Skip to main content

Vector Modulational Instabilities and Soliton Experiments

  • Conference paper
  • 298 Accesses

Part of the book series: Centre de Physique des Houches ((LHWINTER,volume 12))

Abstract

In optical fibers, the interaction between nonlinear and dispersive effects leads to phenomena such as modulational instability (MI)[1, 2, 3, 4, 5, 6], in which a continuous or quasi-continuous wave undergoes a modulation of its amplitude or phase in the presence of noise or any other small perturbation. The perturbation can originate from quantum noise (spontaneous-MI) or from a frequency shifted signal wave (induced-MI). MI has been observed for the first time for a single pump wave propagating in a standard non birefringe.nt fiber (scalar MI)[7]. It has been shown that scalar MI only occurs when the group velocity dispersion (GVD) is negative (anomalous dispersion regime).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. See, e.g., Agrawal G.P., Nonlinear Fiber Optics, 2nd ed. ( Academic, New York, 1995 ).

    Google Scholar 

  2. Ostroskii L.A., Zh. Eksp. Teor. Fiz. 51 (1966) 1189 [Soy. Phys. JETP 24 (1967) 797].

    Google Scholar 

  3. Bespalov V.I. and Talanov V.I., Pis'ma Zh. Eksp. Teor. Fiz. 3 (1966) 471 [JETP Len. 3 (1966) 307].

    Google Scholar 

  4. Karpman V.I., JETP. Lett. 6 (1967) 277.

    ADS  Google Scholar 

  5. Benjamin T.J. and Feir J.E., J. Fluid Mech. 27 (1967) 417.

    Article  ADS  MATH  Google Scholar 

  6. Hasegawa A. and Brinkman W.F., IEEE. J. Quant. Electron. 16 (1980) 694.

    Article  ADS  Google Scholar 

  7. Tai K., Hasegawa A., and Tornita A., Phys. Rev. Leit. 56 (1986) 135.

    Article  ADS  Google Scholar 

  8. Berkhoer A.L. and Zakharov V.E., Soy. Phys. JETP 31 (1970) 486.

    ADS  Google Scholar 

  9. Rothenberg J.E., Phys. Rev. A 42 (1990) 682.

    Article  ADS  Google Scholar 

  10. Drummond P.D., Kennedy T.A.B., Dudley J.M., Leonhardt R., and Harvey J.D., Opt. Commun. 78 (1990) 137.

    Article  ADS  Google Scholar 

  11. Murdoch S.G., Leonhardt R., and Harvey J.D., Opt. Lett. 20 (1995) 866.

    Article  ADS  Google Scholar 

  12. Seve E., Tchofo Dinda P., Millot G., R.emoissenet M., Bilbault J.-M., and Haelterman H., Phys. Rev. A 54 (1996) 3519; Tchofo Dinda P., Millot G., Seve E., and Haelterman M., Opt. Lett. 21 (1996) 1640.

    Google Scholar 

  13. Lantz E., Gindre D., Maillotte H., and Monneret J., J. Opi. Soc. Am. B 14 (1997) 116.

    Article  ADS  Google Scholar 

  14. Millot G., Pitois S., Tchofo Dinda P., and Haelterman M., Opt. Lett. 22 (1997) 1686.

    Article  ADS  Google Scholar 

  15. Hasegawa A., Opt. Lett. 9 (1984) 288.

    Article  ADS  Google Scholar 

  16. Millot G., Seve E., Wabnitz S., and Haelterman H., J. Opt. Soc. Am. B. 15 (1998) 1266.

    Google Scholar 

  17. Millot G., Seve E., and Wabnitz S., Phys. Rev. Lett. 79 (1997) 661.

    Article  ADS  Google Scholar 

  18. Millot G., Seve E., Wabnitz S., and Haelterman H., Opt. Lett. 23 (1998) 511

    Article  ADS  Google Scholar 

  19. Wabnitz S., Phys. Rev. A 38 (1988) 2018; S. Trillo and S. Wabnitz, J. Opt. Soc. of Am.. 6 (1988) 238.

    Google Scholar 

  20. Kivshar Y.S. and Turitsyn S.K., Opt. Lett. 18 (1993) 337.

    Article  ADS  Google Scholar 

  21. Seve E., Millot G., and Wabnitz S., Opt. Lett. 23 (1998) 1829.

    Google Scholar 

  22. 504; Trillo S., Millot G., Seve E., and Wabnitz S., Appl. Phys. Lett,. 72 (1998) 150; Seve E., Millot G., Trillo S., and Wabnitz S., J. Opt. Soc. Am. B 15 (1998) 2537.

    Google Scholar 

  23. 895; Trillo S. and Wabnitz S., Phys. Lett. A 159 (1991) 252.

    Google Scholar 

  24. Haelterman M. and Sheppard A., Phys. Rev. E 49 (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Millot, G. et al. (1999). Vector Modulational Instabilities and Soliton Experiments. In: Zakharov, V.E., Wabnitz, S. (eds) Optical Solitons: Theoretical Challenges and Industrial Perspectives. Centre de Physique des Houches, vol 12. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03807-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-03807-9_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66314-0

  • Online ISBN: 978-3-662-03807-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics