Skip to main content

Künstliche Mini‐Gehirne für Roboter

  • Chapter
  • First Online:
Planen und Handeln
  • 2150 Accesses

Zusammenfassung

Auch Tiere mit relativ kleinen Gehirnen zeigen erstaunlich komplexe und robuste Wahrnehmungs‐ und Verhaltensleistungen. Dies gilt insbesondere für Insekten. Deren Mini‐Gehirne sind anpassungs‐ und lernfähig, sie ermöglichen ihnen, langfristige Gedächtnisse herauszubilden und sich kurzfristig an neue Gegebenheiten anzupassen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Ardin P, Peng F, Mangan M, Lagogiannis K, Webb B (2016) Using an insect mushroom body circuit to encode route memory in complex natural environments. PLoS Comput Biol 12(2):e1004683

    Google Scholar 

  • Avarguès‐Weber A, Giurfa M (2013) Conceptual learning by miniature brains. Proc R Soc B 280:20131907. doi:10.1098/rspb.2013.1907

  • Avarguès‐Weber A, Deisig N, Giurfa M (2011) Visual cognition in social insects. Annu Rev Entomol 56:423–443

    Google Scholar 

  • Baddeley B, Graham P, Philippides A, Husbands P (2011) Holistic visual encoding of antlike routes: Navigation without waypoints. Adapt Behav 19(1):3–15

    Google Scholar 

  • Benjamin BV, Gao P, McQuinn E, Choudhary S, Chandrasekaran AR, Bussat JM, Alvarez‐Icaza R, Arthur JV, Merolla PA, Boahen K (2014) Neurogrid: A Mixed‐Analog‐Digital Multichip System for Large‐Scale Neural Simulations. Proc. IEEE 102:699–716

    Google Scholar 

  • Boahen K (2005) Neuromorphic microchips. Sci Am 292(5):56–63

    Google Scholar 

  • Chittka L, Niven J (2009) Are bigger brains better? Curr Biol 19(21):R995–R1008

    Google Scholar 

  • Furber SB, Lester DR, Plana LA, Garside JD, Painkras E, Temple S, Brown AD (2013) Overview of the SpiNNaker System Architecture. IEEE Trans. Comput 62:2454–2467

    Google Scholar 

  • Hammer M (1997) The neural basis of associative reward learning in honeybees. Trends Neurosci 20(6):245–252

    Google Scholar 

  • Hammer M, Menzel R (1995) Learning and memory in the honeybee. J Neurosci 15:1617–1630

    Google Scholar 

  • Hammer M, Menzel R (1998) Multiple sites of associative odor learning as revealed by local brain microinjections of octopamine in honeybees. Learn Memory 5:146–156

    Google Scholar 

  • Helgadottir LI, Haenicke J, Landgraf T, Rojas R, Nawrot MP (2013) Conditioned behavior in a robot controlled by a spiking neural network. In: IEEE (Hrsg) 6th International IEEE/EMBS Conference on Neural Engineering (NER). doi:10.1109/NER.2013.6696078, S 891–894

  • Helias M, Kunkel S, Masumoto G, Igarashi J, Eppler JM, Ishii S, Fukai T, Morrison A, Diesmann M (2012) Supercomputers ready for use as discovery machines for neuroscience. Front Neuroinform 6:26. doi:10.3389/fninf.2012.00026

  • Indiveri G, Horiuchi TK (2011). Frontiers in neuromorphic engineering. Front Neurosci 5:118

    Google Scholar 

  • Landgraf T (2013) RoboBee: A Biomimetic Honeybee Robot for the Analysis of the Dance Communication System (Doctoral dissertation, Freie Universität Berlin)

    Google Scholar 

  • Liu SC, Delbruck T (2010) Neuromorphic sensory systems. Curr Opin Neurobiol 20(3):288–295

    Google Scholar 

  • Mead C (1989) Analog VLSI and Neural Systems. Addison‐Wesley, Reading, MA

    Google Scholar 

  • Menzel R, Kirbach A, Haass WD, Fischer B, Fuchs J, Koblofsky M, Lehmann K, Reiter L, Meyer H, Nguyen H, Jones S (2011) A common frame of reference for learned and communicated vectors in honeybee navigation. Curr Biol 21(8):645–650

    Google Scholar 

  • Menzel R (2012) The honeybee as a model for understanding the basis of cognition. Nat Rev Neurosci 13(11):758–768

    Google Scholar 

  • Menzel R, Eckholdt M (2016) Die Intelligenz der Bienen: Wie sie denken, planen, fühlen und was wir daraus lernen können. Knaus, München

    Google Scholar 

  • Merolla PA, Arthur JV, Alvarez‐Icaza R, Cassidy AS, Sawada J, Akopyan F et al. (2014) A million spiking‐neuron integrated circuit with a scalable communication network and interface. Science 345:668–673

    Google Scholar 

  • Neftci E, Binas J, Rutishauser U, Chicca E, Indiveri G, Douglas RJ (2013) Synthesizing cognition in neuromorphic electronic systems. P Natl A Sci USA 110:E3468–E3476

    Google Scholar 

  • Pamir E, Szyszka P, Scheiner R, Nawrot MP (2014) Rapid learning dynamics in individual honeybees during classical conditioning. Front Behav Neurosci 8

    Google Scholar 

  • Passino KM, Seeley TD (2006) Modeling and analysis of nest‐site selection by honeybee swarms: the speed and accuracy trade‐off. Behav Ecol Sociobiol 59(3):427–442

    Google Scholar 

  • Pfeil T, Grübl A, Jeltsch S, Müller E, Müller P, Petrovici MA, Schmuker M, Brüderle D, Schemmel J, Meier K (2013) Six networks on a universal neuromorphic computing substrate. Front Neurosci 7:11

    Google Scholar 

  • Schemmel J, Brüderle D, Grübl A, Hock M, Meier K, Millner S (2010) A Wafer‐Scale Neuromorphic Hardware System for Large‐Scale Neural Modeling. In: IEEE (Hrsg) Proceedings of the 2010 International Symposium on Circuits and Systems (ISCAS), S 1947–1950

    Google Scholar 

  • Schmuker M, Pfeil T, Nawrot MP (2014) A neuromorphic network for generic multivariate data classification. P Natl A Sci USA 111:2081–2086

    Google Scholar 

  • Walter F, Röhrbein F, Knoll A (2015) Neuromorphic implementations of neurobiological learning algorithms for spiking neural networks. Neural Networks 72:152–167

    Google Scholar 

  • Seeley TD, Visscher PK, Schlegel T, Hogan PM, Franks NR, Marshall JA (2012) Stop signals provide cross inhibition in collective decision‐making by honeybee swarms. Science 6;335(6064):108–11

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tim Landgraf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Fachmedien Wiesbaden GmbH

About this chapter

Cite this chapter

Landgraf, T., Nawrot, M. (2017). Künstliche Mini‐Gehirne für Roboter. In: Walkowiak, W., Erber-Schropp, J. (eds) Planen und Handeln. Springer Spektrum, Wiesbaden. https://doi.org/10.1007/978-3-658-16891-9_9

Download citation

Publish with us

Policies and ethics