Skip to main content

Cavity QED

  • Conference paper

Part of the book series: Springer Series on Wave Phenomena ((SSWAV,volume 9))

Abstract

In cavity quantum electrodynamics (QED) [1], one alters the mode of the electromagnetic field in a resonator to obtain such novel effects as inhibited or enhanced irreversible spontaneous emission, reversible spontaneous emission, micromaser action, and “quantum collapse and revivals.” This new line of investigation has numerous ramifications. In particular it impacts the generation of nonclassical fields, the study of the quantum/classical correspondence, nonlinear dynamics, and quantum measurement theory.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. For a pedagogical review, see S. Haroche and D. Kleppner, Physics Today 42, 24 (January 1989).

    Article  ADS  Google Scholar 

  2. See e.g., P. Meystre and M. Sargent, III, Elements of Quantum Optics,Springer Verlag, Heidelberg (1990), in press.

    Google Scholar 

  3. For a review of the Jaynes-Cummings model, see e.g., S. M. Barnett, P. Filipowicz, J. Javaninen, P. L. Knight, and P. Meystre, in Frontiers in Quantum Optics, E. R. Pike and S. Sarkar, Eds. ( Adam Hilger, Bristol 1986 ), p. 485.

    Google Scholar 

  4. J. H. Eberly, N. B. Narozhny, and J. J. Sanchez-Mondragon, Phys. Rev. Lett. 44, 1323 (1980).

    Article  MathSciNet  ADS  Google Scholar 

  5. V. Weisskopf and E. Wigner, Z. Phys. 63, 54 (1930).

    Article  ADS  Google Scholar 

  6. E. M. Purcell, Phys. Rev. 69, 681 (1946).

    Article  Google Scholar 

  7. D. Kleppner, Phys. Rev. Lett. 47. 233 (1981).

    Article  ADS  Google Scholar 

  8. S. Haroche and J. M. Raimond, in Advances in Atomic and Molecular Physics, Vol. 20, D. Bates and B. Bederson, eds. (Academic Press, 1985 ).

    Google Scholar 

  9. D. P. O’Brien, P. Meystre, and H. Walther, in Advances in Atomic and Molecular Physics, Vol. 21, D. Bates and B. Bederson, eds. (Academic Press, 1985 ).

    Google Scholar 

  10. Y. Zhu, A. Lezama, T. W. Mossberg, and M. Lewenstein, Phys. Rev. Lett. 61, 1946 (1988).

    Article  ADS  Google Scholar 

  11. J. Parker and C. R. Stroud, Jr. Phys. Rev. A35, 4226 (1987).

    Article  ADS  Google Scholar 

  12. M. Sargent III, M. O. Scully, and W. E. Lamb, Jr. Laser Physics ( Addison-Wesley, Reading 1974 ).

    Google Scholar 

  13. P. Filipowicz, J. Javanainen, and P. Meystre, Phys. Rev. A34, 3077 (1986).

    Article  ADS  Google Scholar 

  14. S. Machida, Y. Yamamoto, and Y. Itaya, Phys. Rev. Lett. 58, 1000 (1987)

    Article  ADS  Google Scholar 

  15. S. Machida and Y. Yamamoto, Phys. Rev. Lett. 60, 792 (1988).

    Article  ADS  Google Scholar 

  16. M. Marte and D. F. Walls, Phys. Rev. A37, 1235 (1988)

    ADS  Google Scholar 

  17. M. A. M. Marte, PhD Thesis, University of Waikato (1988) unpublished; F. Haake, S. M. Tan, and D. F. Walls, preprint (1989).

    Google Scholar 

  18. D. Meschede, H. Walther, and G. Miller, Phys. Rev. Lett. 54, 551 (1985).

    Article  ADS  Google Scholar 

  19. M. Brune, J. M. Raimond, P. Goy, L. Davidovich, and S. Haroche, Phys. Rev. Lett. 59, 1899 (1987)

    Article  ADS  Google Scholar 

  20. L. Davidovich, J. M. Raimond, M. Brune, and S. Haroche, Phys. Rev. A36, 3771 (1987).

    Article  ADS  Google Scholar 

  21. See A. Guzman, P. Meystre, and E. M. Wright, Phys. Rev. A, in press, for a justification of this equation.

    Google Scholar 

  22. E. M. Wright and P. Meystre, Optics Lett. 14, 177 (1989).

    Article  ADS  Google Scholar 

  23. J. J. Slosser, P. Meystre, and S. L. Braunstein, Phys. Rev. Lett. 63, 934 (1989) J. J. Slosser, P. Meystre, and E. M. Wright, submitted to Optics Lett.

    Google Scholar 

  24. S. Haroche and P. Meystre, unpublished.

    Google Scholar 

  25. E. B. Davies, Quantum Theory of Open Systems (Academic Press, London 1976 ); K. Krauss, States, Effects, and Operations: Fundamental Notions of Quantum Theory ( Springer Verlag, Berlin 1983 ).

    Google Scholar 

  26. W. E. Lamb, Jr.. in Chaotic Behavior in Quantum Systems, Theory, and Applications, Ed. by G. Casati (Plenum, N.y. 1985); W. E. Lamb, Jr., in New Techniques and Ideas in Quantum Measurement Theory, ( The New York Academy of Sciences, New York 1986 ).

    Google Scholar 

  27. P. Meystre, Opt. Lett. 12, 669 (1987)

    Article  ADS  Google Scholar 

  28. P. Meystre, Opt. Lett. 12, 669 (1987); P. Meystre and E. M. Wright, Phys. Rev. A37, 2524 (1988)

    ADS  Google Scholar 

  29. J. Krause, M. O. Scully, and H. Walther, Phys. Rev. A36, 4547 (1987).

    ADS  Google Scholar 

  30. For the related problem of quantum jumps in ion traps, see H. Demhelt, Bull. Am. Phys. Soc. 20, 60 (1975)

    Google Scholar 

  31. R. J. Cook and J. F. Kimble, Phys. Rev. Lett. 54, 1023 (1985)

    Article  ADS  Google Scholar 

  32. W. Nagourey, J. Sandberg, and H. Demhelt, Phys. Rev. Lett. 56, 2727 (1986); J. Javanainen, Phys. Rev. A33, 2121 (1986)

    Google Scholar 

  33. A. Schenzle, R. G. deVoe, and R. G. Brewer, Phys. Rev. A33, 2127 (1986)

    Article  ADS  Google Scholar 

  34. C. Cohen-Tannoudji and J. Dalibard, Europhys. Lett. 1, 441 (1986) and references therein.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin, Heidelberg

About this paper

Cite this paper

Meystre, P. (1990). Cavity QED. In: Keller, O. (eds) Nonlinear Optics in Solids. Springer Series on Wave Phenomena, vol 9. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84206-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84206-1_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-84208-5

  • Online ISBN: 978-3-642-84206-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics