Skip to main content

Calcareous nannoplankton evolution and diversity through time

  • Chapter
Book cover Coccolithophores

Summary

Planktic microfossils arguably provide the most complete (stratigraphic and taxonomic) record of biodiversity of any group of organisms. The phytoplankton record is of particular significance as it most likely tracks global changes in the climate-ocean system and, in turn, influenced biodiversity and productivity of higher trophic levels of the biosphere. Coccolithophores and associated calcareous nannoplankton first appear in the fossil record in Upper Triassic sediments (~225 Ma) and, despite significant extinctions at the Triassic/Jurassic boundary, the Mesozoic diversity record is one of relatively uniform increase punctuated by short periods of turnover and decline. Rates of speciation that are significantly above background were restricted to the Late Triassic, Early Jurassic and Tithonian-Berriasian intervals. Enhanced rates of extinction occurred at the Triassic/Jurassic, Jurassic/Cretaceous and Cretaceous/Tertiary boundaries.

There is no clear correlation between coccolithophore diversity and Mesozoic climate, as it is currently understood, but the dominant trajectory of diversity increase suggests long-term stability and widespread oligotrophy in photic zone environments. The Neocomian and Campanian-Early Maastrichtian intervals of diversity increase are clearly associated with increased numbers of endemic taxa at both low and high latitudes. These intervals have been interpreted as periods of cooling or cooler climates, and greater differentiation of the photic zone environment may have led to the biogeographic partitioning. Notably, none of the mid-Cretaceous Oceanic Anoxic Events are associated with above-background evolutionary rates or significant taxonomic loss or innovation.

Cenozoic nannoplankton diversity patterns are markedly more variable than those of the Mesozoic, and rates of speciation, extinction and turnover are consistently higher. There is also good correlation between diversity and climate trends, with higher diversities associated with warm climates. This is best illustrated by the Paleogene record, where the Cenozoic diversity maximum, at the Paleo cene/Eocene boundary, coincided with climates of extreme warmth, and significant diversity decline tracked climate cooling through the Late Eocene and into the Oligocene. This relationship between climate and coccolithophore diversity is contrary to that observed in the Mesozoic, and suggests different controls on evolution during the two eras. The Cretaceous record suggests that cooling within a greenhouse-mode climate system may have stimulated diversification at all viable latitudes via biogeographic partitioning. In contrast, the Cenozoic data indicates that cooling tended to drive diversity decrease. This may be explained by the greater magnitude and longevity of Cenozoic cooling, in an icehouse-mode climate system, which prevented coccolithophore diversification at higher latitudes where, instead, diatoms became established as the dominant group of phytoplankton.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aubry M-P (1984) Handbook of Cenozoic calcareous nannoplankton, Book 1: Ortholithae (Discoasters). Micropaleontology Press, American Museum of Natural History, New York

    Google Scholar 

  • Aubry M-P (1988) Handbook of Cenozoic calcareous nannoplankton, Book 2: Ortholithae (Holococcoliths, Ceratoliths and others). Micropaleontology Press, American Museum of Natural History, New York

    Google Scholar 

  • Aubry M-P (1989) Handbook of Cenozoic calcareous nannoplankton, Book 3: Ortholithae (Pentaliths, and others), Heliolithae (Fasciculiths, Sphenoliths and others). Micropaleontology Press, American Museum of Natural History, New York

    Google Scholar 

  • Aubry M-P (1990) Handbook of Cenozoic calcareous nannoplankton, Book 4: Heliolithae (Helicoliths, Cribriliths, Lopadoliths and others). Micropaleontology Press, American Museum of Natural History, New York

    Google Scholar 

  • Aubry M-P (1992) Late Paleogene calcareous nannoplankton evolution: a tale of climatic deterioration. In: Prothero DR, Berggren WA (eds) Eocene-Oligocene Climatic and Biotic Evolution, Princeton University Press, pp 272–309

    Google Scholar 

  • Aubry M-P (1998) Early Paleogene calcareous nannoplankton evolution: a tale of climatic amelioration. In: Aubry M-P, Lucas SG, Berggren AW (eds) Late Paleocene-Early Eocene Climatic and Biotic Events in the Marine and Terrestrial Records. Columbia University Press, pp 158–203

    Google Scholar 

  • Aubry M-P (1999) Handbook of Cenozoic calcareous nannoplankton, Book 4: Heliolithae (Zygoliths and Rhabdoliths). Micropaleontology Press, American Museum of Natural History, New York

    Google Scholar 

  • Baumgartner PO (1987) Age and genesis of Tethyan Jurassic radiolarites. Eclogae Geol Helv 80: 831–879

    Google Scholar 

  • Berggren WA, Kent DV, Swisher III CC, Aubry M-P (1995). A revised Cenozoic chronology and chronostratigraphy. In: Berggren WA, Kent DV, Hardenbol J (eds) Geochronology, Time-Scales, and Global Stratigraphie Correlation: Framework for an Historical Geology. SEPM Spec. Publ. 54: 129–212

    Google Scholar 

  • Boersma A, Premoli Silva I (1991) Distribution of Paleogene planktonic foraminifera -analogies with the Recent? Palaeogeogr Palaeocl 83: 29–48

    Article  Google Scholar 

  • Bown PR (1987) Taxonomy, biostratigraphy, and evolution of late Triassic-early Jurassic calcareous nannofossils. Spec Pap Palaeontol 38: 1–118

    Google Scholar 

  • Bown PR (1993) New holococcoliths from the Toarcian-Aalenian (Jurassic) of northern Germany. Senckenbergiana Lethaea 73: 407–419

    Google Scholar 

  • Bown PR (1998a) Calcareous nannofossil biostratigraphy. Kluwer Academic Publishers, pp 1–315

    Book  Google Scholar 

  • Bown PR (1998b) Triassic. In: Bown PR (ed) Calcareous nannofossil biostratigraphy, Kluwer Academic Publishers, pp 29–33

    Chapter  Google Scholar 

  • Bown PR, Young JR (1997) Mesozoic calcareous nannoplankton classification. J Nannoplankton Res 19:21–36

    Google Scholar 

  • Bown PR, Burnett JA, Gallagher LT (1991) Critical events in the evolutionary history of calcareous nannoplankton. Historical Biology 5: 279–290

    Google Scholar 

  • Bown PR, Burnett JA, Gallagher LT (1992) Calcareous nannoplankton evolution. Memorie di Scienze Geologiche XLIII: 1–17

    Google Scholar 

  • Bralower TJ, Arthur MA, Leckie RM, Sliter WV, Allard DJ, Schlanger SO (1994) Timing and paleoceanography of oceanic dysoxia/anoxia in the Late Barremian to Early Ap-tian (Early Cretaceous). Palaios 9: 335–369

    Article  Google Scholar 

  • Burnett JA (1998) Upper Cretaceous. In: Bown PR (ed) Calcareous nannofossil biostratigraphy. Kluwer Academic Publishers, pp 132–199

    Chapter  Google Scholar 

  • Burnett JA, Young JR, Bown PR (2000) Calcareous nannoplankton and global climate change. In: Culver S J, Rawson PF (eds) Biotic Response to Global Change: The last 145 million years. Cambridge University Press, pp 35–50

    Chapter  Google Scholar 

  • Chapman MR, Chepstow-Lusty AJ (1997) Late Pliocene climatic change and the global extinction of the discoasters: an independent assessment using oxygen isotope records. Palaeogeogr Palaeocl 134: 109–125

    Article  Google Scholar 

  • Chepstow-Lusty AJ, Shackleton NJ, Backman J (1992) Upper Pliocene Discoaster abundance variations from the Atlantic, Pacific and Indian Oceans: the significance of productivity pressure at low latitudes. Memorie di Scienze Geologiche XLIV: 357–373

    Google Scholar 

  • Cros L, Kleijne A, Zeltner A, Billard C, Young JR (2000) New examples of holococcolith-heterococcolith combination coccospheres and their implications for coccolithophorid biology. Mar Micropaleontol 39: 1–34

    Article  Google Scholar 

  • Danelian T, Johnson KG (2001) Patterns of biotic change in Middle Jurassic to Early Cretaceous Tethyan radiolaria. Mar Micropaleontol 43: 239–260

    Article  Google Scholar 

  • Erba E (1994) Nannofossils and superplumes: The early Aptian “nannoconid crisis”. Paleoceanography 9: 483–501

    Article  Google Scholar 

  • Frakes LA (1999) Estimating the global thermal state from Cretaceous sea surface and continental temperature data. In: Barrera E, Johnson CC (eds) Evolution of the Cretaceous Ocean-Climate System. Geol Soc Am Spec Pap 332: 49–57

    Chapter  Google Scholar 

  • Frakes LA, Francis JE, Syktus JI (1992) Climate Modes of the Phanerozoic. Cambridge University Press, pp 1–274

    Book  Google Scholar 

  • Gale AS (2000) The Cretaceous World. In: Culver SJ, Rawson PF (eds) Biotic Response to Global Change: The last 145 million years. Cambridge University Press, pp 4–19

    Chapter  Google Scholar 

  • Gale AS, Smith AB, Monks NEA, Young JA, Howard A, Wray DS, Huggett JM (2000) Marine biodiversity through the Late Cenomanian-Early Turonian: palaeoceanographic controls and sequence stratigraphic biases. J Geol Soc London 157: 745–757

    Article  Google Scholar 

  • Gallois RW (1976) Coccolith blooms in the Kimmeridge Clay and the origin of North Sea Oil. Nature 259: 473–475

    Article  Google Scholar 

  • Gallois RW, Medd AW (1979) Coccolith-rich marker bands in the English Kimmeridge Clay. Geol Mag 116: 247–334

    Article  Google Scholar 

  • Gartner S (1996) Calcareous nannofossils at the Cretaceous-Tertiary boundary. In: MacLeod N, Keller G (eds) Cretaceous-Tertiary mass extinctions: biotic and environmental changes. W.W. Norton & Company, pp 27–47

    Google Scholar 

  • Gould SJ, Gilinsky NL, German R (1987) Asymmetry of lineages and the direction of evolutionary time. Science 236: 1437–1441

    Article  Google Scholar 

  • Gradstein FM, Agterberg FP, Ogg JG, Hardenbol J, Van Veen P, Thierry J, Huang Z (1995) A Triassic, Jurassic and Cretaceous time-scale. In: Berggren WA, Kent DV, Hardenbol J(eds.), Geochronology, Time-Scales, and Global Stratigraphie Correlation: Framework for an Historical Geology. SEPM Spec Publ 54: 95–126

    Google Scholar 

  • Hallam A, Wignall PB (1997) Mass extinctions and their aftermath. Oxford University Press, pp 320

    Google Scholar 

  • Hailock P (1987) Fluctuations in the trophic resource continuum: A factor in global diversity cycles? Paleoceanography 2: 457–471

    Article  Google Scholar 

  • Hallock P, Premoli Silva I, Boersma A (1991) Similarities between planktonic and larger foraminiferal evolutionary trends through Paleogene paleoceanographic changes. Palaeogeogr Palaeocl 83: 49–64

    Article  Google Scholar 

  • Haq BU, Hardenbol J, Vail PR (1987) Chronology of Fluctuating Sea Levels Since the Triassic. Science 235: 1156–1167

    Article  Google Scholar 

  • Hesselbo SP, Robinson SA, Surlyk F, Piasecki S (2002) Terrestrial and marine extinction at the Triassic-Jurassic boundary synchronized with major carbon-cycle perturbation: a link to initiation of massive volcanism? Geology 30: 251–254

    Article  Google Scholar 

  • Huber BT (1998) Tropical paradise at the Cretaceous poles? Science 282: 2199–2200

    Article  Google Scholar 

  • Huber BT, Watkins DK (1992) Biogeography of Campanian-Maastrichtian calcareous plankton in the region of the Southern Ocean: paleogeographic and paleoclimatic implications. The Antarctic Paleoenvironment: a perspective on global change. Antarctic Research Series 56: 31–60

    Article  Google Scholar 

  • Janofske D (1992) Calcareous nannofossils of the Alpine Upper Triassic. In: Hamrsmîd B, Young JR (eds) Nannoplankton Research, Vol. 1, Knihovnicka ZPZ, 14a, 1: 87–109

    Google Scholar 

  • Jenkyns HC, Gale AS, Corfield RM (1994) Carbon- and oxygen-isotope stratigraphy of the English Chalk and Italian Scaglia and its palaeoclimatic significance. Geol Mag 131: 1–34

    Article  Google Scholar 

  • Knoll A (1989) Evolution and extinction in the marine realm: some constraints imposed by phytoplankton. Phil Trans R Soc London B 325: 279–290

    Article  Google Scholar 

  • Leckie MR, Bralower TJ, Cashman R (2002) Oceanic anoxic events and plankton evolution: biotic response to tectonic forcing during the mid-Cretaceous. Paleoceanography, 17:1041

    Article  Google Scholar 

  • Lees JA (2002) Calcareous nannofossil biogeography illustrates palaeoclimate change in the late Cretaceous Indian Ocean. Cretaceous Res 23: 537–633

    Article  Google Scholar 

  • Lipps JH (1970) Plankton evolution. Evolution 24: 1–22

    Article  Google Scholar 

  • MacLeod N, Rawson PF, Forey PL, Banner FT, Boudagher-Fadel MK, Bown PR, Burnett JA, Chambers P, Culver S, Evans SE, Jeffery C, Kaminski MA, Lord AR, Milmer AC, Milner AR, Morris N, Owen E, Rosen BR, Smith AB, Taylor PD, Urquhart E, Young JR (1997) The Cretaceous-Tertiary biotic transition. J Geol Soc London 154: 265–292

    Article  Google Scholar 

  • McIntyre A, Bé AWH (1967) Modern Coccolithophoridae of the Atlantic Ocean. I. Placoliths and cyrtoliths. Deep-Sea Res 14: 561–597

    Google Scholar 

  • Medlin LK, Kooistra WHCF, Potter D, Saunders JB, Andersen RA (1997) Phylogenetic relationships of the “golden algae” (haptophytes, heterokont chromophytes) and their plastids. Plant Syst Evol Supplementum 11: 187–219

    Article  Google Scholar 

  • Miller A (2000) Conversations about Phanerozoic global diversity. Paleobiology 26 (4) supplement, Deep Time: Paleobiology’s Perspective, pp 53–73

    Article  Google Scholar 

  • Okada H, Honjo S (1973) The distribution of oceanic coccolithophorids in the Pacific. Deep-Sea Res 20: 355–374

    Google Scholar 

  • Olsen PE, Kent DV, Sues H-D, Koeberl C, Huber H, Montanari A, Rainforth EC, Fowell SJ, Szajna MJ, Hartline BW (2002) Ascent of dinosaurs linked to an iridium anomaly at the Triassic-Jurassic boundary. Science 296: 130–133

    Article  Google Scholar 

  • Perch-Nielsen K (1985a) Mesozoic calcareous nannofossils. In: Bolli HM, Saunders JB, Perch-Nielsen K (eds) Plankton Stratigraphy. Cambridge University Press, pp 329–426

    Google Scholar 

  • Perch-Nielsen K (1985b) Cenozoic calcareous nannofossils. In: Bolli HM, Saunders JB, Perch-Nielsen K (eds) Plankton Stratigraphy. Cambridge University Press, pp 427–554

    Google Scholar 

  • Perch-Nielsen K (1986) Geologic events and the distribution of calcareous nannofossils -some speculations. Bull Cent Rech Elf Aquitaine 10: 421–432

    Google Scholar 

  • Pospichal JJ (1994) Calcareous nannofossils at the K-T boundary, El Kef: No evidence for stepwise, gradual, or sequential extinctions. Geology 22: 99–102

    Article  Google Scholar 

  • Pospichal JJ (1996) Calcareous nannoplankton mass extinction at the Cretaceous/Tertiary boundary: an update. In: Ryder G, Fastovsky D, Gartner S (eds) The Cretaceous-Tertiary event and other catastrophes in Earth history. Geol Soc Am Spec Paper 307: 335–360

    Google Scholar 

  • Pospichal JJ, Wise SW Jr. (1990) Paleocene to Middle Eocene calcareous nannofossils of ODP Sites 689 and 690, Maud Rise, Weddell Sea. Proc Ocean Drill Prog Sci Results 113:613–638

    Google Scholar 

  • Romein AJT (1979) Lineages in early Paleogene calcareous nannoplankton. Utrecht Micropaleontological Bulletins 22: 1–230

    Google Scholar 

  • Roth PH (1986) Mesozoic palaeoceanography of the North Atlantic and Tethys Oceans. In: Summerhayes CP, Shackleton NJ (eds) North Atlantic Palaeoceanography. Geol Soc Spec Pub 21: 299–320

    Google Scholar 

  • Roth PH (1987) Mesozoic calcareous nannofossil evolution: relation to paleoceanographic events. Paleoceanography 6: 601–611

    Article  Google Scholar 

  • Roth PH (1989) Ocean circulation and calcareous nannoplankton evolution during the Jurassic and Cretaceous. Palaeogeogr Palaeocl 74: 111–126

    Article  Google Scholar 

  • Savin SM, Abel L, Barrera E, Hodell D, Keller G, Kennett JP, Killingley J, Murphy M, Vincent E (1985) The evolution of Miocene surface and near-surface marine temperatures: oxygen isotopic evidence. In: Kennett JP (ed) The Miocene Ocean: paleoceanography and biogeography. Geol Soc Am Mem 163: 49–82

    Google Scholar 

  • Sepkowski Jr. JJ (1978) A kinetic model of Phanerozoic taxonomic diversity. I. Analysis of marine orders. Paleobiology 4: 223–251

    Google Scholar 

  • Sheridan RE, Gradstein FM et al. (1983) Init. Repts. DSDP, 76. Washington (US Govt. Printing Office)

    Google Scholar 

  • Siesser WG (1998) Calcareous nannofossil genus Scyphosphaera: structure, taxonomy, biostratigraphy, and phylogeny. Micropaleontology 44: 351–384

    Article  Google Scholar 

  • Smith A (1994) Systematics and the fossil record. Blackwell, 223pp

    Book  Google Scholar 

  • Spencer-Cervato C (1999) The Cenozoic Deep Sea Microfossil Record: Explorations of the DSDP/ODP Sample Set Using the Neptune Database. Palaeontologica Electronica, 2: art. 4

    Google Scholar 

  • Sprengel C, Young JR (2000) First direct documentation of associations of Ceratolithus cristatus ceratoliths, hoop-coccoliths and Neosphaera coccolithomorpha planoliths. Mar Micropaleontol 3: 39–41

    Article  Google Scholar 

  • Stover LE, Brinkhuis H, Damassa SP, de Verteuil L, Helby RJ, Monteil E, Partridge AD, Powell AJ, Riding JB, Smelror M, Williams GL (1996) Mesozoic-Tertiary dinoflag-ellates, acritarchs and prasinophytes. In: Jansonius J, McGregor DC (eds) Palynology: principles and applications, vol 2. American Association of Stratigraphic Palynologists Foundation, pp 641–750

    Google Scholar 

  • Tappan H, Loeblich Jr. AR (1973) Evolution of the Oceanic Plankton. Earth-Sci Rev 9: 207–240

    Article  Google Scholar 

  • Tappan H, Loeblich Jr. AR (1988) Foraminiferal evolution, diversification and extinction. J Paleontol 62: 695–741

    Google Scholar 

  • Thierstein HR (1981) Late Cretaceous calcareous nannoplankton and the change at the Cretaceous-Tertiary boundary. In: Douglas RG, Warme J, Winterer EL (eds) The Deep Sea Drilling Project: a decade of progress. SEPM, Spec Pub 32: 355–394

    Google Scholar 

  • Vermeij GJ (1995) Economics, volcanoes, and Phanerozoic revolutions. Paleobiology 21: 125–252

    Google Scholar 

  • Watkins D, Wise S, Pospichal J, Crux J (1996) Upper Cretaceous calcareous nannofossil biostratigraphy and paleoceanography of the Southern Ocean. In: Moguilevsky A, Whatley R (eds) Microfossils and oceanic environments. University of Wales, Aber-ystwyth-Press,pp 355–381

    Google Scholar 

  • Wei W, Kennett JP (1986) Taxonomic evolution of Neogene planktonic foraminifera and paleoceanographic relations. Paleoceanography 1: 67–84

    Article  Google Scholar 

  • Wignall PB (2001) Large igneous provinces and mass extinctions. Earth-Sci Rev 53: 1–33

    Article  Google Scholar 

  • Winter A, Jordan RW, Roth P (1994) Biogeography of living coccolithophores in ocean waters. In: Winter A, Siesser WG (eds) Coccolithophores. Cambridge University Press, pp 161–177

    Google Scholar 

  • Young JR (1998) Neogene. In: Bown PR (ed) Calcareous nannofossil biostratigraphy. Kluwer Academic Publishers, pp 225–265

    Chapter  Google Scholar 

  • Young JR, Bown PR (1997) Cenozoic calcareous nannoplankton classification. J Nannoplankton Res 19: 36–47

    Google Scholar 

  • Young JR, Didymus JM, Bown PR, Prins B, Mann S (1992) Crystal assembly and phylogenetic evolution in heterococcoliths. Nature 356: 516–518

    Article  Google Scholar 

  • Young JR, Bown PR, Burnett JA (1994) The Haptophytes: Palaeontological perspectives. In: Green JC, Leadbeater BSC (eds) The Haptophyte Algae. The Systematics Association Special Volume No. 51, pp 379–392

    Google Scholar 

  • Zachos JC, Stott LD, Lohmann KC (1994) Evolution of early Cenozoic temperatures. Paleoceanography 9: 353–387

    Article  Google Scholar 

  • Zachos JC, Pagani M, Sloan L, Thomas E, Billups K (2001) Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292: 696–693

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bown, P.R., Lees, J.A., Young, J.R. (2004). Calcareous nannoplankton evolution and diversity through time. In: Thierstein, H.R., Young, J.R. (eds) Coccolithophores. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-06278-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-06278-4_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-06016-8

  • Online ISBN: 978-3-662-06278-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics