Skip to main content

Transduction of the Gravity Signal in Plants

  • Conference paper
Signal Perception and Transduction in Higher Plants

Part of the book series: NATO ASI Series ((ASIH,volume 47))

Abstract

The root cap of Lepidium, which has been characterized in detail by structural, physiological and electrophysiological evidences, offers the opportunity to formulate a sequence of events, how gravity perception occurs (Sievers et al. 1984; Sievers 1986).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bartnik E, Sievers A (1988) In-vivo observations of a spherical aggregate of endoplasmic reticulum and of Golgi vesicles in the tip of fast growing Chara rhizoids. Planta 176:1–9

    Article  Google Scholar 

  • Behrens HM, Gradmann D (1985) Electrical properties of the vertically growing root tip of Lepidium sativum L. Planta 163:453–462

    Article  Google Scholar 

  • Behrens HM, Gradmann D, Sievers A (1985) Membrane-potential responses following gravistimulation in roots of Lepidium sativum L. Planta 163:463–472

    Article  Google Scholar 

  • Behrens HM, Weisenseel MH, Sievers A (1982) Rapid changes in the pattern of electric current around the root tip of Lepidium sativum L. following gravistimulation. Plant Physiol 70:1079–1083

    Article  PubMed  CAS  Google Scholar 

  • Biro RL, Hale II CC, Wiegand OF, Roux SJ (1982) Effects of chlorpromazine on gravitropism in Avena coleoptiles. Ann Bot 50:735–747

    Google Scholar 

  • Björkman T, Leopold AC (1987a) An electric current associated with gravity sensing in maize roots. Plant Physiol 84:841846

    Google Scholar 

  • Björkman T, Leopold AC (1987b) Effect of inhibitors of auxin transport and of calmodulin on a gravisensing-dependent current in maize roots. Plant Physiol 84:847–850

    Article  Google Scholar 

  • Buckhout TJ (1983) ATP-dependent Cal-transport in endoplasmic reticulum isolated from roots of Lepidium sativum L. Planta 159:84–90

    Article  CAS  Google Scholar 

  • Busch M, Sievers A (1987) Hormone treatment of roots causes reversible loss of structural polarity in statocytes. Abstr XIV Int Bot Congr.24 July-1 Aug 1987. Berlin, p 140

    Google Scholar 

  • Caspar T, Pickard BG (1989) Gravitropism in a starchless mutant of Arabidopsis. Implications for the starch-statolith theory of gravity sensing. Planta 177:185–197

    Article  PubMed  CAS  Google Scholar 

  • Dauwalder M, Roux SJ, Hardison L (1986) Distribution of calmodulin in pea seedlings: Immunocytochemical localization in plumules and root apices. Planta 168:461–467

    Article  PubMed  CAS  Google Scholar 

  • Evans ML, Hasenstein K-H (1987) Stimulus-response coupling in the action of auxin and gravity on roots. In: Cosgrove DJ, Knievel DP (eds) Physiology of cell expansion during plant growth. The Amer Soc of Plant Physiol, p 202

    Google Scholar 

  • Edwards KL, Pickard BG (1987) Detection and transduction of physical stimuli in plants. In: Wagner E, Greppin H, Millet B (eds) NATO ASI Series, vol 12. The cell surface in signal transduction. Springer, Berlin Heidelberg New York, p 41

    Google Scholar 

  • Hejnowicz Z, Sievers A (1981) Regulation of the position of statoliths in Chara rhizoids. Protoplasma 108:117–137

    Article  PubMed  CAS  Google Scholar 

  • Hensel W (1984) A role of microtubules in the polarity of stato- cytes from roots of Lepidium sativum L. Planta 162:404–414

    Article  PubMed  CAS  Google Scholar 

  • Hensel W (1985) Cytochalasin B affects the structural polarity of statocytes from cress roots (Lepidium sativum L.) Protoplasma 129:178–187

    Article  PubMed  CAS  Google Scholar 

  • Hensel W (1987) Cytodifferentiation of polar plant cells: Formation and turnover of endoplasmic reticulum in root statocytes. Exp Cell Res 172:377–384

    Article  PubMed  CAS  Google Scholar 

  • Hensel W (1989) Tissue slices from living root caps as a model system in which to study cytodifferentiation of polar cells. Planta 177:296–303

    Article  Google Scholar 

  • Iversen T-H (1969) Elimination of geotropic responsiveness in roots of cress (Lepidium sativum) by removal of statolith starch. Physiol Plant 22:1251–1262

    Article  PubMed  CAS  Google Scholar 

  • Iwabuchi A, Yano M, Shimizu H (1989) Development of extracellular electric pattern around Lepidium roots: its possible role in root growth and gravitropism. Protoplasma 148:94–100

    Article  Google Scholar 

  • Kiss JZ, Hertel R, Sack FD (1989) Amyloplasts are necessary for full gravitropic sensitivity in roots of Arabidopsis thaliana. Planta 177:198–206

    Article  PubMed  CAS  Google Scholar 

  • Lee JS, Evans ML (1985) Polar transport of auxin across gravi-stimulated roots of maize and its enhancement by calcium. Plant Physiol 77:824–827

    Article  PubMed  CAS  Google Scholar 

  • Lee JS, Mulkey TJ, Evans ML (1983a) Reversible loss of gravi- tropic sensitivity in maize roots after tip application of calcium chelators. Science 220:1375–1376

    Article  CAS  Google Scholar 

  • Lee JS, Mulkey TJ, Evans ML (1983b) Gravity-induced polar transport of calcium across root tips of maize. Plant Physiol 73:874–876

    Article  CAS  Google Scholar 

  • Lee JS, Mulkey TJ, Evans ML (1984) Inhibition of polar calcium movement and gravitropism in roots treated with auxin-transport inhibitors. Planta 160:536–543

    Article  PubMed  CAS  Google Scholar 

  • Moore R (1985a) Movement of calcium across tips of primary and lateral roots of Phaseolus vulgaris. Am J Bot 72:785–787

    Article  CAS  Google Scholar 

  • Moore R (1985b) Calcium movement, graviresponsiveness and the structure of columella cells and columella tissues in roots of Allium cepa L. Ann Bot 56:173–187

    CAS  Google Scholar 

  • Moore R (1986) Calcium movement, graviresponsiveness, and the structure of columella cells in primary roots of amylomaize mutants of Zea mays. Am J Bot 73:417–426

    Article  Google Scholar 

  • Selker JML, Sievers A (1987) Analysis of extension and curvature during the graviresponse in Lepidium roots. Am J Bot 74:1863–1871

    Article  Google Scholar 

  • Sievers A (1986) Transduction of the gravity stimulus in cress roots: A possible role of an ER-localized Ca2+ pump. In: Trewavas AJ (ed) Molecular and cellular aspects of calcium in plant development, Plenum, New York, p 225

    Google Scholar 

  • Sievers A, Behrens HM, Buckhout TJ, Gradmann D (1984) Can a Ca2+ pump in the endoplasmic reticulum of the Lepidium root be the trigger for rapid changes in membrane potential after gravistimulation? Z Pflanzenphysiol 114:195–200

    CAS  Google Scholar 

  • Sievers A, Kruse S, Kuo-Huang L-L, Wendt M (1989) Statoliths and microfilaments in plant cells. Planta in press

    Google Scholar 

  • Sievers A, Schnepf E (1981) Morphogenesis and polarity of tubular cells with tip growth. In: Kiermaye O (ed) Cytomorphogenesis in plants. Springer, Wien New York, p 265

    Google Scholar 

  • Stinemetz CL, Kuzmanoff KM, Evans ML, Jarrett HW (1987) Correlation between calmodulin activity and gravitropic sensitivity in primary roots of maize. Plant Physiol 84:1337–1342

    Article  PubMed  CAS  Google Scholar 

  • Volkmann D, Sievers A (1979) Graviperception in multicellular organs. In: Haupt W, Feinleib ME (eds) Enc Plant Physiol NS vol 7. Springer, Berlin Heidelberg New York, p 573

    Google Scholar 

  • Wendt M, Kuo-Huang L-L, Sievers A (1987) Gravitropic bending of cress roots without contact between amyloplasts and com-plexes of endoplasmic reticulum. Planta 172:321–329

    Article  PubMed  CAS  Google Scholar 

  • Wendt M, Sievers A (1986) Restitution of polarity in statocytes from centrifuged roots. Plant Cell Environ 9:17–23

    Google Scholar 

  • Wendt M, Sievers A (1989) The polarity of statocytes and the gravisensitivity of roots are dependent on the concentra-tion of calcium in statocytes. Plant Cell Physiol in press

    Google Scholar 

  • Wilkins MB (1984) Gravitropism. In: Wilkins MB (ed) Advanced plant physiology. Pitman, London, p 163

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sievers, A. (1990). Transduction of the Gravity Signal in Plants. In: Ranjeva, R., Boudet, A.M. (eds) Signal Perception and Transduction in Higher Plants. NATO ASI Series, vol 47. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-83974-0_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-83974-0_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-83976-4

  • Online ISBN: 978-3-642-83974-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics