Skip to main content

A Dynamic Model of Terrestrial Carbon Cycling

  • Conference paper
The Global Carbon Cycle

Part of the book series: NATO ASI Series ((ASII,volume 15))

  • 535 Accesses

Abstract

Many human activities tend to reduce the amount of carbon in plants and soils (Woodwell et al 1983, Houghton et al 1983, Houghton and Skole 1990). Houghton et al (1983) estimate that forest clearing and harvest released 180 Pg (1 Pg = 1 x 1015g) of carbon into the atmosphere between 1860 and 1980 compared to about 163 Pg from fossil fuel emissions over the same period (Marland et al 1989)–terrestrial releases exceeded fossil fuel emissions until about 1959, according to these estimates. The 1990 net flux of carbon into the atmosphere, mostly due to tropical deforestation, may have approached 3 Pg/year (Houghton, this volume). Thus the use and manipulation of terrestrial ecosystems probably caused a significant part of the observed increases in atmospheric CO2 concentration (Bolin 1986, Post et al 1990).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Literature Cited

  • Ajtay GL, Ketner P, and Duvigneaud P (1979) Terrestrial primary production and phytomass. In: Bolin B, Döös BR, Jäger J, Warrick RA (eds) The greenhouse effect, climatic change, and ecosystems, SCOPE 29. John Wiley, New York, p 129–181.

    Google Scholar 

  • Bolin B (1986) How much CO2 will remain in the atmosphere? In: Bolin B, Döös BR, Jäger J, Warrick RA (eds) The greenhouse effect, climatic change, and ecosystems, SCOPE 29. John Wiley, New York, p 93–155.

    Google Scholar 

  • Bazzaz FA (1990) The response of natural ecosystems to the rising global CO2 levels. Annu Rev Ecol Syst 21:167–196.

    Article  Google Scholar 

  • Eamus D, Jarvis PG (1989) The direct effects of increase in the global atmospheric CO2 concentration on natural and commercial temperate trees and forests. Adv Ecol Res 19:1–55.

    Article  Google Scholar 

  • Enting IG, Mansbridge JV (1987) The incompatibility of ice-core CO2 data with reconstructions of biotic CO2 sources. Tellus 39B:318–325.

    Article  Google Scholar 

  • Friedli, H, Lötscher H, Oeschger H, Siegenthaler U, Stauffer B (1986) Ice core record of 13C/12C ratio of atmospheric carbon dioxide in the past two centuries. Nature 324:237–238.

    Article  Google Scholar 

  • Hackney, PA, McDonough TA, DeAngelis DL, Cochran ME (1980) A partial differential equation model of fish population dynamics and its application in impingement impact analysis, EPA-600/7-80–068. Industrial Environmental Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina.

    Google Scholar 

  • Houghton RA, Hobbie JE, Melillo JM, Moore B, Peterson BJ, Shaver GR, Woodwell GM (1983) Changes in the carbon content of terrestrial biota and soils between 1860 and 1980: A net release of CO2 to the atmosphere. Ecol Monogr 53:235–262.

    Article  Google Scholar 

  • Houghton RA, Skole DL (1990) Carbon. In: Turner RL, Clark WC, Kates RW, Richards JF, Mathews JT, Meyer WB (eds) The earth as transformed by human action. Cambridge University Press, Cambridge, U.K. p 393–408.

    Google Scholar 

  • Keeling CD (1986) Atmospheric CO2 concentrations—Mauna Loa Observatory, Hawaii 1958–1986, NDP-001/R1. Carbon Dioxide Information Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee.

    Google Scholar 

  • Keeling CD, Bacastow RB, Carter AF, Piper SC, Whorf TP, Heimann M, Mook WG, Roeloffzen H (1989) A three-dimensional model of atmospheric CO2 transport based on observed winds: 1. Analysis of observational data. In: Peterson DH (ed) Aspects of climate variability in the pacific and the Western Americas. American Geophysical Union, Washington, D.C. p 165–236.

    Chapter  Google Scholar 

  • KĂ¼chler AW (1964) World natural vegetation map. In: Epenshade EB (ed.) Goode’s world atlas. Rand-McNally, Chicago, p 16–17.

    Google Scholar 

  • Marland G, Boden TA, Griffin RC, Huang SF, Kanciruk P, Nelson TR (1989) Estimates of CO2 emissions from fossil fuel burning and cement manufacturing, based on the United Nations energy statistics and the U.S. Bureau of Mines cement manufacturing data, ORNL/CDIAC-25. Oak Ridge National Laboratory, Oak Ridge, Tennessee.

    Google Scholar 

  • McEvedy C, Jones R (1978) Atlas of world population history. Penguin, Middlesex, U.K.

    Google Scholar 

  • Moore, B, Boone RD, Hobbie JE, Houghton RA, Melillo JM, Peterson BJ, Shaver GR, Vörösmarty CJ, Woodwell GM (1981) A simple model for analysis of the role of terrestrial ecosystems in the global carbon budget. In: Bolin B (ed) Carbon cycle modelling, SCOPE 16. John Wiley, New York, p 365–385.

    Google Scholar 

  • Neftel A, Moor E, Oeschger H, Stauffer B (1985) Evidence from polar ice cores for the increase in atmospheric CO2 in the past two centuries. Nature 315:45–47.

    Article  Google Scholar 

  • Olson JS, Watts JA, Allison LJ (1983) Carbon in live vegetation of major world ecosystems, ORNL-5862. Oak Ridge National Laboratory, Oak Ridge, Tennessee.

    Google Scholar 

  • Post WM, Emanuel WR, Zinke PJ, Stangenberger AG (1982) Soil carbon pools and world life zones. Nature 298:156–159.

    Article  Google Scholar 

  • Post WM, Peng TH, Emanuel WR, King AW, Dale VH, DeAngelis DL (1990) The global carbon cycle. Am Sci 78:310–326.

    Google Scholar 

  • Schlesinger WH (1977) Carbon balance in terrestrial detritus. Annu Rev Ecol Syst 8:51–81.

    Article  Google Scholar 

  • Siegenthaler U, Oeschger H (1987) Biospheric CO2 emissions during the past 200 years reconstructed by deconvolution of ice core data. Tellus 39B: 140–154.

    Article  Google Scholar 

  • Siegenthaler U, Friedli H, Loetscher H, Moor E, Neftel A, Oeschger H, Stauffer B (1988) Stable-isotope ratios and concentrations of CO2 in air from polar ice cores. Ann Glaciol 10:1–6.

    Google Scholar 

  • Whittaker RH, Likens GE (1973) Carbon in the biota. In: Woodwell GM, Pecan EV (eds) Carbon and the biosphere. National Technical Information Service, Springfield, Virginia, p 281–302.

    Google Scholar 

  • Woodwell GM, Hobbie JE, Houghton RA, Melillo JM, Moore B, Peterson BJ, Shaver GR (1983) Global deforestation: Contribution to atmospheric carbon dioxide. Science 222:1081–1086.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Emanuel, W.R., King, A.W., Post, W.M. (1993). A Dynamic Model of Terrestrial Carbon Cycling. In: Heimann, M. (eds) The Global Carbon Cycle. NATO ASI Series, vol 15. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84608-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84608-3_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-84610-6

  • Online ISBN: 978-3-642-84608-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics