Skip to main content

Involvement of Tight Junctions During Transendothelial Migration of Mononuclear Cells in Experimental Autoimmune Encephalomyelitis

  • Conference paper
Neuroinflammation in Stroke

Part of the book series: Ernst Schering Research Foundation Workshop ((SCHERING FOUND,volume 47))

Abstract

Homeostasis of the neural microenvironment of the central nervous system (CNS) is essential for the normal function of neuronal networks and is protected by the blood-brain barrier (BBB). The BBB is formed by highly specialized capillary endothelial cells, which inhibit transendothelial passage of molecules from blood to brain by an extremely low pinocytotic activity and the lack of fenestrae, and the BBB restricts the paracellular diffusion of hydrophilic molecules due to an elaborate network of complex tight junctions between the endothelial cells. On the other hand, in order to meet the high metabolic requirements of the CNS tissue, specific transport systems are selectively expressed in the capillary brain endothelial cell membranes, which mediate the directed transport of nutrients into the CNS (in particular the glucose transporter) or of toxic metabolites out of the CNS (the multidrug resistance system) (Greenwood et al. 1995).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Åström KE, Webster HD, Amason BG (1968) The initial lesion in experimental allergic neuritis. A phase and electron microscopic study. J Exp Med 128:469–495

    Article  PubMed  Google Scholar 

  • Balabanov R, Dore-Duffy P (1998) Role of the CNS microvascular pericyte in the blood-brain barrier. J Neurosci Res 53:637–644

    Article  PubMed  CAS  Google Scholar 

  • Barber AJ, Lieth E (1997) Agrin accumulates in the brain microvascular basal lamina during development of the blood-brain barrier. Develop Dyn 208:62–74

    Article  CAS  Google Scholar 

  • Blake DJ, Kröger S (2000) The neurobiology of Duchenne muscular dystrophy: learning lessons from muscle? Trends Neurosci 2:92–99

    Article  Google Scholar 

  • Bolton SJ, Anthony DC, Perry VH (1998) Loss of tight junction proteins occludin and zonula occludens-1 from cerebral vascular endothelium during neutrophil-induced blood-brain barrier breakdown in vivo. Neurosci 86:1245–1257

    Article  CAS  Google Scholar 

  • Brightman MW, Reese TS (1969) Junctions between intimately apposed cell membranes in the vertebrate brain. J Cell Biol 40:648–677

    Article  PubMed  CAS  Google Scholar 

  • Butcher EC, Williams M, Youngman K, Rott L, Briskin M (1999) Lymphocyte trafficking and regional immunity. Adv Immunol 72:209–253

    Article  PubMed  CAS  Google Scholar 

  • Cannella B, Cross AH, Raine CS (1991) Adhesion-related molecules in the central nervous system. Upregulation correlates with inflammatory cell influx during relapsing experimental autoimmune encephalomyelitis. Lab Invest 65:23–31

    PubMed  CAS  Google Scholar 

  • Claude P (1978) Morphologic factors influencing transepithelial permeability. A model for the resistance of the zonula occludens. J Membrane Biol 39:219–232

    Article  CAS  Google Scholar 

  • Claude P, Goodenough DA (1973) Fracture faces of zonulae occludentes from “tight” and “leaky” epithelia. J Cell Biol 58:390–400

    Article  PubMed  CAS  Google Scholar 

  • Engelhardt B, Vestweber D, Hallmann R, Schulz M (1997) E- and P-selectin are not involved in the recruitment of inflammatory cells across the blood-brain barrier in experimental autoimmune encephalomyelitis. Blood 90: 4459–4472

    PubMed  CAS  Google Scholar 

  • Engelhardt B, Laschinger M, Schulz M, Samulowitz U, Vestweber D, Hoch G (1998) The development of experimental autoimmune encephalomyelitis in the mouse requires alpha4-integrin but not alpha4beta7-integrin. J Clin Invest 102:2096–2105

    Article  PubMed  CAS  Google Scholar 

  • Faustmann PM, Dermietzel R (1985) Extravasation of polymorphonuclear leukocytes from the cerebral microvasculature. Cell Tissue Res 242:399–407

    Article  PubMed  CAS  Google Scholar 

  • Feng D, Nagy JA, Dvorak HF, Dvorak AM (2002) Ultrastructural studies define soluble macromolecular, particulate, and cellular transendothelial cell pathways in venules, lymphatic vessels, and tumor-associated microvessels in man and animals. Micr Res Techn 57:289–326

    Article  CAS  Google Scholar 

  • Fenstermacher J D, Nagaraja T, Davies KR (2001) Overview of the structure and function of the blood-brain barrier in vivo. In: Blood-Brain Barrier: Drug delivery and brain pathology, D Kobiler, S Lustig, S Shapira, eds (New York, Kluwer Academic Plenum Publishers), pp. 1–7

    Chapter  Google Scholar 

  • Frigeri A, Nicchia GP, Nico B, Quondamatteo F, Herken R, Roncali L, Svelto M (2001) Aquaporin-4 deficiency in skeletal muscle and brain of dystrophic mdx mice. FASEB J 15: 90–98

    Article  PubMed  CAS  Google Scholar 

  • Furuse M, Fujita K, Hiiragi T, Fujimoto K, Tsukita S (1998 a) Claudin-1 and -2: novel integral membrane proteins localizing at tight junctions with no sequence similarity to occludin. J Cell Biol 141:1539–1550

    Article  PubMed  CAS  Google Scholar 

  • Furuse M, Sasaki H, Fujimoto K, Tsukita S (1998 b) A single gene product, claudin-1 or -2, reconstitutes tight junction strands and recruits occludin in fibroblasts. J Cell Biol 143:391–401

    Google Scholar 

  • Furuse M, Furuse K, Sasaki H, Tsukita S (2001) Conversion of Zonulae occludentes from tight to leaky strand type by introducing claudin-2 into Madin-Darby canine kidney I cells. J Cell Biol 153:263–272

    Article  PubMed  CAS  Google Scholar 

  • Furuse M, Sasaki H, Tsukita S (1999) Manner of interaction of heterogeneous claudin species within and between tight junction strands. J Cell Biol 147:891–903

    Article  PubMed  CAS  Google Scholar 

  • Gerhardt H, Liebner S, Redies C, Wolburg H (1999) N-cadherin expression in endothelial cells during early angiogenesis in the eye and brain of the chicken: relation to blood-retina/blood-brain barrier development. Europ J Neurosci 11:1191–1201

    Article  CAS  Google Scholar 

  • Graesser D, Mahooti S, Madri JA (2000) Distinct roles for metalloproteinase-2 and α4 integrin in autoimmune T cell extravasation and residency in brain parenchyma during experimental autoimmune encephalomyelitis. J Neuroimmunol 109:121–131

    Article  PubMed  CAS  Google Scholar 

  • Greenwood J, Begley DJ, Segal MB (1995) New concepts of blood-brain barrier. Plenum Press, New York, London

    Google Scholar 

  • Greenwood J, Howes R, Lightman S (1994) The blood-retinal barrier in experimental autoimmune uveoretinitis-leukocyte interactions and functional damage. Lab Invest 70:39–52

    PubMed  CAS  Google Scholar 

  • Janzer RC, Raff MC (1987) Astrocytes induce blood-brain barrier properties in endothelial cells. Nature 325: 253–257

    Article  PubMed  CAS  Google Scholar 

  • Ke C, Poon WS, Ng HK, Pang JCS, Chan Y (2001) Heterogenous responses of aquaporin-4 in oedema formation in a replicated severe traumatic brain injury model in rats. Neurosci Letters 301:21–24

    Article  CAS  Google Scholar 

  • Kerfoot S, Kubes P (2002) Overlapping roles of P-selectin and alpha 4 integrin to recruit leukocytes to the central nervous system in experimental autoimmune encephalomyelitis. J Immunol 169:1000–1006

    PubMed  CAS  Google Scholar 

  • Kniesel U, Risau W, Wolburg H (1996) Development of blood-brain barrier tight junctions in the rat cortex. Dev Brain Res 96:229–240

    Article  CAS  Google Scholar 

  • Kniesel U, Wolburg H (2000) Tight junctions of the blood-brain barrier. Cell Mol Neurobiol 20:57–76

    Article  PubMed  CAS  Google Scholar 

  • Körner H, Riminton DS, Strickland DH, Lemckert FA, Pollard JD, Sedgwick JD (1997) Critical points of tumor necrosis factor action in central nervous system autoimmune inflammation defined by gene targeting. J Exp Med 186:1585–1590

    Article  PubMed  Google Scholar 

  • Laschinger M, Vajkoczy P, Engelhardt B (2002) LFA-1 is not involved in G-protein dependent adhesion of encephalitogenic T cell blasts to CNS microvessels in vivo. Eur J Immmunol 32:3598–3606

    Article  CAS  Google Scholar 

  • Liebner S, Kniesel U, Kalbacher H, Wolburg H (2000 a) Correlation of tight junction morphology with the expression of tight junction proteins in blood-brain barrier endothelial cells. Eur J Cell Biol 79:707–717

    Google Scholar 

  • Liebner S, Fischmann A, Rascher G, Duffner F, Grote E-H, Kalbacher H, Wolberg H (2000b) Claudin-1 and claudin-5 expression and tight junction morphology are altered in blood vessels of human glioblastoma multiforme. Acta Neuropathol 100:323–331

    Article  PubMed  CAS  Google Scholar 

  • Lindahl P, Johansson BR, Leveen P, Betsholtz C (1997) Pericyte loss and microaneurysm formation in PDGF-B-deficient mice. Science 277:242–245

    Article  PubMed  CAS  Google Scholar 

  • Lippoldt A, Kniesel U, Liebner S, Kalbacher H, Kirsch T, Wolburg H, Haller H (2000) Structural alterations of tight junctions are associated with loss of polarity in stroke-prone spontaneously hypertensive rat blood-brain barrier endothelial cells. Brain Res 885:251–261

    Article  PubMed  CAS  Google Scholar 

  • Mamdouh Z, Chen X, Pierini LM, Maxfield FR, Muller WA (2003) Targeted recycling of PECAM from endothelial surface-connected compartments during diapedesis. Nature 421:748–753

    Article  PubMed  CAS  Google Scholar 

  • Manley GT, Fujimura M, Ma T, Noshita N, Fliz F, Bollen AW, Chan P, Verkman AS (2000). Aquaporin-4 deletion in mice reduces brain edema after acute water intoxication and ischemic stroke. Nature Med 6:159–163

    Article  PubMed  CAS  Google Scholar 

  • Marcial MA, Carlson SL, Madara JL (1984) Partitioning of paracellular conductance along the ileal crypt-villus axis: a hypothesis based on structural analysis with detailed consideration of tight junction structure-function relationship. J. Membrane Biol 80:59–70

    Article  CAS  Google Scholar 

  • McMahan UJ (1990) The agrin hypothesis. Cold Spring Harbor Symp. Quant. Biol. 55:407–418

    Article  CAS  Google Scholar 

  • Mitic LL, Van Itallie CM, Anderson JM (2000) Molecular physiology and pathophysiology of tight junctions. I. Tight junction structure and function: lessons from mutant animals and proteins. Am J Physiol 279:G250–G254

    CAS  Google Scholar 

  • Morita K, Sasaki H, Furuse M, Tsukita S (1999 a) Endothelial claudin: claudin-5/TMVCF constitutes tight junction strands in endothelial cells. J Cell Bioll 47:185–194

    Article  Google Scholar 

  • Morita K, Furuse M, Fujimoto K, Tsukita S (1999 b) Claudin multigene family encoding four-transmembrane domain protein components of tight junction strands. Proc Natl Acad Sci USA 96:511–516

    Google Scholar 

  • Nagy Z, Peters H, Hüttner I (1984) Fracture faces of cell junctions in cerebral endothelium during normal and hyperosmotic conditions. Lab. Invest. 50:313–322

    PubMed  CAS  Google Scholar 

  • Neuhaus J (1990). Orthogonal arrays of particles in astroglial cells: quantitative analysis of their density, size, and correlation with intramembranous particles. Glia 3:241–251.

    Article  PubMed  CAS  Google Scholar 

  • Nico B, Frigeri A, Nicchia GP, Quondamatteo F, Herken R, Errede M, Ribatti D, Svelto M, Roncali L (2001) Role of aquaporin-4 water channel in the development and integrity of the blood-brain barrier. J Cell Sci 114:1297–1307

    PubMed  CAS  Google Scholar 

  • Peters A, Palay SL, Webster H (1991) The fine structure of the nervous system, 3rd edn. Oxford University Press, New York

    Google Scholar 

  • Plumb J, McQuaid S, Mirakhur M, Kirk J (2002) Abnormal endothelial tight junctions in active lesions and normal-appearing white matter in multiple sclerosis. Brain Pathol 12:154–169

    Article  PubMed  Google Scholar 

  • Rapoport SI (1976) Blood-brain barrier in physiology and medicine. Raven Press, New York, pp 129–138

    Google Scholar 

  • Rascher G, Fischmann A, Kröger S, Duffner F, Grote E-H, Wolburg H (2002) Extracellular matrix and the blood-brain barrier in glioblastoma multiforme: spatial segregation of tenascin and agrin. Acta Neuropathol 104:85–91

    Article  PubMed  CAS  Google Scholar 

  • Reese TS, Karnovsky MJ (1967) Fine structural localization of a blood-brain barrier to exogenous peroxidase. J Cell Biol 34:207–217

    Article  PubMed  CAS  Google Scholar 

  • Saitou M, Furuse M, Sasaki H, Schulzke J-D, Fromm M, Takano H, Noda T, Tsukita S (2000) Complex phenotype of mice lacking occludin, a component of tight junction strands. Mol Biol Cell 22: 4131–4142.

    Google Scholar 

  • Sato TN, Tozawa Y, Deutsch U, Wolburg-Buchholz K, Fujiwara Y, Gendron-Maguire M, Gridley T, Wolburg H, Risau W, Qin Y (1995) Distinct roles of the receptor tyrosine kinases tie-1 and tie-2 in blood vessel formation. Nature 376:70–74

    Article  PubMed  CAS  Google Scholar 

  • Sixt M, Engelhardt B, Pausch F, Hallmann R, Wendler O, Sorokin LM (2001) Endothelial cell laminin isoforms 8 and 10, play decisive roles in T cell recruitment across the blood-brain barrier in experimental autoimmune encephalomyelitis. J Cell Biol 153:933–945

    Article  PubMed  CAS  Google Scholar 

  • Sobel RA, Hinojoza JR, Maeda A, Chen M (1998) Endothelial cell integrin laminin receptor expression in multiple sclerosis lesions. Am J Pathol 135:405–415

    Article  Google Scholar 

  • Sims DE (1986) The pericyte — a review. Tissue & Cell 18:153–174

    Article  CAS  Google Scholar 

  • Stanimirovic D, Satoh K (2000) Inflammatory mediators of cerebral endothelium: A role in ischemic brain inflammation. Brain Pathol 10:113–126

    Article  PubMed  CAS  Google Scholar 

  • Steffen B J, Butcher E C, Engelhardt B (1994) Evidence for involvement of ICAM-1 and VCAM-1 in lymphocyte interaction with endothelium in experimental autoimmune encephalomyelitis in the central nervous system in the SJL/J mouse. Am J Pathol 145:189–201

    PubMed  CAS  Google Scholar 

  • Tran EH, Hoekstra K, Rooijen NV, Dijkstra CD, Owens T (1998) Immune evasion of the central nervous system parenchyma and experimental allergic encephalomyelitis, but not leukocyte extravasation from blood, are prevented in macrophage-depleted mice. J Immunol 161:3767–3775

    PubMed  CAS  Google Scholar 

  • Tsukita S, Furuse M, Itoh M (1999) Structural and signalling molecules come together at tight junctions. Curr Op Cell Biol 11:628–633

    Article  PubMed  CAS  Google Scholar 

  • Vajkoczy P, Laschinger M, Engelhardt B (2001) Alpha4-integrin-VCAM-1 binding mediates G protein-independent capture of encephalitogenic T cell blasts to CNS white matter microvessels. J Clin Invest 108: 557–565

    PubMed  CAS  Google Scholar 

  • Venero JL, Vizuete ML, Machado A, Cano, J (2001) Aquaporins in the central nervous system. Progr Neurobiol 63:321–336

    Article  CAS  Google Scholar 

  • Vestweber D (2000) Molecular mechanisms that control endothelial cell contacts. J Pathol 190:281–291

    Article  PubMed  CAS  Google Scholar 

  • von Andrian U H, Engelhardt B (2003) Alpha4 integrins as therapeutic targets in autoimmune disease. N Engl J Med 348:68–72

    Article  Google Scholar 

  • Weiner HL, Selkoe DJ (2002) Inflammation and therapeutic vaccination in CNS diseases. Nature 420:879–884

    Article  PubMed  CAS  Google Scholar 

  • Wekerle H, Linington C, Lassmann H, Meyermann R (1986) Cellular immune reactivity within the CNS. Trends Neurosci 9:271–277

    Article  Google Scholar 

  • Wolburg H (1995) Orthogonal arrays of intramembranous particles. A review with special reference to astrocytes. J Brain Res 36:239–258

    CAS  Google Scholar 

  • Wolburg H, Lippoldt A (2002) Tight junctions of the blood-brain barrier: Development, composition, and regulation. Vascular Pharmacology 38:323–337

    Article  PubMed  CAS  Google Scholar 

  • Wolburg H, Neuhaus J, Kniesel U, Krauss B, Schmid EM, Öcalan M, Farrell C, Risau W (1994) Modulation of tight junction structure in blood-brain-barrier endothelial-cells-effects of tissue-culture, 2nd messengers and cocultured astrocytes. J Cell Sci 107:1347–1357

    PubMed  CAS  Google Scholar 

  • Wolburg K, Gerhardt H, Schulz M, Wolburg H, Engelhardt B (1999) Ultrastructural localization of adhesion molecules in the healthy and inflamed choroid plexus of the mouse. Cell Tissue Res 296:259–269

    Article  PubMed  CAS  Google Scholar 

  • Wolburg H, Wolburg-Buchholz K, Kraus J, Rascher-Eggstein G, Liebner S, Hamm S, Duffner F, Grote E-H, Risau W, Engelhardt B (2003) Localization of claudin-3 in tight junctions of the blood-brain barrier is selectively lost during experimental autoimmune encephalomyelitis and human glioblastoma multiforme. Acta Neuropathol 105:586–592

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wolburg, H., Wolburg-Buchholz, K., Engelhardt, B. (2004). Involvement of Tight Junctions During Transendothelial Migration of Mononuclear Cells in Experimental Autoimmune Encephalomyelitis. In: Dirnagl, U., Elger, B. (eds) Neuroinflammation in Stroke. Ernst Schering Research Foundation Workshop, vol 47. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-05426-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-05426-0_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-05428-4

  • Online ISBN: 978-3-662-05426-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics