Skip to main content

Spatial Patterning in Explicitly Cellular Environments: Activity-Regulated Juxtacrine Signalling

  • Chapter
  • 229 Accesses

Part of the book series: Natural Computing Series ((NCS))

Abstract

Pattern formation in multicellular organisms generally occurs within populations of cells that are in close contact. It is thus natural and important to consider models of pattern formation that are constructed using a spatially discrete cellular structure. Here, the particular case of pattern formation in cellular systems that depends on contact-dependent (juxtacrine) signalling between cells is discussed. Spatial and spatio-temporal patterns can emerge in populations of cells coupled by juxtacrine signalling when the degree of activation of the relevant cell-surface receptors regulates both the pathway of differentiation adopted by the cell and the ability of the cell to participate in further juxtacrine signalling. When this latter condition applies, juxtacrine signalling couples all the cells of a population to form a spatially extended signalling network. Due to the essential nonlinearity of the signalling, such juxtacrine networks can exhibit dynamics that are quite different to those in networks of cells coupled by linear diffusion. Two simple cases are discussed here, in which receptor activation either diminishes or enhances the signalling ability of a cell. In the former case, signalling can act to amplify small differences between cells via a feedback-mediated competition, leading to stable spatially periodic patterns (a process known as lateral inhibition). In the latter case, signalling can result in a range of different patterns, including stable spatial gradients, propagating fronts, and periodic and quasi-periodic spatial patterns. These quite simple examples serve to illustrate the potential richness of this important class of biological signalling, and provide guidance for the development of more complex models.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fagotto, F. and Gumbiner, B. (1996). Cell contact-dependent signaling. Dev. Biol. 180, 445–454.

    Article  Google Scholar 

  2. Krämer, H., Cagan, R. L. and Zipursky, S. L. (1991). Interaction of bride of sevenless membrane-bound ligand and the sevenless tyrosine-kinase receptor. Nature 352, 207–212.

    Google Scholar 

  3. Monk, N. A. M., Sherratt, J. A. and Owen, M. R. (2000). Spatiotemporal patterning in models of juxtacrine intercellular signalling with feedback, in Mathematical Models for Biological Pattern Formation. (Ed. P. K. Maini and H. G. Othmer ), pp. 165–192, Springer, Berlin Heidelberg New York.

    Google Scholar 

  4. Weinmaster, G. (1998). Notch signaling: direct or what? Curr. Opin. Genetics Dev. 8, 436–442.

    Article  Google Scholar 

  5. Heitzler, P. and Simpson, P. (1991). The choice of cell fate in the epidermis of Drosophila. Cell 64, 1083–1092.

    Article  Google Scholar 

  6. Heitzler, P. and Simpson, P. (1993). Altered epidermal growth factor-like sequences provide evidence for a role of Notch as a receptor in cell fate decisions. Development 117, 1113–1123.

    Google Scholar 

  7. Heitzler, P., Bourois, M., Ruel, L., Carteret, C. and Simpson, P. (1996). Genes of the Enhancer of split and achaete-scute complexes are required for a regulatory loop be-tween Notch and Delta during lateral signalling in Drosophila. Development 122, 161–171.

    Google Scholar 

  8. Simpson, P. (1997). Notch signalling in development: on equivalence groups and asymmetrical developmental potential. Curr. Opin. Genetics Dev. 7, 537–542.

    Article  Google Scholar 

  9. Kumar, V., Bustin, S. A. and McKay, I. A. (1995). Transforming growth factor alpha. Cell Biol. Intl. 19, 373–388.

    Article  Google Scholar 

  10. Massagué, J. (1990). Transforming growth factor-a: a model for membrane-anchored growth factors. J. biol. Chem. 265, 21393–21396.

    Google Scholar 

  11. Clark, A. J. L., Ishii, S., Richert, N., Merlino, G. T. and Pastan, I. (1985). Epidermal growth factor regulates the expression of its own receptor. Proc. Natl. Acad. Sci. USA 82, 8374–8378.

    Article  Google Scholar 

  12. van de Vijver, M. J., Kumar, R. and Mendelsohn, J. (1991). Ligand-induced activation of A431 cell epidermal growth factor receptors occurs primarily by an autocrine pathway that acts upon receptors on the surface rather than internally. J. Biol. Chem. 266, 7503–7508.

    Google Scholar 

  13. Owen, M. R. and Sherratt, J. A. (1998). Mathematical modelling of juxtacrine cell signalling. Math. Biosci. 153, 125–150.

    Article  MATH  Google Scholar 

  14. Owen, M. R., Sherratt, J. A. and Myers, S. R. (1999). How far can a juxtacrine signal travel? Proc. R. Soc. Lond. B 266, 579–585.

    Article  Google Scholar 

  15. Owen, M. R., Sherratt, J. A. and Wearing, H. J. (2000). Lateral induction by juxtacrine signalling is a new mechanism for pattern formation. Dev. Biol. 217, 54–61.

    Google Scholar 

  16. Wearing, H. J. Owen, M. R. and Sherratt, J. A. (2000). Mathematical modelling of juxtacrine patterning. Bull. Math. Biol. 62 293–320.

    Google Scholar 

  17. Collier, J. R., Monk, N. A. M., Maini, P. K. and Lewis, J. H. (1996). Pattern formation by lateral inhibition with feedback: a mathematical model of Delta-Notch intercellular signalling. J. theor. Biol. 183 429–446.

    Google Scholar 

  18. Monk, N. A. M. (1998). Restricted-range gradients and travelling fronts in a model of juxtacrine cell relay. Bull. Math. Biol. 60, 901–918.

    Article  MATH  Google Scholar 

  19. Luthi, P. 0., Chopard, B. Preiss, A. and Ramsden, J. J. (1998). A cellular automaton model for neurogenesis in Drosophila. Physica D 118 151–160.

    Google Scholar 

  20. Ermentrout, G. B. and Edelstein-Keshet, L. (1993). Cellular automata approaches to biological modeling. J. theor. Biol. 160, 97–133.

    Article  Google Scholar 

  21. Othmer, H. G. and Scriven, L. E. (1971). Instability and dynamic pattern in cellular networks. J. theor. Biol. 32, 507–537.

    Article  Google Scholar 

  22. Huppert, S. S., Jacobson, T. L. and Muskavitch, M. A. T. (1997). Feedback regulation is central to Delta-Notch signalling required for Drosophila wing vein morphogenesis. Development 124, 3283–3291.

    Google Scholar 

  23. de Celis, J. F. and Bray, S. (1997). Feedback mechanisms affecting Notch activation at the dorsoventral boundary in the Drosophila wing. Development 124, 3241–3251.

    Google Scholar 

  24. Micchelli, C. A., Rulifson, E. J. and Blair, S. S. (1997). The function and regulation of cut expression on the wing margin of Drosophila: Notch, Wingless and a dominant negative role for Delta and Serrate. Development 124, 1485–1495.

    Google Scholar 

  25. Panin, V. M., Papayannopoulos, V., Wilson, R. and Irvine, K. D. (1997). Fringe modulates Notch-ligand interactions. Nature 387, 908–912.

    Article  Google Scholar 

  26. Christensen, S., Kodoyianni, V., Bosenberg, M., Friedman, L. and Kimble, J. (1996). lag-1, a gene required for lin-12 and glp-1 signaling in Caenorhabditis elegans, is homologous to human CBF1 and Drosophila Su(H). Development 122, 1373–1383.

    Google Scholar 

  27. de Celis, J. F., Bray, S. and Garcia-Bellido, A. (1997). Notch signalling regulates veinlet expression and establishes boundaries between veins and interveins in the Drosophilawing. Development 124 1919–1928.

    Google Scholar 

  28. Wilkinson, H. A., Fitzgerald, K. and Greenwald, I. (1994). Reciprocal changes in expression of the receptor lin-12 and its ligand lag-2 prior to commitment in a C. elegans cell fate decision. Cell 79, 1187–1198.

    Article  Google Scholar 

  29. Eaton, S. (1997). Planar polarization of Drosophila and vertebrate epithelia. Curr. Opin. Cell Biol. 9, 860–866.

    Article  Google Scholar 

  30. Usui, T., Shima, Y., Shimada, Y., Hirano, S., Burgess, R. W., Schwarz, T. L., Takeichi, M. and Uemura, T. (1999). Flamingo, a seven-pass transmembrane cadherin, regulates planar cell polarity under the control of frizzled. Cell 98, 585–595.

    Article  Google Scholar 

  31. Strutt, D. I. (2001). Asymmetric localization of frizzled and the establishment of cell polarity in the Drosophila. Mol. Cell. 7, 367–375.

    Article  Google Scholar 

  32. Goodyear, R. and Richardson, G. (1997). Pattern formation in the basilar papilla: evidence for cell rearrangement. J. Neurosci. 17, 6289–6301.

    Google Scholar 

  33. Salazar-Ciudad, I., Garcia-Fernandez, J. and Soli, R. (2000). Gene networks capable of pattern formation: from induction to reaction-diffusion. J. Theor. Biol. 205, 587–603.

    Article  Google Scholar 

  34. Page, K. M., Maini, P. K., Monk, N. A. M. and Stern, C. D. (2001). A model of primitive streak initiation in the chick embryo. J. Theor. Biol. 208, 419–438.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Monk, N. (2004). Spatial Patterning in Explicitly Cellular Environments: Activity-Regulated Juxtacrine Signalling. In: Paton, R., Bolouri, H., Holcombe, M., Parish, J.H., Tateson, R. (eds) Computation in Cells and Tissues. Natural Computing Series. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-06369-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-06369-9_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05569-0

  • Online ISBN: 978-3-662-06369-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics