Skip to main content
  • 201 Accesses

Abstract

Ozone DIAL measurements in the PBL and the free troposphere can be performed in both the UV and the IR spectral regions, as already discussed in Chapter 2. For the UV region, it has also been shown that a fairly broad range of wavelengths can be used, and that rather large spacing between the on- and off-resonance wavelengths can be admitted without considerably increasing the sensitivity to aerosol interference. Since all performance characteristics of an UV DIAL system depend on the choice of the wavelengths, with partially contradicting requirements, any choice of transmitter wavelengths must be a compromise.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Pelon, G. Mégie; Ozone monitoring in the troposphere and the lower stratosphere: evaluation and operation of a ground-based lidar station, J. Geophys. Res. 22 (1982) 522–534.

    Google Scholar 

  2. E.V. Browell, A.F. Carter, S.T. Shipley, R.J. Allen, C.F. Butler, M.N. Mayo, J.H. Siviter, Jr., W.M. Hall; NASA multipurpose airborne DIAL system and measurements of ozone and aerosol profiles, Appl. Opt. 22 (1983) 522–534.

    Article  Google Scholar 

  3. G. Mégie, G. Ancellet, J. Pelon; Lidar measurements of ozone vertical profiles, Appl. Opt. 24 (1985) 3454–3463.

    Article  Google Scholar 

  4. H. Edner, K. Fredriksson, A. Sunesson, S. Svanberg, L. Uneus, W. Wendt; Mobile remote sensing system for atmospheric monitoring, Appl. Opt. 26 (1987) 4330–4338.

    Article  Google Scholar 

  5. G. Ancellet, G. Mégie, J. Pelon, R. Capitini, D. Renaut; Lidar measurements of SO2 and O3 in the boundary layer during the FOS-Berre campaign, Atmos. Environ. 21 (1987) 2215–2226.

    Article  Google Scholar 

  6. U. Goers, J. Glauer, W. Lahmann, C. Weitkamp, W. Michaelis; Tropospheric Ozone measurements with the mobile Differential Absorption Lidar ARGOS, in: EUROTRAC Annual Report ‘91, Part 7, TESLAS, EUROTRAC ISS, Garmisch-Partenkirchen 1992, pp. 17–23.

    Google Scholar 

  7. E. Durieux, B. Calpini, A. Clappier, L. Fiorani, M. Flamm, L. Jaquet, H. van der Bergh; An innovative high repetition rate shot-per-shot acquisition system and its application to a new kind of tropospheric lidar measurements, in: L.D. Laude (ed.), Excimer Lasers, Kluwer Acad. Publ., Dordrecht 1994, pp. 245–267.

    Google Scholar 

  8. O. Uchino, M. Totunaga, M. Maeda, Y. Miyazoe; Differential Absorption Lidar measurements fo tropospheric ozone with excimer Raman-hybrid lasers, Opt. Lett. 8 (1983) 347–349.

    Article  Google Scholar 

  9. W. Grant, E. Browell, N. Higdon, S. Ismail; Raman shifting of KrF laser radiation for tropospheric ozone measurements, Appl. Opt. 30 (1991) 2628–2633.

    Article  Google Scholar 

  10. U. Kempfer, W. Carnuth, R. Lotz, T. Trickl; A wide-range system for tropospheric ozone measurements: development and application, Rev. Sci. Instrum. 65 (1994) 3145–3164.

    Article  Google Scholar 

  11. T. Schaberl; Messung des Ozonflusses in der unteren Troposphäre mit einem neuen Ozon-DIAL-System und einem Radar-RASS, Ph.D. Thesis, Universität Hamburg, 1995.

    Google Scholar 

  12. G. Ancellet, A. Papayannis, G. Mégie, J. Pelon; Tropospheric ozone measurements using a Nd:YAG laser and the Raman shifting technique, J. Ocean. Atmos. Technol. 6 (1989) 832–839.

    Article  Google Scholar 

  13. A. Papayannis, G. Ancellet, J. Pelon, G. Mégie; Multiwavelength lidar for ozone measurements in the troposphere and the lower stratosphere, Appl. Opt. 29 (1990) 467–476.

    Article  Google Scholar 

  14. D. Haner, S. McDermid; Stimulated Raman shifting of the Nd:YAG fourth harmonic (266 nm) in H2, HD and D2, IEEE J. Quant. Electr. QE- 26 (1990) 1292–1299.

    Article  Google Scholar 

  15. I.S. McDermid, D. Haner, M. Kleiman, D.T. Walsh, M. White; Differential Absorption Lidar system for tropospheric and stratospheric ozone measurements, Opt. Eng. 30 (1991) 22–30.

    Article  Google Scholar 

  16. L. Stefanutti, Castagnoli, M. Del Guasta, M. Morandi, V.M. Sacco, L. Zuccagnoli, S. Godin, G. Mégie, J. Porteneuve; The Antarctic ozone LIDAR system, Appl. Phys. B55 (1992) 3–12.

    Google Scholar 

  17. J.A. Sunesson, A. Apituley, D.P.J. Swart; Differential absorption lidar system for routine monitoring of tropospheric ozone, Appl. Opt. 33 (1994) 7045–7058.

    Article  Google Scholar 

  18. K. Asai, T. Igarashi; Detection of O3 by differential absorption using CO2 laser, Opt. Quant. Electr. 7 (1975) 211–215.

    Article  Google Scholar 

  19. K. Asai, T. Itabe, T. Igarashi; Range-resolved measurements of atmospheric ozone using a Differential Absorption CO2 laser radar, Appl. Phys. Lett. 35 (1979) 60–62.

    Article  Google Scholar 

  20. R. Stewart, J. Bufton; Development of a pulsed 9.5 m lidar for regional scale ozone measurements, Opt. Eng. 19 (1980) 503–507.

    Article  Google Scholar 

  21. T. Itabe, K. Asai, M. Ishizu, T. Agura, T. Igarashi; Measurements of the urban ozone vertical profiles with an airborne CO2 DIAL, Appl. Opt. 28 (1989) 931–934.

    Article  Google Scholar 

  22. R. Barbini, F. Colao, A. Palucci, S. Ribezzo; Troposphereic ozone measurements from the ENEA lidar/DIAL station, in: EUROTRAC Annual Report ‘92, Part 7, TESLAS, EUROTRAC ISS, Garmisch-Partenkirchen 1993.

    Google Scholar 

  23. P.A. Bokhan, V. Burlakov, V. Gerasimov, V. Solomonov; Mechanism of the stimulated emission and energy characteristics of the manganese vapour laser, Sov. J. Quantum Electron. 3 (1976) 1239–1243.

    Google Scholar 

  24. G. Evtusgenko; Gold-vapour laser. Present state-of-the-art. Design and application, Proc. SPIE 2110 (1993) 204–214.

    Article  Google Scholar 

  25. A. Papayannis, G. Ancellet, J.L. Conrad, C. Laqui, J. Pelon; Active optoelectronic system for stabilizing pulsed lasers output energy at the 4th harmonic frequency, Rev. Sci. Instrum. 64 (1993) 612–617.

    Article  Google Scholar 

  26. T. Loree, R. Sze, D. Barker, P. Scott; New lines in the UV: SRS of excimer laser wavelengths, IEEE J. Quant. Electr. QE-15 (1979) 337–342.

    Article  Google Scholar 

  27. G. Kunz, F. Swart; Light source for dynamic testing of photo detectors, TNO-report FEL 1989–69, TNO, Den Haag 1989.

    Google Scholar 

  28. A. Luches, V. Nassissi, M.R. Perrone; Improved conversion efficiency of XeC1 radiation to the first Stokes at high pump energy, Appl. Phys. B 47 (1988) 101–105.

    Google Scholar 

  29. B. Scott, N. Djeu; Efficient Raman energy extraction in HD, Appl. Opt. 29 (1990) 2217–2218.

    Article  Google Scholar 

  30. D. Diebel, M. Bristow, R. Zimmermann; Stokes shifted laser lines in KrF-pumped hydrogen: reduction of beam divergence by addition of helium, Appl. Opt. 30 (1991) 626–628.

    Article  Google Scholar 

  31. W. Fenner, H. Hyatt, J. Kellam, S. Porto; Raman cross-section of some simple gases, J. Opt. Soc. Amer. 63 (1973) 73–77.

    Article  Google Scholar 

  32. J.H. Newton, G.M. Schindler; Numerical model of multiple-Raman-shifting excimer lasers to the blue-green, Opt. Lett. 6 (1981) 125–127.

    Article  Google Scholar 

  33. A. DeMartino, R. Frey, F. Pradere; Near-to-infrared tunable Raman laser, IEEE J. Quant. Electr. QE- 16 (1980) 1184–1191.

    Google Scholar 

  34. J. Ottusch, D.A. Rockwell; Measurement of Raman gain coefficients of hydrogen, deuterium ant methane, IEEE J. Quant. Electr. QE- 24 (1988) 2076–2080.

    Google Scholar 

  35. B. Bobbs, C. Warner; Absence of second Stokes in a Raman generator with no fourwave mixing, Opt. Lett. 11 (1986) 88–89.

    Article  Google Scholar 

  36. K. Leung, M. Oron, D. Klimek, R. Holmes, A. Flusberg; Observation of parametric gain suppression in rotational Raman transitions of N2 and H2, Opt. Lett. 13 (1988) 33–35.

    Article  Google Scholar 

  37. H. Komine, E. Steppaerts; Higher Stokes order Raman conversion of XeCl laser in hydrogen, Opt. Lett. 7 (1982) 157–159.

    Article  Google Scholar 

  38. K. Kuroda, T. Shimura, T. Omatsu; Tech. Digest, Conf. Lasers Electro-Opt. Soc. Amer. Washington, DC. 1988, paper WV4.

    Google Scholar 

  39. C.D. Marshall, et al.; Ultraviolet laser emission properties of Ce:LiSAF, Technical Digest ‘Advanced solid state lasers’, Optical Society America, Washington, DC.1994, p. 113.

    Google Scholar 

  40. R. Measures; Laser Remote Sensing: Fundamentals and Applications, Wiley-Interscience Publ., New York 1984.

    Google Scholar 

  41. D.P.J. Swart, J. Spakman, H.B. Bergwerff; RIVM’s stratospheric ozone lidar for NDSC station Lauder: System description and first results, in: Abstracts of Papers ILRC 17, Sendai 1994, pp. 405–408.

    Google Scholar 

  42. J. Bösenberg, G. Ancellet, A. Apituley, H. Bergwerff, G.V. Cossart, H. Edner, J. Fiedler, B. Galle, C.N. de Jonge, J. Mellquist, V. Mitev, T. Schaberl, G. Sonnemann, J. Spaakman, D.J.P. Swart, E. Wallinder; Tropospheric ozone lidar intercomparison experiment, Trolix ‘91: Field phase report, Report No. 101, Max-Planck-Institut für Meteorologie, Hamburg 1993.

    Google Scholar 

  43. J.A. Sunesson, A. Apituley; RIVM tropospheric ozone lidar: system description and first results, RIVM Report 222201006, National Institute of Public Health and Environmental Protection, Bilthoven 1990.

    Google Scholar 

  44. R.E.W. Pettifer; Signal induced noise in lidar experiments, J. Atmos. Terr. Phys. 37 (1975) 669–673.

    Article  Google Scholar 

  45. Y. Iikura, N. Sugimoto, Y. Sasano, H. Shimizu; Improvement on lidar data processing for stratospheric aerosols measurements, Appl. Opt. 26 (1987) 5299–5306.

    Article  Google Scholar 

  46. H. Sang Lee, G.K. Schwemmer, C.L. Korb, M. Dombrowski, C. Prasad; Gated photomultiplier response characterization for DIAL measurements, Appl. Opt. 29 (1990) 3303–3315.

    Article  Google Scholar 

  47. I.S. McDermid, S.M. Godin, D.T. Walsh; Lidar measurements of stratospheric ozone and intercomparisons and validation, Appl. Opt. 33 (1990) 4914–4923.

    Article  Google Scholar 

  48. R. Barbini, A. Ghigo, M. Giorgi, K.N. Iyer, A. Palucci, S. Ribezzo; Injection locked single mode high power low divergence TEA CO2 laser using SFUR configuration, Opt. Comm. 60 (1986) 239–243.

    Article  Google Scholar 

  49. R. Barbini, A. Ghigo, A. Palucci, S. Ribezzo; Line tunable TEA CO2 laser using SFUR configuration, Opt. Comm. 68 (1988) 41–46.

    Article  Google Scholar 

  50. R. Barbini, F. Colao, F. D’Amato, M. Giorgi, S. Marchetti; A long pulse TE CO2 laser with a negative branch unstable resonator, Nuovo Cimento 12 D (1990) 967–974.

    Article  Google Scholar 

  51. R. Barbini, P. Belli, G. Bitelli, F. D’Amato, E. Galletti, E. Stucchi, A. Ferrario; A long pulse, high energy, narrow bandwidth CO2 laser for Doppler wind Lidar applications, Nuovo Cimento 12 D (1990) 1633–1639.

    Article  Google Scholar 

  52. E. Galletti, E. Stucchi, A. Ferrario, R. Barbini, P. Belli, G. Bitelli, F. D’Amato, M. Giorgi; Development of a CO2 pulsed laser for spaceborne coherent Doppler Lidar, SPIE Proc. 1181 (1989) 113.

    Article  Google Scholar 

  53. C. Weitkamp, U.-B. Goers, J. Glauer, W. Lahmann, P. Bisling, S. Koehler, W. Michaelis; Das mobile Lidarsystem ARGOS zum ortsaufgelösten Fernmessung gasfömiger Luftschadstoffe, in: Verein Deutscher Ingenieure (VDI) (ed.), Umwelt-Messtechnik, VDI Tagungsbericht, Düsseldorf 1992, pp. 105–114.

    Google Scholar 

  54. U.B. Goers; Laserfernmessung von Schwefeldioxid und Ozon in der unteren Troposphäre mit Hilfe der differentiellen Absorption und Streuung unter den Bedingungen des mobilen Einsatzes und der besonderen Berücksichtigung des Einflusses von Grenzschicht-Aerosolen, Ph.D. Thesis, University of Hamburg, 1994, GKSS-Forschungszentrum Geesthacht GmbH, GKSS-94/E/52.

    Google Scholar 

  55. U. Kempfer; Entwicklung und Anwendung einew differentiellen Absorptions-LIDAR-Systems zur Messung der troposphärischen Ozonkonzentration, Ph.D. Thesis, University of Munich 1992.

    Google Scholar 

  56. H. Edner, P. Pagnarson, S. Svanberg, E. Wallinder; Vertical Lidar probing of ozone and related trace species, EUROTRAC Annual Report ‘90, Part 7, TESLAS, EUROTRAC ISS, Garmisch-Partenkirchen 1991, pp. 37–40.

    Google Scholar 

  57. J. Cooney, J. Orr, C. Tomasetti; Measurements separating the gaseous and aerosol components of laser atmospheric backscatter, Nature 224 (1969) 1098–1099.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Papayannis, A. (1997). Instruments. In: Bösenberg, J., Brassington, D.J., Simon, P.C. (eds) Instrument Development for Atmospheric Research and Monitoring. Transport and Chemical Transformation of Pollutants in the Troposphere, vol 8. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03405-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-03405-7_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08291-7

  • Online ISBN: 978-3-662-03405-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics