J, Hayes SE, Sandusky GE, Stramm LE, Yang NN (1999) Characterization of a mutant pancreatic eIF2alpha kinase, PEK, and co-localization with somatostatin in islet delta cells. J Biol Chem 274: 5723–5730

    Google Scholar 

  • Smibert CA, Wilson JE, Kerr K, Macdonald PM (1996) Smaug protein represses translation of unlocalized nanos mRNA in the Drosophila embryo. Genes Dev 10: 26002609

    Google Scholar 

  • Sonenberg N, Shatkin AJ (1977) Reovirus mRNA can be covalently crosslinked via the 5’ cap to proteins in initiation complexes. Proc Natl Acad Sci USA 74: 4288–4292

    Article  PubMed  CAS  Google Scholar 

  • Sonenberg N, Guertin D, Cleveland D, Trachsel H (1981) Probing the function of the eucaryotic 5’ cap structure by using a monoclonal antibody directed against cap-binding proteins. Cell 27: 563–572

    Article  PubMed  CAS  Google Scholar 

  • Sonenberg N, Hershey JWB, Mathews MB (2000) Translational control of gene expression. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  • Sonoda J, Wharton RP (1999) Recruitment of Nanos to hunchback mRNA by Pumilio. Genes Dev 13: 2704–2712

    Article  PubMed  CAS  Google Scholar 

  • Spirin AS (1966) “Masked” forms of mRNA. Curr Top Dev Biol 1:1–38

    Google Scholar 

  • Stark GR, Kerr IM, Williams BR, Silvermann RH, Schreiber RD (1998) How cells respond to interferons. Annu Rev Biochem 67: 227–264

    Article  PubMed  CAS  Google Scholar 

  • Stebbins-Boaz B, Cao Q, Moor CH de, Mendez R, Richter JD (1999) Maskin is a CPEB-associated factor that transiently interacts with eIF-4E [published erratum appears in Mol Cell 2000 Apr, 5(4):7661. Mol Cell 4: 1017–1027

    Article  PubMed  CAS  Google Scholar 

  • Steel LF, Telly DL, Leonard J, Rice BA, Monks B, Sawicki JA (1996) Elements in the murine c-mos messenger RNA 5’- untranslated region repress translation of downstream coding sequences. Cell Growth Differ 7:1415–1424

    Google Scholar 

  • St Johnston D, Beuchle D, Nusslein-Volhard C (1991) Stau-fen, a gene required to localize maternal RNAs in the Drosophila egg. Cell 66: 51–63

    Article  Google Scholar 

  • Stutz A, Conne B, Huarte J et al. (1998) Masking, unmasking, and regulated polyadenylation cooperate in the translational control of a dormant mRNA in mouse oocytes. Genes Dev 12: 2535–2548

    Article  PubMed  CAS  Google Scholar 

  • Tan AT, Bitterman PB, Sonenberg N, Peterson M, Polunovsky VA (2000) Inhibition of Myc-dependent apoptosis by eukaryotic translation initiation factor 4E requires cyclin Dl. Oncogene 19: 1437–1447

    Article  PubMed  CAS  Google Scholar 

  • Tarun SZ Jr, Sachs AB (1995) A common function for mRNA 5’ and 3’ ends in translation initiation in yeast. Genes Dev 9: 2997–3007

    Article  PubMed  CAS  Google Scholar 

  • Thermann R, Neu-Yilik G, Deters A et al. (1998) Binary specification of nonsense codons by splicing and cytoplasmic translation. EMBO J 17: 3484–3494

    Article  PubMed  CAS  Google Scholar 

  • Thomis DC, Samuel CE (1992) Mechanism of interferon action: autoregulation of RNA dependent P1/eIF-2 alpha protein kinase ( PKR) expression in transfected mammalian cells. Proc Natl Acad Sci USA 89: 10837–10841

    Google Scholar 

  • Thompson SR, Goodwin EB, Wickens M (2000) Rapid deadenylation and poly(A)-dependent translational repression mediated by the Caenorhabditis elegans tra-2 3’ untranslated region in Xenopus embryos. Mol Cell Biol 20: 2129–2137

    Article  PubMed  CAS  Google Scholar 

  • Vaarala MH, Porvari KS, Kyllonen AP, Mustonen MV, Lukkarinen O, Vihko PT (1998) Several genes encoding ribosomal proteins are over-expressed in prostate-cancer cell lines. Int J Cancer 78: 27–32

    Article  PubMed  CAS  Google Scholar 

  • Van Leyen K, Duvoisin RM, Engelhardt H, Wiedmann M (1998) A function for lipoxygenase in programmed organelle degradation. Nature 395: 392–395

    Article  PubMed  Google Scholar 

  • Vende P, Piron M, Castagne N, Poncet D (2000) Efficient translation of rotavirus mRNA requires simultaneous interaction of NSP3 with the eukaryotic translation initiation factor eIF4G and the mRNA 3 end. J Virol 74: 7064–7071

    Article  PubMed  CAS  Google Scholar 

  • Vries RG, Flynn A, Patel JC, Wang X, Denton RM, Proud CG (1997) Heat shock increases the association of binding protein-1 with initiation factor 4E. J Biol Chem 272: 32 779–32 784

    Google Scholar 

  • Walker J, Dale M, Standart N (1996) Unmasking mRNA in clam oocytes: role of phosphorylation of a 3’ UTR masking element-binding protein at fertilization. Dev Biol 173: 292–305

    Article  PubMed  CAS  Google Scholar 

  • Walker J, Minshall N, Hake L, Richter J, Standart N (1999) The clam 3’ UTR masking element-binding protein p82 is a member of the CPEB family. RNA 5: 14–26

    Article  PubMed  CAS  Google Scholar 

  • Wang C, Lehmann R (1991) Nanos is the localized posterior determinant in Drosophila. Cell 66: 637–647

    Article  PubMed  CAS  Google Scholar 

  • Wang ZF, Ingledue TC, Dominski Z, Sanchez R, Marzluff WF (1999) Two Xenopus proteins that bind the 3’ end of histone mRNA: implications for translational control of histone synthesis during oogenesis. Mol Cell Biol 19: 835845

    Google Scholar 

  • Welch EM, Wang W, Peitz SW (2000) Translation termination: it’s not the end of the story. In: Sonenberg N, Hershey JBW, Mathews MB (eds) Translational control of gene expression. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp 467–486

    Google Scholar 

  • Wells SE, Hillner PE, Vale RD, Sachs AB (1998) Circularization of mRNA by eukaryotic translation initiation factors. Mol Cell 2: 135–140

    Article  PubMed  CAS  Google Scholar 

  • Wickens M, Stephenson P (1984) Role of the conserved AAUAAA sequence: four AAUAAA point mutants prevent messenger RNA 3’ end formation. Science 226: 1045–1051

    Article  PubMed  CAS  Google Scholar 

  • Wickens M, Goodwin EB, Kimble J, Strickland S, Hentze MW (2000) Translational control of developmental decisions. In: Sonenberg N, Hershey JBW, Mathews MB (eds) Translational control of gene expression. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp 295–370

    Google Scholar 

  • Wilson JE, Connell JE, Macdonald PM (1996) Aubergine enhances oskar translation in the Drosophila ovary. Development 122: 1631–1639

    PubMed  CAS  Google Scholar 

  • Wu M, Kaufmann RJ (1997) A model for the double-stranded RNA (dsRNA)-dependent dimerization and activation of the dsRNA-activated protein kinase PKR. J Biol Chem 272: 1291–1296

    Article  PubMed  CAS  Google Scholar 

  • Yamanaka S, Poksay KS, Arnold KS, Innerarity TL (1997) A novel translational repressor mRNA is edited extensively in livers containing tumors caused by the transgene expression of the apoB mRNA-editing enzyme. Genes Dev 11: 321–323

    Article  PubMed  CAS  Google Scholar 

  • Yueh A, Schneider R (2000) Translation by ribosome shunting on adenovirus and hsp70 mRNAs facilitated by complementarity to 18 S rRNA. Genes Dev 14: 414–421

    PubMed  CAS  Google Scholar 

  • Zamecnik PC (1979) Historical aspects of protein synthesis. Ann NY Acad Sci 325: 268–301

    Article  PubMed  CAS  Google Scholar 

  • Zapata JM, Maroto FG, Sierra JM (1991) Inactivation of mRNA cap-binding protein complex in Drosophila melanogaster embryos under heat shock. J Biol Chem 266:16 007–16 014

    Google Scholar 

  • Zhang B, Gallegos M, Puoti A et al. (1997) A conserved RNA-binding protein that regulates sexual fates in the C. elegans hermaphrodite germ line. Nature 390: 477–484

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Muckenthaler, M., Preiss, T. (2003). Mechanismen der Translationskontrolle in Eukaryonten. In: Ganten, D., Ruckpaul, K. (eds) Grundlagen der Molekularen Medizin. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-07588-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-07588-3_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-07589-0

  • Online ISBN: 978-3-662-07588-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics