Skip to main content

Cellular Processes Concerned with Vasopressin Biosynthesis, Storage and Release

  • Conference paper
Neurosecretion

Abstract

The mammalian hypothalamo-neurohypophysial complex6 contains a group of well defined neurons whose cell bodies lie in the anterior hypothalamus and whose axons extend into the neurohypophysis; they are responsible for the elaboration of the polypeptide hormones, oxytocin and vasopressin. These neurons fulfill the morphological and functional criteria of neurosecretory cells. The most distinguishing morphological features of these neuron sare that their axon endings (in the neural lobe) about on blood vessel s rather than on other nerve cells, and that their axoplasm usually abounds with dense granules about O.1 to O.3 [i in diameter. These granules were presumed to contain the polypeptide hormones, oxytocin and vasopressin and therefore were termed “neurosecretory granules” (NSG) by morphologists. Since these NSG appeared to move in a proximo-distal direction, it was postulated that the synthesis of the hormones takes place in the perikaryon within the NSG, which then move in a protoplasmic flow along the axon to the region of the nerve endings. It is in this region that, in response to appropriate stimuli, the release of the NSG, or their contents, into the blood stream is thought to occur (2). The rudimentary features of this “neurosecretory process” are represented schematically in Fig. 1. Studies in our own and other laboratories have begun to outline some of the cellular mechanisms involved in the intermediate neurosecretory stages. In this manuscript, we report on some of our recent findings on the biosynthesis, storage, and release of vasopressin.

Supported in part by grants from the National Institutes of Health, USPHS (AM-02650, HE-06035) and the Heart Association of Northeast Ohio.

Supported by a Research Career Devolopment Award, No. 2 K 3 AM-14827.

Recipient of USPHS Predoctoral Research Fellowship No. 6448 M 0406.

Recipient of USPHS Predoctoral Research Training Grant 5T1-CM-899.

Supported by a Research Career Development Award No. 5-K3-HE 1498.

An erratum to this chapter is available athttp://www.dx.doi.org

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Harris, G. W., and B. T. Donovan (Eds.): The Pituitary Gland, Vol. 3. Berkeley: University of California Press 1966.

    Google Scholar 

  2. Scharrer, E., and B. Scharrer: Hormones produced by neurosecretory cells. Rec. Progr. Hormone Res. 10, 183 (1954).

    CAS  Google Scholar 

  3. Sachs, H.: Neurosecretion in the mammalien hypothalamo-neurohypophysial complex. In: H. Peeters (Ed.). Protides of the biological fluids, p. 181. Amsterdam: Elsevier 1965.

    Google Scholar 

  4. Sachs, H., and Y. Takabatake: Evidence for a precursor in vasopressin biosynthesis. Endocrinology 75, 943 (1964).

    Article  PubMed  CAS  Google Scholar 

  5. Galber, S., P. L. Campbell, G. E. Deibler, and L. Sokoloff: Effects of L-Thyroxine on amino acid incorporation into protein in mature and immature rat brain. J. Neurochem. 11, 221 (1964).

    Article  Google Scholar 

  6. Maggio, R., P. Siekevitz, and G. E. Palade: Studies on isolated nuclei. I. Isolation and chemical characterization of a nuclear fraction from guinea pig liver. J. Cell. Biol. 18, 267 (1963).

    Article  PubMed  CAS  Google Scholar 

  7. Bondy, S. C., and H. Waelsch: Nuclear RNA polymerase in brain and liver. J. Neurochem. 12, 751 (1965).

    Article  PubMed  CAS  Google Scholar 

  8. Sachs, H.: Vasopressin biosynthesis II. Incorporation of [35S] Cysteine into vasopressin and protein associated with cell fractions. J. Neurochem. 10, 299 (1963).

    Article  CAS  Google Scholar 

  9. Takabatake, Y., and H. Sachs: Vasopressin biosynthesis III. In vitro studies. Endocrinology 75, 934 (1964).

    Google Scholar 

  10. Edstrom, J. E., D. Eichner, and N. Schor: Quantitative ribonucleic acid measurements in functional studies of nucleus supraopticus. In: S. S. Kety, and J. Elkes (Eds.), Regional Neurochemistry, p. 274. Oxford: Pergamon Press 1960.

    Google Scholar 

  11. Weinstein, H., S. Malamed, and H. Sachs: Isolation of vasopressin-containing granules from the neurohypophysis of the dog. Biochim. Biophys. Acta 50, 386 (1961).

    Article  PubMed  CAS  Google Scholar 

  12. Barer, R., H. Heller, and K. Lederis: The isolation, identification and properties of the hormonal granules of the neurohypophysis. Proc. Roy. Soc. B 158, 388 (1963).

    Article  CAS  Google Scholar 

  13. LaBella, F. S., G. Beaulieu, and R. J. Reiffenstein: Evidence for the existence of separate vasopressin and oxytocin-containing granules in the neurohypophysis. Nature (Lond.) 193, 173 (1962).

    Article  CAS  Google Scholar 

  14. Sachs, H.: Studies on the intracellular distribution of vasopressin. J. Neurochem. 10, 289 (1963).

    Article  PubMed  CAS  Google Scholar 

  15. Weinstein, H., R. M. Berne, and H. Sachs: Vasopressin in blood: effect of hemorrhage. Endocrinology 66, 712 (1960).

    Article  PubMed  CAS  Google Scholar 

  16. Share, L.: Acute reduction in extracellular fluid volume and the concentration of antidiuretic hormone in blood. Endocrinology 69, 925 (1961).

    Article  PubMed  CAS  Google Scholar 

  17. Haller, E. W., H. Sachs, N. Sperelakis, and L. Share: Release of vasopressin from isolated guinea pig posterior pituitaries. Amer. J. Physiol. 209, 79 (1965).

    PubMed  CAS  Google Scholar 

  18. Douglas, W. W., and A. M. Poisner: Stimulus-secretion coupling in a neurosecretory organ: The role of calcium in the release of vasopressin from the neurohypophysis. J. Physiol. (Lond.) 172, 1 (1964).

    CAS  Google Scholar 

  19. Rapela, L. E., and H. D. Green: Autoregulation of canine cerebral blood flow. Circulation Res. 14 (Suppl. 1): 205 (1964).

    Google Scholar 

  20. Kety, S. S.: Blood flow and metabolism of the human brain in health and disease. In: K. A. C. Elliott, I. H. Page, and J. H. Quastel (Eds.), p. 113. Springfield: Neurochemistry. Charles C. Thomas 1962.

    Google Scholar 

  21. Douglas, W. W., A. Ishida, and A. M. Poisner: The effect of metabolic inhibitors on the release of vasopressin from the isolated neurohypophysis. J. Physiol. (Lond.) 181 753 (1965).

    CAS  Google Scholar 

  22. Bodian, D.: Herring bodies and neuro-apocrine secretion in the monkey. Bull. Johns Hopk. Hosp. 118, 282 (1966).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

F. Stutinsky

Rights and permissions

Reprints and permissions

Copyright information

© 1967 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sachs, H., Portanova, R., Haller, E.W., Share, L. (1967). Cellular Processes Concerned with Vasopressin Biosynthesis, Storage and Release. In: Stutinsky, F. (eds) Neurosecretion. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-87609-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-87609-7_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-87611-0

  • Online ISBN: 978-3-642-87609-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics