Skip to main content

Cell Cycle Regulation by Protein Kinases and Phosphatases

  • Conference paper
Data Mining in Structural Biology

Part of the book series: Ernst Schering Research Foundation Workshop ((SCHERING FOUND,volume 34))

Abstract

The two main phases of the eukaryotic cell cycle are S phase, when DNA is replicated, and M phase (mitosis), when the duplicated chromosomes are segregated to the two daughter cells. S and M phases are separated by two so-called “gap” phases, G1 (prior to S) and G2 (prior to M), respectively. Non-proliferating cells are considered to be in a separate state, referred to as Go, from where they can be prompted to enter the cell cycle by mitogenic stimulation. The orderly progression through the cell cycle is critical for the correct transmission of genetic information to subsequent cell generations, and hence for the life and development of all organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bell DW, Varley JM, Szydlo TE, Kang DH, Wahrer DC, Shannon KE, Lubratovich M, Verselis SJ, Isselbacher KJ, Fraumeni JF, Birch JM, Li FP, Garber JE, Haber DA (1999) Heterozygous germ line hCHK2 mutations in Li-Fraumeni syndrome. Science 286:2528–2531

    Article  PubMed  CAS  Google Scholar 

  • Bischoff JR, Plowman GD (1999) The Aurora/Ip11p kinase family: regulators of chromosome segregation and cytokinesis. Trends Cell Biol 9:454–459

    Article  PubMed  CAS  Google Scholar 

  • Blasina A, de Weyer IV, Laus MC, Luyten WH, Parker AE, McGowan CH (1999) A human homologue of the checkpoint kinase Cdsl directly inhibits Cdc25 phosphatase. Curr Biol 9:1–10

    Article  PubMed  CAS  Google Scholar 

  • Bousset K, Diffley JF (1998) The Cdc7 protein kinase is required for origin firing during S phase. Genes Dev 12:480–490

    Article  PubMed  CAS  Google Scholar 

  • Boveri T (1914) Zur Frage der Entstehung maligner Tumoren. Fisher, Jena

    Google Scholar 

  • Bregman DB, Pestell RG, Kidd VJ (2000) Cell cycle regulation and RNA polymerase II. Front Biosci 5:D244–D257

    Article  PubMed  CAS  Google Scholar 

  • Buendia B, Clarke PR, Felix MA, Karsenti E, Leiss D, Verde F (1991) Regulation of protein kinases associated with cyclin A and cyclin B and their effect on microtubule dynamics and nucleation in Xenopus egg extracts. Cold Spring Harb Symp Quant Biol 56:523–532

    Article  PubMed  CAS  Google Scholar 

  • Cahill DP, da Costa LT, Carson-Walter EB, Kinzler KW, Vogelstein B, Len-gauer C (1999) Characterization of MAD2B and other mitotic spindle checkpoint genes. Genomics 58:181–187

    Article  PubMed  CAS  Google Scholar 

  • Cahill DP, Lengauer C, Yu J, Riggins GJ, Willson JK, Markowitz SD, Kinzler KW, Vogelstein B (1998) Mutations of mitotic checkpoint genes in human cancers. Nature 392:300–303

    Article  PubMed  CAS  Google Scholar 

  • Cohen P, Holmes CF, Tsukitani Y (1990) Okadaic acid: a new probe for the study of cellular regulation. Trends Biochem Sci 15:98–102

    Article  PubMed  CAS  Google Scholar 

  • Dasika GK, Lin SC, Zhao S, Sung P, Tomkinson A, Lee EY (1999) DNA damage-induced cell cycle checkpoints and DNA strand break repair in development and tumorigenesis. Oncogene 18:7883–7899

    Article  PubMed  CAS  Google Scholar 

  • Diffley JF (1998) Replication conrol: choreographing replication origins. Curr Biol 8:R771–R773

    Article  PubMed  CAS  Google Scholar 

  • Elledge SJ (1996) Cell cycle checkpoints: preventing an identity crisis. Science 274:1664–1672

    Article  PubMed  CAS  Google Scholar 

  • Fero ML, Randel E, Gurley KE, Roberts JM, Kemp CJ (1998) The murine gene p27Kipl is haplo-insufficient for tumour suppression. Nature 396:177–180

    Article  PubMed  CAS  Google Scholar 

  • Fisher RP, Morgan DO (1996) CAK in TFIIH: crucial connection or confounding coincidence? Biochim Biophys Acta 1288:07–10

    Google Scholar 

  • Fry AM, Mayor T, Meraldi P, Stierhof YD, Tanaka K, Nigg EA (1998a) C-Napl, a novel centrosomal coiled-coil protein and candidate substrate of the cell cycle-regulated protein kinase Nek2. J Cell Biol 141:1563–1574

    Article  PubMed  CAS  Google Scholar 

  • Fry AM, Meraldi P, Nigg EA (1998b) A centrosomal function for the human Nek2 protein kinase, a member of the NIMA family of cell cycle regulators. EMBO J 17:470–481

    Article  PubMed  CAS  Google Scholar 

  • Fukasawa K, Choi T, Kuriyama R, Rulong S, Vande Woude GF (1996) Abnormal centrosome amplification in the absence of p53. Science 271:1744–1747

    Article  PubMed  CAS  Google Scholar 

  • Gardner RD, Burke DJ (2000) The spindle checkpoint: two transitions, two pathways. Trends Cell Biol 10:154–158

    Article  PubMed  CAS  Google Scholar 

  • Glover DM, Hagan IM, Tavares AA (1998) Polo-like kinases: a team that plays throughout mitosis. Genes Dev 12:3777–3787

    Article  PubMed  CAS  Google Scholar 

  • Gorbsky GJ (1997) Cell cycle checkpoints: arresting progress in mitosis. Bioessays 19:193–197

    Article  PubMed  CAS  Google Scholar 

  • Hall M, Peters G (1996) Genetic alterations of cyclins, cyclin-dependent kinases, and Cdk inhibitors in human cancer. Adv Cancer Res 68:67–108

    Article  PubMed  CAS  Google Scholar 

  • Harbour JW, Dean DC (2000) Rb function in cell-cycle regulation and apop-tosis. Nat Cell Biol 2:E65–E67

    Article  PubMed  CAS  Google Scholar 

  • Hartwell LH, Kastan MB (1994) Cell cycle control and cancer. Science 266:1821–1828

    Article  PubMed  CAS  Google Scholar 

  • Hartwell LH, Weinert TA (1989) Checkpoints: controls that ensure the order of cell cycle events. Science 246:629–634

    Article  PubMed  CAS  Google Scholar 

  • Harvey KJ, Lukovic D, Ucker DS (2000) Caspase-dependent Cdk activity is a requisite effector of apoptotic death events. J Cell Biol 148:59–72

    Article  PubMed  CAS  Google Scholar 

  • Hinchcliffe EH, Li C, Thompson EA, Mailer JL, Sluder G (1999) Requirement of Cdk2-cyclin E activity for repeated centrosome reproduction in Xenopus egg extracts. Science 283:851–854

    Article  PubMed  CAS  Google Scholar 

  • Hoyt MA, Totis L, and Roberts, B T (1991) S. cerevisiae genes required for cell cycle arrest in response to loss of microtubule function. Cell 66:507–517

    Article  PubMed  CAS  Google Scholar 

  • Hubbard MJ, Cohen P (1993) On target with a new mechanism for the regulation of protein phosphorylation. Trends Biochem Sci 18:172–177

    Article  PubMed  CAS  Google Scholar 

  • Jackson SP (1995) Cancer predisposition. Ataxia-telangiectasia at the crossroads. Curr Biol 5:1210–1212

    Article  PubMed  CAS  Google Scholar 

  • Jin DY, Spencer F, Jeang KT (1998) Human T cell leukemia virus type 1 oncoprotein Tax targets the human mitotic checkpoint protein MAD1. Cell 93:81–91

    Article  PubMed  CAS  Google Scholar 

  • Johnston LH, Masai H, Sugino A (1999) First the CDKs, now the DDKs. Trends Cell Biol 9:249–252

    Article  PubMed  CAS  Google Scholar 

  • Kellogg DR, Moritz M, Alberts BM (1994) The centrosome and cellular organization. Annu Rev Biochem 63:639–674

    Article  PubMed  CAS  Google Scholar 

  • Keyomarsi K, O’Leary N, Molnar G, Lees E, Fingert HJ, Pardee AB (1994) Cyclin E, a potential prognostic marker for breast cancer. Cancer Res 54:380–385

    PubMed  CAS  Google Scholar 

  • King RW, Deshaies RJ, Peters JM, Kirschner MW (1996) How proteolysis drives the cell cycle. Science 274:1652–1659

    Article  PubMed  CAS  Google Scholar 

  • Kotani S, Tanaka H, Yasuda H, Todokoro K (1999) Regulation of APC activity by phosphorylation and regulatory factors. J Cell Biol 146:791–800

    Article  PubMed  CAS  Google Scholar 

  • Krek W, Ewen ME, Shirodkar S, Arany Z, Kaelin WG, Jr., Livingston DM (1994) Negative regulation of the growth-promoting transcription factor E2F-1 by a stably bound cyclin A-dependent protein kinase. Cell 78:161–172

    Article  PubMed  CAS  Google Scholar 

  • Kumagai A, Dunphy WG (1996) Purification and molecular cloning of Plxl, a Cdc25-regulatory kinase from Xenopus egg extracts. Science 273:1377–1380

    Article  PubMed  CAS  Google Scholar 

  • Lane HA, Nigg EA (1996) Antibody microinjection reveals an essential role for human polo-like kinase 1 (Plkl) in the functional maturation of mitotic centrosomes. J Cell Biol 135:1701–1713

    Article  PubMed  CAS  Google Scholar 

  • Le Goff, X, Utzig S, Simanis V (1999) Controlling septation in fission yeast: finding the middle, and timing it right. Curr Genet 35:571–584

    Article  PubMed  Google Scholar 

  • Lengauer C, Kinzler KW, Vogelstein B (1998) Genetic instabilities in human cancers. Nature 396:643–649

    Article  PubMed  CAS  Google Scholar 

  • Li R, Murray AW (1991) Feedback control of mitosis in budding yeast. Cell 66:519–531

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Benezra R (1996) Identification of a human mitotic checkpoint gene: hsMAD2. Science 274:246–248

    Article  PubMed  CAS  Google Scholar 

  • Loeb LA (1998) Cancer cells exhibit a mutator phenotype. Adv Cancer Res 72:25–56

    Article  PubMed  CAS  Google Scholar 

  • Mantel C, Braun SE, Reid S, Henegariu O, Liu L, Hangoc G, Broxmeyer HE (1999) p21(cip-l/waf-l) deficiency causes deformed nuclear architecture, centriole overduplication, polyploidy, and relaxed microtubule damage checkpoints in human hematopoietic cells. Blood 93:1390–1398

    PubMed  CAS  Google Scholar 

  • Matsumoto Y, Hayashi K, Nishida E (1999) Cyclin-dependent kinase 2 (Cdk2) is required for centrosome duplication in mammalian cells. Curr Biol 9:429–432

    Article  PubMed  CAS  Google Scholar 

  • Mayer-Jaekel RE, Ohkura H, Gomes R, Sunkel CE, Baumgartner S, Hemmings BA, Glover DM (1993) The 55 kd regulatory subunit of Drosophila protein phosphatase 2A is required for anaphase. Cell 72:621–633

    Article  PubMed  CAS  Google Scholar 

  • Mayor T, Meraldi P, Stierhof YD, Nigg EA, Fry AM (1999) Protein kinases in control of the centrosome cycle. FEBS Lett 452:92–95

    Article  PubMed  CAS  Google Scholar 

  • Meraldi P, Lukas J, Fry AM, Bartek J, Nigg EA (1999) Centrosome duplication in mammalian somatic cells requires E2F and Cdk2- cyclin A. Nat Cell Biol 1:88–93

    Article  PubMed  CAS  Google Scholar 

  • Morgan DO (1997) Cyclin-dependent kinases: engines, clocks, and microprocessors. Annu Rev Cell Dev Biol 13:261–291

    Article  PubMed  CAS  Google Scholar 

  • Morgan DO (1999) Regulation of the APC and the exit from mitosis. Nat Cell Biol 1:E47-E53

    Article  PubMed  CAS  Google Scholar 

  • Nicklas RB (1997) How cells get the right chromosomes. Science 275:632–637

    Article  PubMed  CAS  Google Scholar 

  • Nicklas RB, Ward SC, Gorbsky GJ (1995) Kinetochore chemistry is sensitive to tension and may link mitotic forces to a cell cycle checkpoint. J Cell Biol 130:929–939

    Article  PubMed  CAS  Google Scholar 

  • Nigg EA (1993) Targets of cyclin-dependent protein kinases. Curr Opin Cell Biol 5:187–193

    Article  PubMed  CAS  Google Scholar 

  • Nigg EA (1995) Cyclin-dependent protein kinases: key regulators of the eu-karyotic cell cycle. Bioessays 17:471–480

    Article  PubMed  CAS  Google Scholar 

  • Nigg EA (1996) Cyclin-dependent kinase 7: at the cross-roads of transcription, DNA repair and cell cycle control? Curr Opin Cell Biol 8:312–317

    Article  PubMed  CAS  Google Scholar 

  • Nigg EA (1998) Polo-like kinases: positive regulators of cell division from start to finish. Curr Opin Cell Biol 10:776–783

    Article  PubMed  CAS  Google Scholar 

  • Nomoto S, Haruki N, Takahashi T, Masuda A, Koshikawa T, Takahashi T, Fujii Y, Osada H, Takahashi T (1999) Search for in vivo somatic mutations in the mitotic checkpoint gene, hMADl, in human lung cancers. Oncogene 18:7180–7183

    Article  PubMed  CAS  Google Scholar 

  • Noton E, Diffley JF (2000) CDK inactivation is the only essential function of the APC/C and the mitotic exit network proteins for origin resetting during mitosis. Mol Cell 5:85–95

    Article  PubMed  CAS  Google Scholar 

  • Nurse P (1990) Universal control mechanism regulating onset of M-phase. Nature 344:503–508

    Article  PubMed  CAS  Google Scholar 

  • Nurse P, Masui Y, Hartwell L (1998) Understanding the cell cycle. Nat Med 4:1103–1106

    Article  PubMed  CAS  Google Scholar 

  • Peng CY, Graves PR, Thoma RS, Wu Z, Shaw AS, Piwnica-Worms H (1997) Mitotic and G2 checkpoint control: regulation of 14–3–3 protein binding by phosphorylation of Cdc25C on serine-216. Science 277:1501–1505

    Article  PubMed  CAS  Google Scholar 

  • Peters JM (1999) Subunits and substrates of the anaphase-promoting complex. Exp Cell Res 248:339–349

    Article  PubMed  CAS  Google Scholar 

  • Porter PL, Malone KE, Heagerty PJ, Alexander GM, Gatti LA, Firpo EJ, Daling JR, Roberts JM (1997) Expression of cell-cycle regulators p27Kipl and cyclin E, alone and in combination, correlate with survival in young breast cancer patients. Nat Med 3:222–225

    Article  PubMed  CAS  Google Scholar 

  • Prinz S, Amon A (1999) Dual control of mitotic exit. Nature 402:133, 135

    Google Scholar 

  • Rudner AD, Murray AW (1996) The spindle assembly checkpoint. Curr Opin Cell Biol 8:773–780

    Article  PubMed  CAS  Google Scholar 

  • Russell P (1998) Checkpoints on the road to mitosis. Trends Biochem Sci 23:399–402

    Article  PubMed  CAS  Google Scholar 

  • Sagata N (1997) What does Mos do in oocytes and somatic cells? Bioessays 19:13–21

    Article  PubMed  CAS  Google Scholar 

  • Shapiro GI, Harper JW (1999) Anticancer drug targets: cell cycle and checkpoint control. J Clin Invest 104:1645–1653

    Article  PubMed  CAS  Google Scholar 

  • Sherr CJ (1998) Tumor surveillance via the ARF-p53 pathway. Genes Dev 12:2984–2991

    Article  PubMed  CAS  Google Scholar 

  • Tang D and Wang JH (1996) Cyclin-dependent kinase 5 (Cdk5) and neuron-specific Cdk5 activators. In: Meijer L, Guidet S, and Vogel L (eds). Progress in Cell Cycle Research, Vol. 2, New York and London, Plenum Press, pp. 205–216.

    Chapter  Google Scholar 

  • Tutt A, Gabriel A, Bertwistle D, Connor F, Paterson H, Peacock J, Ross G, Ashworth A (1999) Absence of Brca2 causes genome instability by chromosome breakage and loss associated with centrosome amplification. Curr Biol 9:1107–1110

    Article  PubMed  CAS  Google Scholar 

  • Van den Heuvel HS, Harlow E (1993) Distinct roles for cyclin-dependent kinases in cell cycle control. Science 262:2050–2054

    Article  PubMed  Google Scholar 

  • Verde F, Labbe JC, Doree M, Karsenti E (1990) Regulation of microtubule dynamics by cdc2 protein kinase in cell-free extracts of Xenopus eggs. Nature 343:233–238

    Article  PubMed  CAS  Google Scholar 

  • Visintin R, Prinz S, Amon A (1997) CDC20 and CDH1: a family of substrate-specific activators of APC- dependent proteolysis. Science 278:460–463

    Article  PubMed  CAS  Google Scholar 

  • Weinberg RA (1995) The retinoblastoma protein and cell cycle control. Cell 81:323–330

    Article  PubMed  CAS  Google Scholar 

  • Weiss E, Winey M (1996) The Saccharomyces cerevisiae spindle pole body duplication gene MPS1 is part of a mitotic checkpoint. J Cell Biol 132:111–123

    Article  PubMed  CAS  Google Scholar 

  • White RJ (1997) Regulation of RNA polymerases I and III by the retinoblastoma protein: a mechanism for growth control? Trends Biochem Sci 22:77–80

    Article  PubMed  CAS  Google Scholar 

  • Xu X, Weaver Z, Linke SP, Li C, Gotay J, Wang XW, Harris CC, Ried T, Deng CX (1999) Centrosome amplification and a defective G2-M cell cycle checkpoint induce genetic instability in BRCA1 exon 11 isoform-deficient cells. Mol Cell 3:389–395

    Article  PubMed  CAS  Google Scholar 

  • Yanagida M, Kinoshita N, Stone EM, Yamano H (1992) Protein phosphatases and cell division cycle control. Ciba Found Symp 170:130–140

    PubMed  CAS  Google Scholar 

  • Zachariae W, Nasmyth K (1999) Whose end is destruction: cell division and the anaphase-promoting complex. Genes Dev 13:2039–2058

    Article  PubMed  CAS  Google Scholar 

  • Zhang Q, Ahuja HS, Zakeri ZF, Wolgemuth DJ (1997) Cyclin-dependent kinase 5 is associated with apoptotic cell death during development and tissue remodeling. Dev Biol 183:222–233

    Article  PubMed  CAS  Google Scholar 

  • Zhou H, Kuang J, Zhong L, Kuo WL, Gray JW, Sahin A, Brinkley BR, Sen S (1998) Tumour amplified kinase STK15/BTAK induces centrosome amplification, aneuploidy and transformation. Nat Genet 20:189–193

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nigg, E.A. (2001). Cell Cycle Regulation by Protein Kinases and Phosphatases. In: Schlichting, I., Egner, U. (eds) Data Mining in Structural Biology. Ernst Schering Research Foundation Workshop, vol 34. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04645-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04645-6_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-04647-0

  • Online ISBN: 978-3-662-04645-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics