Skip to main content

Part of the book series: Ernst Schering Research Foundation Workshop ((SCHERING FOUND,volume 33))

  • 131 Accesses

Abstract

The interest in hematopoietic stem cells has increased over the past decades, because they are used as targets for gene transfer in gene therapy as well as serving as the source for bone marrow transplantation (BMT). BMT has become a well-established therapy, and its application has been extended to transplantation of unrelated individuals as well as older individuals. This is due to the use of less toxic or non-myeloablative conditioning protocols, the shortening of the duration of aplasia by the application of growth factors, and effective therapy of infectious disease or sepsis by potent antibiotic regimens. For many patients suffering from leukemia or myelodysplasic syndrome, BMT is the only therapeutic approach that potentially cures their disease. Currently, sources of hematopoietic stem cells for BMT are bone marrow (BM), mobilized peripheral blood stem cells (PBSC) and cord blood (CB). In particular, the use of PBSC has been increasing. When compared with BM, the collection of PBSC is of lower risk for the donor because there is no need for general anesthesia, the engraftment of stem cells is faster, and the number of collected immature CD34+ hematopoietic cells is higher. In the autologous setting, immature hematopoietic cells can be purified, e. g., by CD34-selection, to prevent contamination of the graft by tumor cells. However, do we know exactly which cells we have to collect? Do we know enough about human hematopoietic stem cells?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bhatia M, Bonnet D, Murdoch B, Gan OI, Dick JE (1998) A newly discovered class of human hematopoietic cells with SCID-repopulating activity (see comments). Nat Med 4(sn9):1038–1045

    Article  PubMed  CAS  Google Scholar 

  • Bhatia M, Wang JCY, Kapp U, Bonnet D, Dick JE (1997) Purification of primitive human hematopoietic cells capable of repopulating immune-deficient mice. Proc Natl Acad Sci USA 94(sn10):5320–5325

    Article  PubMed  CAS  Google Scholar 

  • Bjornson CR, Rietze RL, Reynolds BA, Magli MC, Vescovi AL (1999) Turning brain into blood: a hematopoietic fate adopted by adult neural stem cells in vivo (see comments). Science 283(5401): 534–537

    Article  PubMed  CAS  Google Scholar 

  • Bodine DM, Moritz T, Donahue RE, Luskey BD, Kessler SW, Martin DI, Orkin SH, Nienhuis AW, Williams DA (1993) Long-term in vivo expression of a murine adenosine deaminase gene in rhesus monkey hematopoietic cells of multiple lineages after retroviral mediated gene transfer into CD34+ bone marrow cells. Blood 82(sn7): 1975–1980

    PubMed  CAS  Google Scholar 

  • Bonnet D, Bhatia M, Wang JC, Kapp U, Dick JE (1999) Cytokine treatment or accessory cells are required to initiate engraftment of purified primitive human hematopoietic cells transplanted at limiting doses into NOD/SCID mice. Bone Marrow Transplant 23(3): 203–209

    Article  PubMed  CAS  Google Scholar 

  • Carter RF, Abrams-Ogg AC, Dick JE, Kruth SA, Valli VE, Kamel-Reid S, Dube ID (1992) Autologous transplantation of canine long-term marrow culture cells genetically marked by retroviral vectors. Blood 79(2): 356–364

    PubMed  CAS  Google Scholar 

  • Dao MA, Nolta JA, Hanley MB, Kohn DB (1998) Use of the bnx/hu xenograft model of human hematopoiesis to optimize methods for retroviral-mediated stem cell transduction (review). Sustained human hematopoiesis in immunodeficient mice by cotransplantation of marrow stroma expressing human interleukin-3: analysis of gene transduction of long-lived progenitors. Int J Mol Med 1(1): 257–264

    PubMed  CAS  Google Scholar 

  • Dick JE, Bhatia M, Gan O, Kapp U, Wang JC (1997) Assay of human stem cells by repopulation of NOD/SCID mice. Stem Cells 15[Suppl 1]: 199–203; discussion 204-207

    Article  PubMed  Google Scholar 

  • Eaves CJ, Sutherland HJ, Udomsakdi C, Lansdorp PM, Szilvassy SJ, Fraser CC, Humphries RK, Barnett MJ, Phillips GL, Eaves AC (1992) The human hematopoietic stem cell in vitro and in vivo (see comments). Blood Cells 18(2): 301–307

    PubMed  CAS  Google Scholar 

  • Ferrari G, Cusella-De Angelis G, Coletta M, Paolucci E, Stornaiuolo A, Cossu G, Mavilio F (1998) Muscle regeneration by bone marrow-derived myogenic progenitors. Science 279(5356): 1528–1530

    Article  PubMed  CAS  Google Scholar 

  • Friedenstein AJ, Gorskaja JF, Kulagina NN (1976) Fibroblast precursors in normal and irradiated mouse hematopoietic organs. Exp Hematol 4(sn5): 267–274

    PubMed  CAS  Google Scholar 

  • Hao QL, Shah AJ, Thiemann FT, Smogorzewska EM, Crooks GM (1995) A functional comparison of CD34+ CD38-cells in cord blood and bone marrow. Blood 86(10): 3745–3753

    PubMed  CAS  Google Scholar 

  • Horwitz EM, Prockop DJ, Fitzpatrick LA, Koo WW, Gordon PL, Neel M, Sussman M, Orchard P, Marx JC, Pyeritz RE, Brenner MK (1999) Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta (see comments). Nat Med 5(3): 309–313

    Article  PubMed  CAS  Google Scholar 

  • Jackson KA, Mi T, Goodell MA (1999) Hematopoietic stem cells in adult skeletal muscle. Abstract (LBA035), International Society of Experimental Hematology, annual scientific meeting, Monte Carlo

    Google Scholar 

  • Junghahn I, Goan SR, Fichtner I, Becker M, Möbest D, Henschler R (1998) Circulating endothelial cells from adult mobilized as well as from placental blood engraft in NOD/SCID mice. Abstract 2897, American Society of Hematology, annual scientific meeting, Miami

    Google Scholar 

  • Kapp U, Bhatia M, Bonnet D, Murdoch B, Dick JE (1998) Treatment of non-obese diabetic (NOD)/Severe-combined immunodeficient mice (SCID) with flt3 ligand and interleukin-7 impairs the B-lineage commitment of re-populating cells after transplantation of human hematopoietic cells. Blood 92(6): 2024–2031

    PubMed  CAS  Google Scholar 

  • Kopen GC, Prockop DJ, Phinney DG (1999) Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. Proc Natl Acad Sci USA 96(19): 10711–10716

    Article  PubMed  CAS  Google Scholar 

  • Lapidot T, Pflumio F, Doedens M, Murdoch B, Williams DE, Dick JE (1992) Cytokine Stimulation of multilineage hematopoiesis from immature human cells engrafted in SCID mice. Science 255(5048): 1137–1141

    Article  PubMed  CAS  Google Scholar 

  • Larochelle A, Vormoor J, Hanenberg H, Wang JC, Bhatia M, Lapidot T, Moritz T, Murdoch B, Xiao XL, Kato I, Williams DA, Dick JE (1996) Identification of primitive human hematopoietic cells capable of repopulating NOD/SCID mouse bone marrow: implications for gene therapy. Nat Med 2(12): 1329–1337

    Article  PubMed  CAS  Google Scholar 

  • Morrison SJ, Uchida N, Weissman IL (1995) The biology of hematopoietic stem cells. Annu Rev Cell Dev Biol 11: 35–71

    Article  PubMed  CAS  Google Scholar 

  • Nolta JA, Hanley MB, Kohn DB (1994) Sustained human hematopoiesis in immunodeficient mice by cotransplantation of marrow stroma expressing human interleukin-3: analysis of gene transduction of long-lived progenitors. Blood 83(10): 3041–3051

    PubMed  CAS  Google Scholar 

  • Ogawa M (1993) Differentiation and proliferation of hematopoietic stem cells. Blood 81(11): 2844–2853

    PubMed  CAS  Google Scholar 

  • Orlic D, Bodine DM (1994) What defines a pluripotent hematopoietic stem cell (PHSC): will the real PHSC please stand up! (Editorial). Blood 84(12): 3991–3994

    PubMed  CAS  Google Scholar 

  • Petersen BE, Bowen WC, Patrene KD, Mars WM, Sullivan AK, Murase N, Boggs SS, Greenberger JS, Goff JP (1999) Bone marrow as a potential source of hepatic oval cells. Science 284(5417): 1168–1170

    Article  PubMed  CAS  Google Scholar 

  • Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284(5411): 143–147

    Article  PubMed  CAS  Google Scholar 

  • Prockop DJ (1997) Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 276(5309): 71–74

    Article  PubMed  CAS  Google Scholar 

  • van Beusechem VW, Kukler A, Heidt PJ, Valerio D (1992) Long-term expression of human adenosine deaminase in rhesus monkeys transplanted with retrovirus-infected bone-marrow cells. Proc Natl Acad Sci USA 89(16): 7640–7644

    Article  PubMed  Google Scholar 

  • Vormoor J, Lapidot T, Pflumio F, Risdon G, Patterson B, Broxmeyer HE, Dick JE (1994) Immature human cord blood progenitors engraft and proliferate to high levels in severe combined immunodeficient mice. Blood 83(9): 2489–2497

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

W. Holzgreve M. Lessl

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kapp, U., Mertelsmann, R. (2001). Plasticity of Stem Cells. In: Holzgreve, W., Lessl, M. (eds) Stem Cells from Cord Blood, in Utero Stem Cell Development and Transplantation-Inclusive Gene Therapy. Ernst Schering Research Foundation Workshop, vol 33. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04469-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04469-8_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-04471-1

  • Online ISBN: 978-3-662-04469-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics