Skip to main content

Recent Developments in the Ex Vivo Manipulation of Hematopoietic Cells from Bone Marrow and Blood

  • Conference paper
  • 50 Accesses

Part of the book series: Ernst Schering Research Foundation Workshop ((SCHERING FOUND,volume 20))

Abstract

Transplantation of the hematopoietic system has become a more and more widely used tool within antitumor treatment regimens. In leukemias, the primary goal is to completely eradicate the malignant clone; however, autologous hematopoietic stem cell transplantation has also been introduced as treatment for a number of solid tumors in an effort to increase chemotherapy intensity beyond levels that are conventionally dose limiting due to life-threatening bone marrow toxicity. Recombinant hematopoietic growth factors have been of substantial benefit in improving engraftment kinetics (Lieschke 1992, for review). Especially the mobilization of progenitor cells from bone marrow into the peripheral blood has triggered a substantial extension of application fields for hematopoietic stem cell transfer, which now includes a variety of solid tumor disease states. This was mainly due to the much simplified logistics of harvesting peripheral blood progenitor cells (PBPC) without the need of general anesthesia. In most instances, the peripheral blood turned out to be a superior source of transplantable stem cells compared to progenitor cells from bone marrow, especially as the speed of neutrophil and platelet recovery was hastened (Brugger et al. 1993b, 1994b, 1995; Elias et al. 1992; Sheridan et al. 1992; To et al. 1992).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barnett MJ, Eaves CJ, Phillips GL, Gascoyne RD, Hogge DE, Horsman DE, Humphries RK, Klingemann HG, Lansdorp PM, Nantel SH et al (1993) Autografting with cultured marrow in chronic myeloid leukemia: results of a pilot study. Blood 84:724–732

    Google Scholar 

  • Baum CM, Weissman IL, Tsukamoto AS, Buckle AM, Peault B (1992) Isolation of a candidate human hematopoietic stem-cell population. Proc Natl Acad Sci USA 89:2804–2808

    Article  PubMed  CAS  Google Scholar 

  • Berenson RJ, Andrews RG, Bensinger WI, Kalamasz D, Knitter G, Buckner CD, Bernstein ID (1988) Antigen CD34+ marrow cells engraft lethally irradiated baboons. J Clin Invest 81:951–955

    Article  PubMed  CAS  Google Scholar 

  • Berenson RJ, Bensinger WI, Hill RS, Andrews RG, Garcia-Lopez J, Kalamasz D, Still BJ, Spitzer G, Buckner CD, Bernstein ID, Thomas ED (1991) En-graftment after infusion of CD34+ marrow cells in patients with breast cancer or neuroblastoma. Blood 77:1717–1722

    PubMed  CAS  Google Scholar 

  • Bezwoda WR, Seymour I, Dansey RD (1995) High dose chemotherapy with hematopoietic rescue as primary treatment for metastatic breast cancer: a randomized trial. J Clin Oncol 13:2483–2489

    PubMed  CAS  Google Scholar 

  • Broxmeyer HE, Hangoc C, Cooper S, Ribeiro RC, Graves V, Yoder M, Wagner J, Vadhan-Raj S, Benninger L, Rubinstein P et al (1992) Growth characteristics and expansion of human umbilical cord blood and estimation of its potential for transplantation in adults. Proc Natl Acad Sci USA 89:4109–4113

    Article  PubMed  CAS  Google Scholar 

  • Brugger W, Mocklin W, Heimfeld S, Berenson RJ, Mertelsmann R, Kanz L (1993a) Ex vivo expansion of peripheral blood CD34+ progenitor cells by stem cell factor, interleukin-1 beta (IL-1 beta), IL-6, IL-3, interferon-gamma, and erythropoietin. Blood 81:2579–2584

    PubMed  CAS  Google Scholar 

  • Brugger W, Birken R, Bertz H, Frisch J, Schulz G, Mertelsmann R, Kanz L (1993b) Peripheral blood progenitor cells mobilized by chemotherapy + G-CSF accelerate both neutrophil and platelet recovery after high dose VP16, ifosfamide and cisplatin. Br J Haematol 84:402

    Article  PubMed  CAS  Google Scholar 

  • Brugger W, Bross KJ, Glatt M, Weber F, Mertelsmann R, Kanz L (1994a) Mobilization of tumor cells and hematopoietic progenitor cells into peripheral blood of patients with solid tumors. Blood 83:636

    PubMed  CAS  Google Scholar 

  • Brugger W, Henschler R, Heimfeld S, Berenson R, Mertelsmann R, Kanz L (1994b) Positively selected autologous blood CD34+ cells and unseparated peripheral blood progenitor cells mediate identical hematopoietic engraft-ment after high-dose VP-16, ifosfamide, carboplatin, and epirubicin. Blood 84:1421–1426

    PubMed  CAS  Google Scholar 

  • Brugger W, Heimfeld S, Berenson RJ, Färber L, Mertelsmann R, Kanz L (1995) Reconstitution of hematopoiesis after high-dose chemotherapy by autologous progenitor cells expanded ex vivo. N Engl J Med 333:283–287

    Article  PubMed  CAS  Google Scholar 

  • Caldwell J, Palsson BO, Locey M, Emerson SG (1991) Culture perfusion schedules influence the metabolic activity and granulocyte-macrophage colony stimulating factor production rates of human marrow stromal cells. J Cell Physiol 147:344–357

    Article  PubMed  CAS  Google Scholar 

  • Chang J, Morgenstern GR, Coutinho LH, Scarffe JH, Carr T, Deakin DP, Testa NG, Dexter TM (1989) The use of bone marrow cells grown in long-term culture for autologous bone marrow transplantation in acute myeloid leukemia: an update. Bone Marrow Transplant 4:5–9

    PubMed  CAS  Google Scholar 

  • Cicuttini FM, Martin M, Salvaris E, Ashman L, Begley CG, Novotny J, Maher D, Boyd AW (1992) Support of human cord blood progenitor cells on human stromal cell lines transformed by SV40 large T antigen under the influence of an inducible (metallothionein) promoter. Blood 80:102–112

    PubMed  CAS  Google Scholar 

  • Dexter TM, Allen TD, Lajtha LG (1977) Conditions controlling the proliferation of hematopoietic cells in vitro. J Cell Physiol 91:335–344

    Article  PubMed  CAS  Google Scholar 

  • Elias AD, Ay ash L, Anderson KC et al (1992) Mobilization of peripheral blood progenitor cells by chemotherapy and granulocyte-macrophage colony-stimulating factor for hematologic support after high-dose intensification for breast cancer. Blood 79:3036–3044

    PubMed  CAS  Google Scholar 

  • Gieselmann V (1995) Lysosomal storage diseases. Biochim Biophys Acta 1270:103–126

    Article  PubMed  Google Scholar 

  • Haylock DN, To LB, Dowse TL, Juttner CA, Simmons PJ (1992) Ex vivo expansion and maturation of peripheral blood CD34+ cells and unseparated paripheral blood progenitor cells. Blood 80:1405–1412

    PubMed  CAS  Google Scholar 

  • Henschler R, Brugger W, Luft T, Frey T, Mertelsmann R, Kanz L (1994) Maintenance of transplantation potential in ex vivo expanded CD34+ peripheral blood progenitor cells. Blood 84:2898–2903

    PubMed  CAS  Google Scholar 

  • Kessinger A, Armitage JO (1991) The evolving role of autologous peripheral stem cell transplantation following high-dose therapy for malignancies. Blood 77:211

    PubMed  CAS  Google Scholar 

  • Koller MR, Bender JG, Miller WM, Papoutsakis ET (1993a) Expansion of primitive human hematopoietic progenitors in perfusion bioreactor system with 11–3 11–6 and stem cell factor. Biotechnology 11:358–363

    Article  PubMed  CAS  Google Scholar 

  • Koller MR, Emerson SG, Palsson BO (1993b) Large-scale expansion of human stem and progenitor cells from bone marrow mononuclear cells in perfusion cultures. Blood 82 378–384

    PubMed  CAS  Google Scholar 

  • Koller MR, Palsson MA, Manchel I, Palsson BO (1995) Long-term culture initiating cell expansion is dependent on frequent medium exchange combined with stromal and other accessory cell effects. Blood 86:1784–1793

    PubMed  CAS  Google Scholar 

  • Lansdorp PM, Dragowska W (1993) Maintenance of hematopoiesis in serum free bone marrow cultures involves sequential recruitment of quiescent progenitors. Exp Hematol 21:1321–1327

    PubMed  CAS  Google Scholar 

  • Lansdorp PM, Dragowska W, Mayani H (1993) Ontogeny-related changes in proliferative potential of human hematopoietic cells. J Exp Med 178:787–791

    Article  PubMed  CAS  Google Scholar 

  • Lieschke G, Burgess AW (1992) Granulocyte colony-stimulating factor and granulocyte-macrophage colony-stimulating factor. N Engl J Med 327:28–35, 99–106

    Article  PubMed  CAS  Google Scholar 

  • Mayani H, Dragowska W, Lansdorp PM (1993a) Characterization of functionally distinct subpopulations of CD34+ cord blood cells in serum-free long term cultures supplemented with hematopoietic cytokines. Blood 82:2664–2672

    PubMed  CAS  Google Scholar 

  • Mayani H, Dragowska W, Lansdorp PM (1993b) Cytokine-induced selective expansion and maturation of erythroid versus myeloid progenitors from purified cord blood precursor cells. Blood 81:3252–3258

    PubMed  CAS  Google Scholar 

  • Maze R, Carney JP, Kelley MR, Glassner BJ, Williams DA, Samson L (1996) Increasing DNA repair methyltransferase levels via bone marrow stem cell transduction rescues mice from the toxic effects of l,3-bis(2-chloroethyl)-1-nitrosourea, a chemotherapeutic alkylating agent. Proc Natl Acad Sci USA 92:206–210

    Article  Google Scholar 

  • Moore MAS (1991) Clinical implications of positive and negative hematopoietic stem cell regulators. Blood 78:1–19

    PubMed  CAS  Google Scholar 

  • Muench MO, Firpo MT, Moore MAS (1993) Bone marrow transplanation with interleukin-1 plus kit-ligand ex vivo expanded bone marrow accelerates hematopoietic reconstitution in mice without loss of stem cell lineage and proliferative potential. Blood 81:3463–3473

    PubMed  CAS  Google Scholar 

  • Naughton BA, Tjota A, Sibanda B, Naughton GK (1991) Hematopoiesis on suspended nylon screen-stromal cell microenvironments. J Biomech Eng 113:171–177

    Article  PubMed  CAS  Google Scholar 

  • Nolta JA, Smogorzewska EM, Kohn DB (1995) Analysis of optimal conditions for retroviral-mediated transduction of primitive human hematopoietic cells. Blood 86:101–105

    PubMed  CAS  Google Scholar 

  • Oh DJ, Koller MR, Palsson BO (1994) Frequent harvesting from perfused bone marrow cultures results in increased overall cell and progenitor expansion. Biotechnol Bioeng 44:609–616

    Article  PubMed  CAS  Google Scholar 

  • Peters SO, Kittler ELW, Ramshaw HS, Quesenberry PJ (1996) Ex vivo expansion of murine marrow cells with interleukin-3 (IL-3), IL-6, IL-11, and stem cell factor leads to impaired engraftment in irradiated hosts. Blood 87:30–37

    PubMed  CAS  Google Scholar 

  • Peters SO, Kittler ELW, Ramshaw AS, Quesenberry PJ (1995) Murine marrow cells expanded in culture with IL-3, IL-6, IL-11 and SCF aquire an engraftment defect in normal hosts. Exp Hematol 23:461–466

    PubMed  CAS  Google Scholar 

  • Peters WP (1995) High dose chemotherapy with autologous bone marrow transplantation for the treatment of breast cancer. In: De Vita VTS, Rosenberg SA (eds) Important advances in oncology. Lippincott, Philadelphia, pp 215–230

    Google Scholar 

  • Pettengell R, Gurney H, Radford JA et al (1992) Granulocyte colony-stimulating factor to prevent dose-limiting neutropenia in non-Hodgkin’s lymphoma: a randomized controlled trial. Blood 80:1430–1436

    PubMed  CAS  Google Scholar 

  • Ploemacher RE, van der Sluijs JP, van Beurden CAJ, Baert MRM, Chan PL (1991) Use of limiting-dilution type long-term marrow cultures in frequency analysis of marrow-repopulating and spleen colony-forming heamtopoietic stem cells in the mouse. Blood 78:2527–2533

    PubMed  CAS  Google Scholar 

  • Rebel VI, Dragowska W, Eaves CJ, Humphries RK, Lansdorp PM (1994) Amplification of Sca-1+ Lin- WGA+ cells in serum-free cultures containing steel factor, interleukin-6, and erythropoietin with maintenance of cells with long-term in vivo reconstituting potential. Blood 83:128–136

    PubMed  CAS  Google Scholar 

  • Ross AA, Cooper BW, Lazarus HM et al (1993) Detection and viability of tumor cells in peripheral blood stem cell collections from breast cancer patients using immunocytochemical and clonogenic assay techniques. Blood 82:2605–2610

    PubMed  CAS  Google Scholar 

  • Sardonini CA, Wu YJ (1993) Expansion and differentiation of human hematopoietic cells from static cultures through small-scale biorectors. Biotechnol Prog 9:131–137

    Article  PubMed  CAS  Google Scholar 

  • Schwartz RM, Emerson SG, Clarke MF, Palsson BO (1991) In vitro myelopoiesis stimulated by rapid medium exchange and supplementation with hematopoietic growth factors. Blood 78:3155–3161

    PubMed  CAS  Google Scholar 

  • Sharp J, Kessinger A, Armitage JO, Biermann P, Crouse D, Mann S, Pirruccello S, Vose J, Weisenburger DD (1991) Clinical significance of occult tumor cell contamination of hematopoietic harvests in non-Hodgkin’s lymphoma and Hogkin’s disease. Proceedings of the international symposium on ABMT in lymphoma, Hodgkin’s disease and multiple myeloma. Wilsede, Germany

    Google Scholar 

  • Sharp JG, Kessinger A, Vaughan WP et al (1992) Detection and clinical significance of minimal tumor cell contamination of peripheral blood stem cell harvests. Int J Cell Cloning 10:92

    Article  Google Scholar 

  • Sheridan WP, Begley G, Juttner CA et al (1992) Effect of peripheral-blood progenitor cells mobilised by filgrastim (G-CSF) on platelet recovery after high-dose chemotherapy. Lancet 339 640–644

    Article  PubMed  CAS  Google Scholar 

  • Srour EF, Brandt JE, Bridell RA, Gringsby S, Leemhuis T, Hoffman R (1993) Long term generation and expansion of human primitive hematopoietic progenitor cells in vitro. Blood 81:661–669

    PubMed  CAS  Google Scholar 

  • Testa NG, Dexter TM (1991) The biology of long-term bone marrow cultures and its application to bone marrow transplantation. Curr Opin Oncol 3:272–278

    Article  PubMed  CAS  Google Scholar 

  • To LB, Roberts MM, Haylock DN, Dyson PG, Branford AL, Thorp D, Ho JQK, Dart GW, Horvath N, Davy MLJ, Olweny CLM, Abdi E, Juttner CA (1992) Comparison of hematological recovery times and supportive care requirements of autologous recovery phase peripheral stem cell transplants autologous bone marrow transplants and allogeneic bone marrow transplants. Bone Marrow Transplant 9:277–284

    PubMed  CAS  Google Scholar 

  • Verfaillie CM, Catanzarro PM, Li WN (1994) Macrophage inflammatory protein 1-alpha, interleukin-3, and diffusible marrow stroma factors maintain human hematopoietic stem cells for at least eight weeks in vitro. J Exp Med 179:643–649

    Article  PubMed  CAS  Google Scholar 

  • Wang TY, Brennan JK, Wu JHD (1995) Multilineage hematopoiesis in a three-dimensional murine long-term bone marrow culture. Exp Hematol 22:26–32

    Google Scholar 

  • Witte O (1990) Steel locus defines new multipotent growth factor. Cell 63: 5–6

    Article  PubMed  CAS  Google Scholar 

  • Zandstra PW, Cameron G, Eaves CJ, Piret JM (1994) Hematopoietic progenitor cell expansion in stirred bioreactors. Blood 84:498a (abstract)

    Google Scholar 

Download references

Authors

Editor information

H. Wekerle H. Graf J. D. Turner

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Henschler, R., Winkler, J., Möbest, D., Spyridonidis, A., Lange, W., Mertelsmann, R. (1997). Recent Developments in the Ex Vivo Manipulation of Hematopoietic Cells from Bone Marrow and Blood. In: Wekerle, H., Graf, H., Turner, J.D. (eds) Cellular Therapy. Ernst Schering Research Foundation Workshop, vol 20. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03509-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-03509-2_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-03511-5

  • Online ISBN: 978-3-662-03509-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics