Skip to main content

Humification of PAH and TNT During Bioremediation — Evaluation of Long Term Risk and Sustainability

  • Chapter

Abstract

The depletion of contaminants in soil is not only based on degradation or mineralisation, but also on the fact that a fixation or immobilisation of the xenobiotic substances as bound residues takes place within the soil matrix. This binding of organic contaminants (called a humification process if bound to soil humus) can reduce the bioavailable and analytically detectable part of the xenobiotics. The binding was investigated in detail by the use of 14C-labeled substances for PAH and TNT in the last decades and this immobilisation process has been proposed as a remediation measure. The intentional humification process may be achieved by adjusting bioremediation process parameters such as the supplementation of soil with organic substances (compost etc.) or by changing the incubation conditions (anaerobic and aerobic phases).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Achtnich C, Sieglen U, Knackmuss HJ, Lenke H (1999a) Irreversible binding of biologically reduced 2,4,6-Trinitrotoluene to soil. Environ Toxicol Chem 18: 2418–2323

    Article  Google Scholar 

  • Achtnich C, Fernandes E, Bollag JM, Knackmuss HJ, Lenke H (1999b) Covalent binding of reduced metabolites of (15N3)TNT to soil organic matter during a bioremediation process analyzed by 15N NMR Spectroscopy. Environ Sci Technol 33: 4448–4456

    Article  CAS  Google Scholar 

  • Achtnich C, Lenke H, Knackmuss HJ (1999c) Untersuchungen zur Bindung und Stabilität von festgelegtem reduziertem TNT im Boden nach einer biologischen Anaerob-/ Aerob-Behandlung. In: Umweltbundesamt (ed) Langzeit-und Remobilisierungsverhalten von Schadstoffen. Tagungsband zum Statusseminar des BMBF-Verbundvorhabens “Biologische Verfahren zur Bodensanierung”, 22./ 23.10.1998 in Bremen. E1–14

    Google Scholar 

  • Achtnich C, Peters D, Knackmuss Hi, Lenke H (2000) Alternierender Anaerob-/ Aerob-Prozess: Analyse der Bindunmgsstruktur von metabolisiertem und humifiziertem TNT im Boden. In: Umweltbundesamt (ed) Langzeit-und Remobilisierungsverhalten von Schadstoffen bei der biologischen Bodensanierung. Tagungsband zum Statusseminar des BMBF-Verbundvorhabens “Biologische Verfahren zur Bodensanierung”, 22.02.2000 in Bremen, in press

    Google Scholar 

  • Alexander M (1997) How toxic are toxic chemicals in soil? Environ Sci Technol 29: 2713–2717

    Article  Google Scholar 

  • Arjmand M, Sandermann H (1985) Mineralization of chloroaniline/lignin conjugates and of free chloroanilines by the white-rot fungus Phanerochaete chrysosporium. J Agric Food Chem 33: 1055–1060

    Article  CAS  Google Scholar 

  • Baldock JA, Oades JM, Vassallo AM, Wilson MA (1989) Incorporation of uniformly labelled 13C-glucose carbon into the organic fraction of a soil, Carbon balance and CP/MAS-13CNMR-measurements. Soil Biol Biochem 27: 725–746

    CAS  Google Scholar 

  • Banholczer A, Fründt J, v Löw E, Bruns-Nagel D, Gemsa D (2000) Dynamisches Beetverfahren: Analyse nicht extrahierbarer TNT-Transformationsprodukte. In: Umweltbundesamt (ed) Langzeit-und Remobilisierungsverhalten von Schadstoffen bei der biologischen Bodensanierung. Tagungsband zum Statusseminar des BMBF-Verbundvorhabens “Biologische Verfahren zur Bodensanierung”, 22.02.2000 in Bremen, in press

    Google Scholar 

  • Barr DP, Aust SD (1994) Mechanisms white rot fungi use to degrade pollutants. Environ Sci Technol 28: 78–87

    Google Scholar 

  • Bollag JM (1992) Decontaminating soil with enzymes. Environ Sci. Technol 26: 1876–1881 Bollag JM, Myers CJ, Minard RD (1992) Biological and chemical interactions of pesticides with soil organic matter. Sci Total Environ 123 /124: 205–217

    Google Scholar 

  • Breitung J, Bruns-Nagel D, Steinbach K, Kaminski L, Gemsa D, v Löw E (1996) Bioremediation of 2,4,6-trinitrotoluene-contaminated soils by two different aerated compost systems. Appl Microbiol Biotechnol 44: 795–800

    Article  CAS  Google Scholar 

  • Bruns-Nagel D, Drzyzga O, Steinbach K, Schmidt TC, v Low E, Gorontzy T, Blotevogel KH, Gemsa D (1998) Anaerobic/aerobic composting of 2,4,6-Trinitrotoluene-contaminated soil in a reactor system. Environ Sci Technol 32: 1676–1679

    Article  CAS  Google Scholar 

  • Dec J, Haider K, Schäffer A, Fernandes E, Bollag JM (1997) Use of silylation procedure and 13C-NMR Spectroscopy to charakterize bound and sequestered residues of cyprodinil in soil. Environ Sci Technol 31: 2991–2997

    Article  CAS  Google Scholar 

  • Deschauer H, Kögel-Knabner I (1992) Binding of a herbicide to water-soluble soil humic substances. The Science of the Total Environment 117 /118: 393–401

    Article  Google Scholar 

  • Drzyzga O, Bruns-Nagel D, Gorontzy T, Blotevogel KH, Gemsa D, v Löw E (1998) Incorporation of “C-fabled 2,4,6-Trinitrotoluene metabolites into different soil fraction after anaerobic-aerobic treatment of soil/molasses mixture. Environ Sci Technol 32: 3529–3535

    Article  CAS  Google Scholar 

  • Engebretson RR, Wandruszka R (1994) Microorganization in dissolved humic acids. Environ Sci Technol 28: 1934–1941

    Article  CAS  Google Scholar 

  • Eschenbach A (1995) Einfluß von Pleurotus ostreatus, Kompost, Sphingomonas paucimobilis und der Kontaminationsdauer auf den Verbleib und Abbau “C-markierter polyzyklischer Kohlenwasserstoffe (PAK) in Altlastböden. Dissertation, Technische Universität Hamburg-Harburg

    Google Scholar 

  • Eschenbach A, Kästner M, Wienberg R, Mahro B (1995) Microbial PAH degradation in soil material from a contaminated site — Mass balance experiments with Pleurotus ostreatus and different ’“C-PAH. hi: van den Brink WJ, Bosman R, Arendt F (eds) Contaminated soil `95. Kluver Academic Publ Dodrecht, pp 377–378

    Google Scholar 

  • Eschenbach A, Wienberg R, Mahro B (1997) Einsatz von Kompost und Rindenmulch bei der biologischen Altlastensanierung PAK-kontaminierter Bodenmaterialien. Mittlgn Dt Bodenkundl Gesellsch 83: 279–282

    Google Scholar 

  • Eschenbach A, Wienberg R, Mahro B (1998a) Fate and stability of nonextractable residues of [14C]PAH in contaminated soils under environmental stress conditions. Environ Sci Technol 32: 2585–2590

    Article  CAS  Google Scholar 

  • Eschenbach A, Wienberg R, Mahro B (1998b) Untersuchung der Bildung und Langzeitsabiltät von humifizierten PAK in biologisch behandelten Recyclingböden. Abschlußbericht BMBFForschungsvorhaben “Biologische Verfahren zur Bodensanierung”, Teilprojekt 7, Förder-Nr. 1480937

    Google Scholar 

  • Eschenbach A, Wienberg R, Mahro B (2000a). Formation, long-term stability and fate of non-extractable ’“C-PAH-residues in contaminated soils. In: Wise DL, Trantolo DJ, Cichon EJ In-yang II, Stottmeister U (eds) Remediation of hazardous waste contaminated soils. 2nd Edition, Marcel Dekker, Inc, New York, Chapter 20, pp 429–448

    Google Scholar 

  • Eschenbach A, Mescher H, Wienberg R, Mahro B (2000b) Humifizierung von Schadstoffen. In: Michels J, Track T, Gehrke U, Sell D (eds) Biologische Verfahren zur Bodensanierung. Grün-weiße Reihe des BMBF, Berlin (in press)

    Google Scholar 

  • Fernando T, Bumpus JA, Aust SD (1990) Biodegradation of TNT (2,4,6-Trinitrotoluene) by phanerochaete chrysosporium. Appl Environ Microbiol 56: 1666–1671

    CAS  Google Scholar 

  • Führ F, Ophoff H, Burauel P, Wanner U, Haider K (1998) Modification of the definition of bound residues. In: Senate Commission for the Assessment of Chemicals Used in Agriculture (eds) Pesticide bound residues in soil. Workshop, September 3.-4. 1996, Deutsche Forschungsgemeinschaft, Wiley-VCH, Weinheim

    Google Scholar 

  • Goodin JD, Webber MD (1995) Persistence and fate of anthracene and benzo(a)pyrene in municipal sludge treated soil. J Environ Qual 24: 271–278

    Article  CAS  Google Scholar 

  • Guthrie EA, Pfaender F (1998) Reduced Pyrene Bioavailability in Microbially Active Soils. Environ Sci Technol 32: 501–508

    Article  CAS  Google Scholar 

  • Guthrie EA, Bortiatynski JM, Van Heemst JD, Richman JE, Hardy KS, Kovach EM, Hatcher PG (1999) Determination of 13Cpyrene sequestration in sediment microcosms using flash pyrolysis-GC-MS and 13C NMR. Environ Sci Technol 33: 119–125

    Article  CAS  Google Scholar 

  • Haider K, Martin JP (1988) Mineralization of 14C-labeled humic acids and of humic-acid bond 14C xenobiotics by Phanerochaete chrysosporium. Soil Biol Biochem 20: 425–429

    Article  CAS  Google Scholar 

  • Haider K, Schäffer A (2000) Umwandlung und Abbau von Pflanzenschutzmitteln in Böden — Auswirkungen auf die Umwelt. Thieme-Verlag. in press

    Google Scholar 

  • Haider K, Spiteller M, Reichert K, Fild M (1992) Derivatization of humic compounds: An ana-

    Google Scholar 

  • lytical approach for bound organic residues. Intern J Environ Anal Chem 46: 201–211

    Google Scholar 

  • Haider K, Spiteller M, Wais A, Fild M (1993) Evaluation of the binding mechanism of anilazine and its metabolites in soil organic matter. Intern J Environ Anal Chem 53: 125

    Article  CAS  Google Scholar 

  • Hatzinger PB, Alexander M (1995) Effect of aging of chemicals in soil on their biodegradability and extractability. Environ Sci Technol 29: 537–545

    Article  CAS  Google Scholar 

  • Hund-Rinke K, Kördel W (2000) Biologische Bodensanierung unter der Lupe. Umwelt 30: 5153

    Google Scholar 

  • Hupe K, Liith JC, Heerenklage J, Stegmann R (1996) Kompost als Mittel zur Reinigung ölkontaminierter Böden. Altlastenspektrum 4: 182–189

    Google Scholar 

  • Hosler KR, Bulman TL, Fowlie PJA (1988) Der Verbleib von Naphthalin, Anthracen und Benz(a)pyren im Boden bei einem fir die Behandlung von Raffinerieabfällen genutztem Gelände. In: Wolf K, van den Brink WJ, Colon FJ (eds) Altlastensanierung `88. Kluwer Academic Publisher, Dordrecht/Boston/London, pp 111–113

    Google Scholar 

  • Kästner M 2000 “Humification” Process or formation of refractory soil organic matter. In: Rehm HJ, Reed G, Pithier A, Stadler P (eds) Biotechnology, Vol. 1 I b, Environmental Processes — Soil decontamination, Waste gas treatment, Potable water preparation. Wiley-VCH, Weinheim, pp 90–125

    Google Scholar 

  • Kästner M, Breuer-Jammali M, Mahro B (1994) Enumeration and characterization of soil micro-flora from hydrocarbon-contaminated soil sites able to mineralize polycyclic aromatic hydrocarbons ( PAH ). Appl Environ Biotechnol 41: 267–273

    Google Scholar 

  • Kästner M, Lotter S, Heerenklage J, Breuer-Jammali M, Stegmann R, Mahro B (1995) Fate of 14C-labeled anthracene and hexadecane in compost-manured soil. Appl Microbiol Biotechnol 43: 1128–1135

    Article  Google Scholar 

  • Kästner M, Streibich S, Beyrer M, Richnow HH, Fritsche W (1999) Formation of bound residues during microbial degradation of (14C)anthracene in soil. Appl Environ Microbiol 65: 18341842

    Google Scholar 

  • Kelsey JW, Kottler BD, Alexander M (1997) Selective chemical extractants to predict bioavailability of soil-aged organic chemicals. Environ Sci Technol 31: 214–217

    Article  CAS  Google Scholar 

  • Knicker H, Bruns-Nagel D, Drzyzga O, v Löw E, Steinbach K (1999) Characterization of 15N-TNT residues after an anaerobic/aerobic treatment of soil/molasses mixtures by solid-state ‘5N NMR spectroscopy. Determination and optimization of the relevant NMR spectroscopic parameters. Environ Sci Technol 33: 343–349

    Google Scholar 

  • Lenke H, Warrelmann J, Daun G, Hund K, Sieglen U, Walter U, Knackmuss HJ (1998) Biological treatment of TNT-contaminated soil, 2. Biologically induced immobilization of the contaminants and full-scale application. Environ Sci Technol 32: 1964–1971

    Google Scholar 

  • Lenke H, Achtnich C, Knackmuss HJ (2000) Perspectives of bioelimination of polynitroaromatic compounds. In: Spain JC, Hughes JB, Knackmuss HJ (eds) Nitroaromatic compounds and explosives. Lewis Publishers, Boca Raton, pp 91–126

    Google Scholar 

  • Lotter S, Brumm A, Bundt J, Heerenklage J, Paschke A, Steinhart H, Stegmann R (1993) Carbon balance of a PAH-contaminated soil during biodegradation as a result of the addition of compost. In: Arendt F, Annokkee GJ, Bosman R, van den Brink WJ (eds) Contaminated soils `93. Kluwer Acad Publishers, pp 1235–1245

    Google Scholar 

  • Mahro B, Kästner M (1993) PAK-Altlasten — Bewertung der mikrobiellen Sanierung. Spektrum der Wisenschaft: 97–100

    Google Scholar 

  • Nanny MA, Bortiatynski JM, Hatcher PG (1997) Noncovalent interactions between acenaphtenone and dissolved fulvic acid as determined by 13C NMR T1 relaxation measurementes. Environ Sci Technol 31: 530–534

    Article  CAS  Google Scholar 

  • Nieman JKC, Sims RC, Sims JL, Sorensen DL, McLean JE, Rice JA (1999) [14C]Pyrene bound residues evaluation using MIBK fractionation method for creosote-contaminated soil. Environ Sci Technol 33: 776–781

    Google Scholar 

  • Northcott GL, Jones K (2000) Experimental approaches and analytical techniques for determining organic compound bound residues in soil and sediment. Environmental Pollution 108: 19–43

    Article  CAS  Google Scholar 

  • Pignatello JJ (1989) Sorption dynamics of organic compounds in soils and sediments. In: Sawhney BL, Brown K (eds) Reactions and movement of organic chemicals in soils. 22, Soil Sci Soc Am Inc, Madison, pp 45–80

    Google Scholar 

  • Pignatello JJ, Xing B (1996) Mechanisms of slow sorption of organic chemicals to natural particles. Environ Sci Technol 30: 1–11

    Article  CAS  Google Scholar 

  • Preuss A, Frimel J, Diekert G (1993) Anaerobic transformation of 2,4,6-trinitrotoluene ( TNT ). Arch Microbiol 159: 345–353

    Google Scholar 

  • Qiu X, McFarland MJ (1991) Bound residues formation in PAH contaminated soil composting using Phanerochaete chrysosporium Hazardous Waste and Hazardous Materials 8: 115–126

    Article  CAS  Google Scholar 

  • Richnow HH, Seifert R, Hefter J, Kästner M, Mahro B, Michaelis W (1994) Metabolites of xenobiotica and mineral oil constituents linked to macromolekular organic matter in polluted environments. Adv Org Geochem 22: 671–681

    Article  CAS  Google Scholar 

  • Richnow HH, Eschenbach A, Mahro B, Seifert R, Wehrung P, Albrecht P, Michaelis W (1998) The use of 13C-labelled polycyclic aromatic hydrocarbons for the analysis of their transformation in soil. Chemosphere 36: 2211–2224

    Article  CAS  Google Scholar 

  • Richnow HH, Eschenbach A, Mahro B, Kästner M, Annweiler E, Seifert R, Michaelis W (1999) The formation of nonextractable soil residues — a stable isotope approach. Environ Sci Technol 33: 3761–3767

    Article  CAS  Google Scholar 

  • Rieger PG, Knackmuss HJ (1995) Basic knowledge and perspectives on biodegradation of 2,4,6-Trinitrotoluene and related nitroaromatic compounds in contaminated soil. In: Spain J (ed) Biodegradation of nitroaromatic compounds. Plenum Press, New York, pp 1–18

    Google Scholar 

  • Roberts TR, Klein W, Still GG, Kearney PC, Drescheer N, Desmoras J, Esser HO, Aharonson N, Vonk JW (1984) Non-extractable pesticide residues in soil and plants. Pure and Applied Chemistry 56: 945–956

    Article  Google Scholar 

  • Saxena A, Bartha R (1983) Microbial mineralization of humic acid-3,4.dichloroaniline complexes. Soil Biol Biochem 15: 59–62

    Article  CAS  Google Scholar 

  • Scheibner K, Hofrichter M, Herre A, Michels J, Fritsche W (1997) Screening for fungi inten-sively mineralizing 2,4,6-trinitrotoluene. Appl Microbiol Biotechnol 47: 452–457

    Article  CAS  Google Scholar 

  • Scheu S (1987) The role of substrate feeding earthworms (lumbricidae) for bioturbation in a beechwood soil. Oecologia 72: 192–196

    Article  Google Scholar 

  • Senesi N (1993) Organic pollutant migration in soils as affected by soil organic matter, Molecular and mechanistic aspects. In: Petruzelli D, Helfferich FG (eds) Migration and Fate of pollutants in soils and subsoils. Springer, Berlin, pp 47–74

    Chapter  Google Scholar 

  • Senesi N. (1994) Spectroscopic studies of metal ion-humic substance complexation in soil. In: International Society of Soil Science and Mexican Society of Soil Science, 15th World Congress of soil science. 3A: Commission II: Symposia, July 1994, Acapulco, Mexico, pp 384402

    Google Scholar 

  • Schnöder F, Mittelstaedt W, Führ F (1994) Das Verhalten von Benzo(a)pyren and Fluoranthen in einer Parabraunerde — Lysimeter-and Laborstudien. In: TU Berlin (ed) Biologischer Abbau von polycyclischen aromatischen Kohlenwasserstoffen. Schriftenreihe Biologische Abwasserreinigung 4, pp 217–230

    Google Scholar 

  • Thorn KA (1997) Covalent binding of the reductive degradation products of TNT to humic substances examined by N-15 NMR. Division of Environ Chem Preprints of Extended Abstracts. 37: 305–306

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Eschenbach, A., Mescher, H., Wienberg, R., Mahro, B. (2001). Humification of PAH and TNT During Bioremediation — Evaluation of Long Term Risk and Sustainability. In: Stegmann, R., Brunner, G., Calmano, W., Matz, G. (eds) Treatment of Contaminated Soil. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04643-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04643-2_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07510-0

  • Online ISBN: 978-3-662-04643-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics