Skip to main content

Measurement Techniques in Laboratory Rotating Flows

  • Chapter
Advances in Fluid Mechanics Measurements

Part of the book series: Lecture Notes in Engineering ((LNENG,volume 45))

Abstract

The purpose of this chapter is to survey classical and modern measurement techniques used in rotating flow experiments. Since the measurement of rotating flows is now a broad and rapidly developing art, it is clear that only a summary of the essential features of each measurement system can be given. Here we will be primarily concerned with flows driven by rotating boundaries, rotational flows produced inside stationary boundaries, motion driven by thermal heating of a fluid in a basic state of rotation and other flows for which rotational forces are of primary importance. Free vortex flows in the absence of rotation, wind tunnel flow over rotating bodies, and rotating liquid helium flows which necessitate specialized measurement techniques are excluded. Equations and diagrams are incorporated only when they add substantially to the understanding of the operation of a particular measurement system. An attempt is made to include historical perspective and development. Also, I felt it was important to provide an extensive bibliography to exhibit the range of applications of each measurement technique and thereby provide guidance for the experimentalist interested in rotating flows.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abell, S. and Hudson, J. L. (1975) An experimental study of centrifugally driven free convection in a rectangular cavity. Int. J. Heat Mass Trans., 18, 1415–1423.

    Article  Google Scholar 

  • Adrian, R. J. (1983) Laser velocimetry. Fluid Mechanics Measurements, ed. R. J. Goldstein, 155–244 ( Hemisphere Publishing, Washington ).

    Google Scholar 

  • Adrian, R. J. and Yao, C. S. (1983) Development of pulsed laser velocimetry measurement of fluid flow. Proceedings, Eighth Biennial Symposium on Turbulence, eds. G. Patterson and J. L. Zakin ( University of Missouri, Rolla).

    Google Scholar 

  • Adrian, R. J. and Yao, C. S. (1985) Pulsed laser technique application to liquid and gaseous flows and the scattering power of seed materials. Appl. Opt., 24, 44–52.

    Article  ADS  Google Scholar 

  • Agui, J. C. and Jimenez, J. (1988) On the performance of particle tracking. J. Fluid Mech., 185, 447–468.

    Article  ADS  Google Scholar 

  • Ahlborn, F. (1902) On the mechanism of hydrodynamic drag. (German), Abhandl. Gebiete Naturwiss., 17, Hamburg. See also Tietjens, O. G. (1934) Applied Hydro-and Aeromechanics ( Dover, New York, 1957 ).

    Google Scholar 

  • Ahlers, G. and Cannell, D. S. (1983) Vortex-front propagation in rotating Couette-Taylor flow. Phys. Rev. Lett., 50, 1583–1586.

    Article  ADS  Google Scholar 

  • Aitta, A., Ahlers, G. and Cannel, D. S. (1985) Tricritical phenomena in rotating Couette-Taylor flow. Phys. Rev. Lett., 54, 673–676.

    Article  ADS  Google Scholar 

  • Aldridge, K. D. and Toomre, A. (1969) Axisymmetric inertial oscillations of a fluid in a rotating spherical container. J. Fluid Mech., 37, 307–323.

    Article  ADS  Google Scholar 

  • Amen, R. L. (1985) The decay of grid generated turbulence in a two layer stratified fluid. PhD thesis, University of Southern California, Los Angeles, CA.

    Google Scholar 

  • Andereck, D. D., Dickman, R. and Swinney, H. L. (1983) New flows in a circular Couette system with co-rotating cylinders. Phys. Fluids, 26, 1395–1401.

    Article  ADS  Google Scholar 

  • Andereck, C. D., Liu, S. S. and Swinney, H. L. (1986) Flow regimes in a circular Couette system with independently rotating cylinders. J. Fluid Mech., 164, 155–183.

    Article  ADS  Google Scholar 

  • Annamalai, P., Trinh, E. and Wang, T. G. (1985) Experimental study of the oscillations of a rotating drop. J. Fluid Mech., 158, 317–327.

    Article  ADS  Google Scholar 

  • Baker, D. J. (1966) A technique for the precise measurement of small fluid velocities. J. Fluid Mech., 26, 573–575.

    Article  ADS  Google Scholar 

  • Baker, D. J. (1967) Shear layers in a rotating fluid. J. Fluid Mech.. 29, 165–175.

    Article  ADS  Google Scholar 

  • Baker, D. J., Jr. (1968) Demonstrations of fluid flow in a rotating system. II: The “spin-up” problem. Amer. J. Phys., 36, 980–986.

    Google Scholar 

  • Baker, D. J., Jr. and Robinson, A. R. (1969) A laboratory model for the general oceanic circulation. Phil. Trans. Roy. Soc. Lond., A265, 533–566.

    Article  ADS  Google Scholar 

  • Baker, D. J. (1971) Density gradients in a rotating stratified fluid: experimental evidence for a new instability. Science, 172, 1029–1031.

    Article  ADS  Google Scholar 

  • Balint, J.-L., Vukoslavcevic, P., and Wallace, J. M. (1987) A study of the vortical structure of the turbulent boundary layer. Advances in Turbulence, eds. G. CompteBellot and J. Mathieu, 456–464 ( Springer-Verlag, Berlin ).

    Google Scholar 

  • Bankoff, S. G. and Rosier, R. S. (1962) Constant-temperature hot-film anemometer as a tool in liquid turbulence measurement. Rev. Sci. Instrum., 33, 1209–1212.

    Article  ADS  Google Scholar 

  • Barcilon, A., Brindley, J., Lessen, M. and Mobbs, F. R. (1979) Marginal instability in Taylor-Couette flows at a very high Taylor number. J. Fluid Mech., 94, 453–463.

    Google Scholar 

  • Barker, D. B. and Fourney, M. E. (1977) Measuring fluid velocities with speckle patterns. Opt. Lett., 1, 135–137.

    Article  ADS  Google Scholar 

  • Bar-Yoseph, P., Roesner, K. G. and Seelig, S. (1986) Flow in an eccentrical spherical gap. Proc. 6th Workshop on Gases in Strong Rotation, Tokyo, Japan, 1–9.

    Google Scholar 

  • Baxter, G. W. and Andereck, C. D. (1986) Formation of dynamical domains in a circular Couette system. Phys. Rev. Lett., 57, 3046–3049.

    Article  ADS  Google Scholar 

  • Beardsley, R. C. (1969) A laboratory model of the wind-driven ocean circulation. J. Fluid Mech., 38, 255–271.

    Article  ADS  Google Scholar 

  • Beardsley, R. C. (1970) An experimental study of inertial waves in a closed cone. Stud. Appl. Math., 49, 187–196.

    Google Scholar 

  • Beardsley, R. C. and Robbins, K. (1975) The ‘sliced-cylinder’ laboratory model of the wind-driven ocean circulation. Part 1. Steady forcing and topographic Rossby wave instability. J. Fluid Mech., 69, 27–40.

    Article  MATH  ADS  Google Scholar 

  • Beardsley, R. C. (1975) The ‘sliced-cylinder’ laboratory model of the wind-driven ocean circulation. Part 2. Oscillatory forcing and Rossby wave resonance. J. Fluid Mech., 69, 41–64.

    Article  MATH  ADS  Google Scholar 

  • Becker, J. A., Green, C. B. and Pearson, G. L. (1946) Properties and uses of thermistors–Thermally sensitive resistors. Trans. Amer. Inst. Elect. Engr., 65, 711–725.

    Article  Google Scholar 

  • Beckwith, T. G., Buck, N. L. and Marangoni, R. D. (1982) Mechanical Measurements. (Addison-Wesley, Reading, MA).

    Google Scholar 

  • Bellhouse, B. J. and Schultz, D. L. (1966) Determination of mean and dynamic skin friction, separation and transition in low-speed flow with a thin-film heated element. J. Fluid Mech., 24, 379–400.

    Google Scholar 

  • Bellhouse, B. J. and Schultz, D. L. (1967) The determination of fluctuating velocity in air with heated thin film gauges. J. Fluid Mech., 29, 289–295.

    Article  ADS  Google Scholar 

  • Benjamin, T. B. (1978) Bifurcation phenomena in steady flows of a viscous fluid. 1I. Experiments. Proc. Roy. Soc. Lond., A359, 27–43.

    Article  ADS  MathSciNet  Google Scholar 

  • Benjamin, T. B. and Barnard, B. J. S. (1964) A study of the motion of a cavity in a rotating liquid. J. Fluid Mech., 19, 193–209.

    Article  MATH  ADS  Google Scholar 

  • Benjamin, T. B. and Mullin T. (1982) Notes on the multiplicity of flows in the Taylor experiment. J. Fluid Mech., 121, 219–230.

    Article  ADS  Google Scholar 

  • Betchov, R. (1948) L’influence de la conduction thermique sur les anemometres a fils chaud. Proc. K. Ned. Akad. Wet., 51, 721–730.

    Google Scholar 

  • Bien, F. and Penner, S. S. (1970) Velocity profiles in steady and unsteady rotating flows for a finite cylindrical geometry. Phys. Fluids, 13, 1665–1671.

    Article  ADS  Google Scholar 

  • Bien, F. and Penner, S. S. (1971) Spin-up and spin-down of rotating flows in finite cylindrical containers. Phys. Fluids, 14, 1305–1308.

    Article  ADS  Google Scholar 

  • Bjorklund, I. S. and Kays, W. M. (1959) Heat transfer between concentric rotating cylinders. J. Heat Trans., 81, 175–186.

    Google Scholar 

  • Blackwelder, R. F. (1981) Hot-wire and hot-film anemometers. Methods of Experimental Physics: Fluid Dynamics–Part A, 18, ed. R. J. Emrich, 259–314 ( Academic Press, New York ).

    Google Scholar 

  • Blake, W. K. (1983) Differential pressure measurement. Fluid Mechanics Measurements, ed. R. L. Goldstein, 61–97 ( Hemisphere, Washington ).

    Google Scholar 

  • Bornstein, J. and Escudier, M. P. (1984) LDA easurements within a vortex-breakdown bubble. Laser Anemometry in Fluid Mechanics, 253–263 ( Ladoan, Lisbon ).

    Google Scholar 

  • Bourquin, K. R. and Shigemoto, F. H. (1968) Investigation of air-flow velocity by laser backscatter. NASA Tech. Note, No. D-4453.

    Google Scholar 

  • Bowden, M. and Eden, II. F. (1965) Thermal convection in a rotating fluid annulus: Temperature, heat flow and flow field observations in the upper symmetric regime. J. Atm. Sci., 22, 185–195.

    Article  ADS  Google Scholar 

  • Boyer, D. (1971) Rotating flow over long shallow ridges. Geophys. Fluid Dyn., 2, 165–184.

    Article  ADS  Google Scholar 

  • Boyer, D. L. and Guala, J. R. (1972) Model of the antarctic circumpolar current in the vicinity of the MacQuarie ridge. Antarctic Res. Ser.; Antarctic Oceanology II: The Australian-New Zeland Sector, 19, ed. D. E. Hayes, 79–93.

    Google Scholar 

  • Boyer, D. L. and Davies, P. A. (1982) Flow past a circular cylinder on a ß-plane. Phil. Trans. Roy. Soc. Lond., A306, 533–556.

    Article  ADS  Google Scholar 

  • Boyer, D. L., Kmetz, M., Smathers, L., Chabert d’Hieres, G. and Didelle, H. (1984a) Rotating open channel flow past right circular cylinders. Geophys. Astrophys. Fluid Dyn., 30, 271–304.

    Article  ADS  Google Scholar 

  • Boyer, D. L., Davies, P. A. and Holland, W. R. (1984b) Rotating flow past disks and cylindrical depressions. J. Fluid Mech., 141, 67–95.

    Article  ADS  Google Scholar 

  • Boyer, D. L. and Biolley, F. M. (1986) Linearly stratified, rotating flow over long ridges in a channel. Phil. Trans. Roy. Soc. Loud., A318, 411–440.

    Article  ADS  Google Scholar 

  • Boyer, D. L., Davies, P. A., Holland, W. R.. Biolley, F. and Honji, H. (1987a) Stratified rotating flow over and around isolated three-dimensional topography. Phil. Trans. Roy. Soc. Lond., A322, 213–241.

    Google Scholar 

  • Boyer, D. L., Chen, R. and Davies, P. A. (1987b) Some laboratory models of flow past the Alpine/Pyrenees mountain complex. Meteorol. Atmos. Phys., 36, 187–200.

    Article  ADS  Google Scholar 

  • Bradshaw, P. (1971) An introduction to turbulence and its measurement. ( Pergamon Press, New York).

    MATH  Google Scholar 

  • Brandstater, A., Swift, J., Swinney, H. L., Wolf, A., Farmer, J. D., Jen, E., and Crutchfield, J. P. (1983) Low-dimensional chaos in a hydrodynamical system. Phys. Rev. Lett., 51, 1442–1445.

    Article  ADS  MathSciNet  Google Scholar 

  • Brandstater, A., and Swinney, H. L. (1987) Strange attractors in weakly turbulent Couette-Taylor flow. Phys. Rev.. 35A, 2207–2220.

    Article  ADS  Google Scholar 

  • Brayton, D. B. (1969) A simple, laser, Doppler shift, velocimeter with self-aligning optics. AEDC Tech. Rep., No.70–45.

    Google Scholar 

  • Browand, F. K. and Weidman, P. D. (1976) Large scales in the developing mixing layer. J. Fluid Mech., 76, 127–144.

    Article  ADS  Google Scholar 

  • Brown, R. G. W. and Jones, R. (1983) Burst-correlation laser Doppler velocimetry. Opt. Lett.,8, 449–451.

    Google Scholar 

  • Buchhave, P. George, W. K. Jr., and Lumley, J. L. (1979) The measurement of turbulence with the laser-Doppler anemometer. Ann. Rev. Fluid Mech., 11, 443–503.

    Article  ADS  Google Scholar 

  • Buhler, K. (1983) Instabilitaten spiralformiger Stromungen zwischen konzentrischen Kuglen. ZAMM, 63, T235 - T239.

    Google Scholar 

  • Buhler, K. (1986) Stromungsmechanische Instabilitaten im Kugelspalt.Stromunnsmechanik und Stromungsmaschinen, 38, 11–24.

    Google Scholar 

  • Buhler, K. and Oertel, II. (1982) Thermal cellular convection in rotating rectangular boxes. J. Fluid Mech., 114, 261–282.

    Article  ADS  Google Scholar 

  • Burkhalter, J. E. and Koschmieder, E. L. (1973) Steady supercritical Taylor vortex flow. J. Fluid Mech., 58, 547–560.

    Article  ADS  Google Scholar 

  • Busemann, A. (1971) Compressible flow in the thirties. Anon. Rev. Fluid Mech., 3, 1–12.

    Article  ADS  MathSciNet  Google Scholar 

  • Busse, F. H. and Heikes, K. E. (1980) Convection in a rotating layer: A simple case of turbulence. Science, 208, 173–175.

    Article  ADS  Google Scholar 

  • Buzyna, G. and Veronis, G. (1971) Spin-up of a stratified fluid: theory and experiment. J. Fluid Mech.,50,579–608.

    Google Scholar 

  • Buzyna, G.,Pfeffer, R. L. and Kung, R. (1984) Transition to geostrophic turbulence in a rotating differentially heated annulus. J. Fluid Mech.,145, 377–403.

    Google Scholar 

  • Caldwell, D. R.Van Atta, C. W. and Helland, K. N. (1972) A laboratory study of the turbulent Ekman layer. Geophys. Fluid Dyn.,3, 125–160.

    Google Scholar 

  • Chabert d’Hieres, G., Davies, P. A. and Didelle, H. (1987) A laboratory study of the lift forces on a moving solid obstacle in a rotating fluid. Coriolis Laboratory Technical Report, Institut de Mechanique, Grenoble, France.

    Google Scholar 

  • Chabert d’Hieres, G., Davies, P. A. and Didelle, H. (1988) A laboratory study of the lift forces on a moving solid obstacle in a rotating fluid. Dyn. Atmos. Oceans, under review.

    Google Scholar 

  • Champagne, F. H., Sleicher, C. A. and Wehrmann, O. H. (1967a) Turbulence measurements with inclined hot-wires. Part 1. J. Fluid Mech., 28, 153–176.

    Article  ADS  Google Scholar 

  • Champagne, F. H., Sleicher, C. A. and Chao, J. L. (1967b) Turbulence measurements with inclined hot-wires. Part 2. J. Fluid Mech., 28, 177–182.

    Google Scholar 

  • Chin, D.-T. (1971) An experimental study of mass transfer on a rotating spherical electrode. J. Electrochem. Soc., 118, 1764–1769.

    Article  Google Scholar 

  • Chin, D.-T. and Litt, M. (1972a) Mass transfer to point electrodes on the surface of a rotating disk. J. Electrochem. Soc., 119, 1338–1343.

    Article  Google Scholar 

  • Chin, D.-T. and Litt, M. (1972b) An electrochemical study of flow instability on a rotating disk. J. Fluid Mech., 54, 613–625.

    Article  ADS  Google Scholar 

  • Chomaz, J. M., Rabaud, M., Basdevant, C. and Couder, Y. (1988) Experimental and numerical investigation of a forced circular shear layer. J. Fluid Mech.,187,I15–140.

    Google Scholar 

  • Church, C. R. and Snow, J. T. (1979) The dynamics of natural tornadoes as inferred from laboratory simulations. J. Rech. Atmos., 13, 111–133.

    Google Scholar 

  • Clayton, B. R. and Massey, B. S. (1967) Flow visualization in water: a review of techniques. J. Sci. Instrum., 44, 2–11.

    Article  ADS  Google Scholar 

  • Clutter, E. W. and Smith, A. M. O. (1961) Techniques of flow visualization using water as the working medium. Aero. Engrg., 20, 24–27, 75–76.

    Google Scholar 

  • Coles, D. and Van Atta, C. W. (1966) Measured distortion of laminar circular Couette flow by end effects. J. Fluid Mech., 25, 513–521.

    Article  ADS  Google Scholar 

  • Colello, R. G. and Springer, G. S. (1966) Mass-transfer measurements with the technique of electrochemiluminescence. Int. J. Heat Mass Trans., 9, 1391–1399.

    Article  Google Scholar 

  • Collis, D. C. and Williams, M. J. (1959) Two-dimensional convection from heating wires at low Reynolds numbers. J. Fluid Mech., 6, 357–389.

    Article  MATH  ADS  Google Scholar 

  • Compte-Bellot, G. (1976) Hot-wire anemometry. Aim. Rev. Fluid Mech.,209–231.

    Google Scholar 

  • Coney, J. E. R. and Simmers, D. A. (1979) A study of fully-developed, laminar, axial flow and Taylor vortex flow by means of shear stress measurements. J. Mech. Engrg. Sci., 21, 19–24.

    Article  Google Scholar 

  • Cooper, E. R., Jankowski, D. F., Neitzel, G. P. and Squire, T. H. (1985)

    Google Scholar 

  • Experiments on the onset of instability in unsteady circular Couette flow. J. Fluid Mech.,161, 97–115.

    Google Scholar 

  • Corrsin, S. (1963) Turbulence: experimental methods. Handbuch der Physik,VIII/2, eds. S. Flugge and C. Truesdell, 524–590 ( Springer-Verlag, Berlin ).

    Google Scholar 

  • Couder, Y. (1984) Two-dimensional grid turbulence in a thin liquid film. J. Physique. Lett., 45, L353 - L360.

    Article  Google Scholar 

  • Couette, M. M. (1890) Etudes sur le frottement des liquides. Annal. Chimie Phys., 21, 433–510.

    Google Scholar 

  • Dainty, J. C. (1975) Laser Speckle and Related Phenomena. ( Springer, Berlin).

    Google Scholar 

  • Davies, P. A. and Rahm, L. (1982) The interaction between topography and a nonlinearly stratified rotating fluid. Phys. Fluids, 25, 1931–1934.

    Article  ADS  Google Scholar 

  • Davies, P. A. and Walin, G. (1977) Some further experiments with a heated rotating annulus having semi-conducting walls. Tellus, 29, 161–170.

    Article  ADS  Google Scholar 

  • Davis, W. and Fox, R. W. (1967) An evaluation of the hydrogen bubble technique for the quantitative determination of fluid velocities within clear tubes. J. Basic Engr., 89, 771–781.

    Article  Google Scholar 

  • Denardo, B. (1988) Equilibrium states of a rotating U-Tube. American J. Sci., under review.

    Google Scholar 

  • Denison, E. B. and Stevenson, W. H. (1970) Oscillatory flow measurements with a directionally sensitive laser velocimeter. Rev. Sci. Instrum., 41, 1475–1478.

    Article  ADS  Google Scholar 

  • Dewey, F. C. Jr. (1976) Qualitative and quantitative flow field visualization utilizing laser-induced flourescence. Applications of nonintrusive instrumentation in fluid flow research, AGARD–CP–193, Paper No. 17.

    Google Scholar 

  • Dickenson, S. C. and Long, R. R. (1983) Oscillating-grid turbulence including effects of rotation. J. Fluid Mech., 126, 315–333.

    Article  ADS  Google Scholar 

  • Dimotakis, P. E., Miake-Lye, R. C. and Papantoniou, D. A. (1983) Structure and dynamics of round turbulent jets. Phys. Fluids, 26, 3185–3192.

    Article  ADS  Google Scholar 

  • Dominguez-Lerma, M. A., Ahlers, G. and Cannell, D. S. (1985) Effects of “Kalliroscope” flow visualization on rotating Couette-Taylor flow. Phys. Fluids, 28, 1204–1206.

    Article  ADS  Google Scholar 

  • Dominguez-Lerma, M. A., Cannell, D. S. and Ahlers, G. (1986) Eckhaus boundary and wave-number selection in rotating Couette-Taylor flow. Phys. Rev., A34, 4956–4970.

    ADS  Google Scholar 

  • Donnelly, R. J. (1958) Experiments on the stability of viscous flow between rotating cylinders. 1. Torque measurements. Proc. Roy. Soc. Lond., A286, 312–325.

    ADS  Google Scholar 

  • Donnelly, R. J. and Reif, F. (1962) Study of hydrodynamic stability with ion current. Bull. Amer. Phys. Soc., 7, 371.

    Google Scholar 

  • Donnelly, R. J., Reif, F. and Suhl, H. (1962) Enchancernent of hydrodynamic stability by modulation. Phys. Rev. Lett.. 9, 363–365.

    Article  ADS  Google Scholar 

  • Donnelly, R. J. and Tanner, D. J. (1965) Experiments on the stability of a viscous flow between rotating cylinders. V. The theory of the ion technique. Proc. Roy. Soc. Lond., A283, 520–530.

    Article  ADS  Google Scholar 

  • Donnelly, R. J. and Schwarz, K. W. (1965) Experiments on the stability of a viscous flow between rotating cylinders. VI. Finite amplitude experiments. Proc. Roy. Soc. Lond., A283, 531–556.

    Article  ADS  Google Scholar 

  • Donnelly, R. J., Park, K., Shaw, R. and Walden, R. W. (1980) Early nonperiodic transitions in Couette flow. Phys. Rev. Lett., 44, 987–989.

    Article  ADS  Google Scholar 

  • Douglas, H. A., Hide, R. and Mason, P. J. (1972) An investigation of the structure of baroclinic waves using three-level streak photography. Quart. J. Roy. Met. Soc., 98, 247–263.

    Article  ADS  Google Scholar 

  • Dudderar, T. D. and Simpkins, P. G. (1977) Laser speckle photography in a fluid medium. Nature, 270, 45–47.

    Article  ADS  Google Scholar 

  • Durst, F., Melling, A., and Whitelaw, J. H. (1981) Principles and practice of laser-Doppler anemometry. (Academic Press, London, New York )

    Google Scholar 

  • Eichorn, R. (1961) Flow visualization and velocity measurement in natural convection with the tellurium dye method. J. Heat Trans., 83, 379–381.

    Google Scholar 

  • Eisenberg, M., Tobias, C. W. and Wilke, C. R. (1954) Ionic mass transfer and concentration polarization at rotating electrodes. J. Electrochem. Soc., 101, 306–319.

    Article  Google Scholar 

  • Elkins, R. E., Jackman, G. R., Johnson, R. R., Lindgren, E. R. and Yoo, J. K. (1977) Evaluation of steroscopic trace particle records of turbulent flow fields. Rev. Sci. Instrum., 48, 738–746.

    Article  ADS  Google Scholar 

  • Erdmann, J. C. and Gellert, R. P. (1978) Recurrence rate correlation in scattered light intensity. J. Opt. Soc. Am., 68, 787–795.

    Article  ADS  Google Scholar 

  • Escudier, M. P. (1982) Vortex breakdown and the criterion for its occurrence. Topics in Atmospheric and Oceanographic Sciences: Intense Atmospheric Vortices, eds. L. Bengtsson and J. Lighthill, 247–257 ( Springer-Verlag, Berlin ).

    Google Scholar 

  • Escudier, M. P. (1983) Vortex breakdown in the absence of an endwall boundary layer. Exp. Fluids, 1, 193–194.

    Article  Google Scholar 

  • Escudier, M. P. (1984) Observations of the flow produced in a cylindrical container by a rotating endwall. Exp. Fluids, 2, 189–196.

    Article  Google Scholar 

  • Escudier, M. P. and Zehnder, N. (1982) Vortex-flow regimes. J. Fluid Mech., 115, 105–121.

    Article  ADS  Google Scholar 

  • Escudier, M. P., Bornstein, J. and Zehnder, N. (1980) Observations and LDA measurements of confined turbulent vortex flow. J. Fluid Mech., 98, 49–63.

    Google Scholar 

  • Escudier, M. P., Bornstein, J. and Maxworthy, T. (1982) The dynamics of confined vortices. Proc. Roy. Soc. Lond., A382, 335–360.

    Article  ADS  Google Scholar 

  • Euteneuer, G.-A. (1969) Storwellenlangen-Messung bei Langswirbeln in laminaren Grenzschlichten an konkav gekrummten Wanden. Acta Mech., 7, 161–168.

    Article  Google Scholar 

  • Euteneuer, G.-A. (1972) Eie entwicklung von Langswirbeln in zeitlich anwachsenden Grenzschlichten an konkaven Wanden. Acta. Mech., 13, 125–223.

    Article  Google Scholar 

  • Euteneuer, G.-A. and Reimann, J. (1971) Der Mechanismus der Sichtbarkeit von Gortler-Taylor-Wirbeln in Flussigkeiten mittels feingemahlenem Pulver. Acta Mech., 12, 89–97.

    Article  Google Scholar 

  • Fabris, G. (1978) Probe and method for simultaneous measurement of “true” instantaneous temperature and three velocity components in turbulent flow. Rev. Sci. Instrum., 49, 654–664.

    Article  ADS  Google Scholar 

  • Fage, A. and Falkner, V. M. (1931) On the relation between heat transfer and surface friction for laminar flow. Aero. Res. Counc., Lond., Rept. and Mem., No. 1408.

    Google Scholar 

  • Faler, J. H. and Leibovich, S. (1978) An experimental map of the internal structure of a vortex breakdown. J. Fluid Mech.. 86, 313–335.

    Article  ADS  Google Scholar 

  • Faller, A. J. (1963) An experimental study of the instability of the laminar Ekman boundary layer. J. Fluid Mech., 15, 560–576.

    Article  MATH  ADS  Google Scholar 

  • Faller, A. J. and Kaylor, R. E. (1966) Investigations of stability and transition in rotating boundary layers. Dyn. Fluids Plasma, 309–329 ( Academic Press, New York ).

    Google Scholar 

  • Faller, A. J. and Mooney, K. A. (1971) The Ekman boundary-layer stress due to flow over a regular array of hills. Bound. Layer Meteor., 2, 83–107.

    Article  ADS  Google Scholar 

  • Faller, A. J. and Porter, D. L. (1976) A note on eastern boundary currents in a laboratory analogue of the ocean circulation. Tellus, 28, 88–89.

    Article  ADS  Google Scholar 

  • Farmer, D., Hart, J. and Weidman, P. (1982) A phase space analysis of baroclinic flow. Phys. Leu., 91A, 22–24.

    Article  ADS  MathSciNet  Google Scholar 

  • Fenstermacher, P. R., Swinney, H. L. and Gollub, J. P. (1979) Dynamical instabilities and the transition to chaotic Taylor vortex flow. J. Fluid Mech., 94, 103–128.

    Article  ADS  Google Scholar 

  • Fingerson, L. M. and Freymuth, P. (1983) Thermal Anemometers. Fluid Mechanics Measurements, ed. R. J. Goldstein, 99–154 ( Hemisphere Publishing, Washington ).

    Google Scholar 

  • Firing, E. and Beardsley, R. C. (1976) The behavior of a barotropic eddy on a 13-plane. J. Phys. Ocean., 6, 57–65.

    Article  ADS  Google Scholar 

  • Fischer, K. (1931) Mitt. Hydraul. Inst. Munch., 4, 7.

    Google Scholar 

  • Fitzjarrald, D. E. (1982) An investigation of wave-amplitude vacillation using a light-speckle velocity measuring technique. J. Phys. E: Sci. Instrum. 15, 911–915.

    Article  ADS  Google Scholar 

  • Flierl, G. R., Stern M. E. and Whitehead, J. A., Jr. (1983) The physical significance of modons: Laboratory experiments and general integral constraints. Dyn. Atm. Oceans, 7, 233–263.

    Article  ADS  Google Scholar 

  • Flower, J. R., MacLeod, N., and Shahbenderian, A. P. (1969) The radial transfer of mass and momentum in an axial fluid stream between coaxial rotating cylinders–I Experimental measurements. Chem. Engrg. Sci., 24, 637–650.

    Article  Google Scholar 

  • Focke, W. W. and Knibbe, P. G. (1986) Flow visualization in parallel-plate ducts with corrugated walls. J. Fluid Mech., 165, 73–77.

    Article  ADS  Google Scholar 

  • Foreman, J. W. Jr. (1967) Optical path-length difference effects in photomixing with multimode gas laser radiation. Appl. Opt., 6, 821–826.

    Article  ADS  Google Scholar 

  • Fortuin, J. M. H. (1960) Theory and application of two supplementary methods of constructing density gradient columns. J. Polymer Sci., 44, 505–515.

    Article  ADS  Google Scholar 

  • Foss, J. F. and Wallace, J. M. (1989) The measurement of vorticity in transitional and fully developed turbulent flows. Lecture Notes in Engineering: Advances in Fluid Mechanics Measurements, ed M. Gad-el-Hak ( Springer-Verlag, New York).

    Google Scholar 

  • Fowlis, W. W. (1970) Techniques and apparatus for the fast and accurate measurement of fluid temperature and flow speed fields. Rev. Sci. Instrum., 41, 570–576.

    Article  ADS  Google Scholar 

  • Fowlis, W. W. (1979) Remote optical techniques for liquid flow and temperature measurement for Spacelab experiments. Opt. Engrg., 18, 281–286.

    Google Scholar 

  • Fowlis, W. W. and Hide, R. (1965) Thermal convection in a rotating annulus of liquid: Effect of viscosity on the transition between axisymmetric and nonaxisymmetric flow regimes. J. Atm. Sci., 22, 541–558.

    Article  ADS  Google Scholar 

  • Fowlis, W. W. and Pfeffer, R. L. (1969) Characteristics of amplitude vacillation in a rotating, differentially heated fluid determined by a multi-probe technique. J. Atm. Sci., 26, 100–108.

    Article  ADS  Google Scholar 

  • Fowlis, W. W., Buckley, J. D. and Ruppert, J. W. (1972) The measurement of flow direction, flow speed, and temperature in a liquid using a miniaturized array of thermistor beads. Geophysical Fluid Dynamics Institute Tech. Rep. No. 37, Florida State University, Tallahassee, FL.

    Google Scholar 

  • Fowlis, W. W., Pfeffer, R. L., Buzyna, G., Buckley, J. C. and Ruppert, J. (1974) The measurement of time-dependent fluid temperature and flow speed fields: Techniques, apparatus and results. Flow–Its Measurement and Control in Science and Industry, 1, ed. R. E. Wendt, Jr., 613–622 ( Instrument Society of America, Pittsburg ).

    Google Scholar 

  • Frantisak, F., Palade de Iribarne, A., Smith, J. W. and Hummel, R. L. (1969) Nondisturbing tracer technique for quantative measurements in turbulent flow. Ind. Eng. Chem. Fundamentals, 8, 160–167.

    Google Scholar 

  • Freymuth, P. (1968) Noise in hot-wire anemometers. Rev. Sci. Instrum., 39, 530–536.

    Article  ADS  Google Scholar 

  • Freymuth, P. (1977a) Frequency response and electronic testing for constant-temperature hot-wire anemometers. J. Phys. E: Sci. Instrum., 10, 705–710.

    Article  ADS  Google Scholar 

  • Freymuth, P. (1977b) Further investigation of the nonlinear theory for constant-temperature hot-wire aneometers. J. Phys. E: Sci. Instrum., 10, 710–713.

    Article  ADS  Google Scholar 

  • Freymuth, P. (1980) Sine-wave testing of non-cylindrical hot-film anemometers according to the Bellhouse-Schultz model. J. Phys. E: Sci. Instrum., 13, 98–102.

    Article  ADS  Google Scholar 

  • Freymuth, P. (1983) History of thermal aneometry. Handbook of Fluids in Motion, eds. N. P. Cheremisinoff and R. Gupta ( Ann Arbor Science, Ann Arbor )

    Google Scholar 

  • Freymuth, P. (1989) Air flow visualization using titanium tetrachloride. Lecture Notes in Engineering: Advances in Fluid Mechanics Measurements, ed. M. Gad-el-Hak ( Springer-Verlag, New York).

    Google Scholar 

  • Fuller, W. R. (1974) Calibration of a split-film sensor. MS thesis, University of Southern California, Los Angeles, CA.

    Google Scholar 

  • Fultz, D. (1949) A preliminary report on experiments with thermally produced lateral mixing in a rotating hemispherical shell of liquid. J. Meteor., 6, 17–33.

    Article  Google Scholar 

  • Fultz, D. and Kaiser, J. A. C. (1971) The disturbing effects of probes in meteorological fluid-model experiments. J. Atm. Sci., 28, 1153–1164.

    Article  ADS  Google Scholar 

  • Garg, A. K. and Leibovich, S. (1979) Spectral characteristics of vortex breakdown flowfields. Phys. Fluids, 22, 2053–2064.

    Article  ADS  Google Scholar 

  • Geller, E. W. (1955) An electrochemical method of visualizing the boundary layer. J. Aeronaut. Sci., 22, 869–870.

    Google Scholar 

  • Gershenfeld, N., Frazel, R. E. and Whitehead, J. A. Jr. (1981) Rotating flume with uniformly flowing linear stratified water. Rev. Sci. Instrum., 52, 1556–1559.

    Article  ADS  Google Scholar 

  • Gharib, M. and Willert, C. (1989) Particle tracing: Revisited. Lecture Notes in Engineering: Advances in Fluid Mechanics Measurements, ed. M. Gad-el-Hak ( Springer-Verlag, New York).

    Google Scholar 

  • Gharib, M., Hernan, M. A., Yavrouian, A. H. and Sarohia, V. (1985) Flow velocity measurement by image processing of optically activated tracers. AIAA 23rd Aerospace Sciences Meeting, No. 85–0172.

    Google Scholar 

  • Gibson, C. H. and Schwarz, W. H. (1963) Detection of conductivity fluctuations in a turbulent flow field. J. Fluid Mec/i., 16, 357–364

    Article  ADS  Google Scholar 

  • Glasstone, S. (1942) An Introduction to Electrochemistry, ( Van Nostrand, New York).

    Google Scholar 

  • Goldsmith, H. L. and Mason, S. G. (1962) Particle motions in sheared suspensions. XII. The spin and rotation of disks. J. Fluid Mech., 12, 88–96.

    Article  MATH  ADS  Google Scholar 

  • Goldstein, R. J. (1983) Optical systems for flow measurement: Shadowgraph,Schlieren, and interferometric techniques. Fluid Mechanics Measurements, ed. R. L. Goldstein, 377–422 ( Hemisphere, Washington ).

    Google Scholar 

  • Goiter, H. and Ranov, T. (1968) Unsteady rotating flow in a cylinder with a free surface. J. Basic Engrg., 90, 445–454.

    Article  Google Scholar 

  • Gorman, M. and Swinney, H. L. (1982) Spatial and temporal characteristics of modulated waves in the circular Couette system. J. Fluid Mech., 117, 123–142.

    Article  ADS  Google Scholar 

  • Gray, W. E. (1944) A chemical method of indicating transition in the boundary layer. Roy. Aircraft Estab. Tech. Note, No. 1466.

    Google Scholar 

  • Green, A. (1968) An experimental study of the interactions between Ekman layers and an annular vortex. PhD thesis, Massachusetts Institute of Technology, Boston, MA.

    Google Scholar 

  • Gregory, N., Stuart, J. T. and Walker, W. S. (1955) On the stability of three-dimensional boundary layers with application to the flow due to a rotating disk. Phil. Trans. Roy. Soc. Lond., A248, 155–199.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Griffiths, R. W. and Linden, P. F. (1981) The stability of vortices in a rotating, stratified fluid. J. Fluid Mech., 105, 283–316.

    Article  ADS  Google Scholar 

  • Griffiths, R. W. and Hopfinger, E. J. (1987) Coalescing of geostrophic vortices. J. Fluid Mech. 178, 73–97.

    Article  ADS  Google Scholar 

  • Grousson, R. and Mallick, S. (1977) Study of flow patterns in a fluid by scattered laser light. Appl. Optics, 16, 2334–2336.

    Article  ADS  Google Scholar 

  • Haas, F. C. and Nissan, A. H. (1961) Experimental heat transfer characteristics of a liquid in Couette motion and with Taylor vorticies. Proc. Roy. Soc. Lond., A261, 215–226.

    Article  ADS  Google Scholar 

  • Hakimi, F. S. and Schowalter, W. R. (1980) The effects of shear and vorticity on deformation of a drop. J. Fluid Mech., 98, 635–645.

    Article  ADS  Google Scholar 

  • Hanratty, T. J. and Campbell, J. A. (1983) Measurement of wall shear stress. Fluid Mechanics Measurements, ed. R. L. Goldstein, 559–614 ( Hemisphere, Washington ).

    Google Scholar 

  • Hansford, G. S. and Litt, M. (1968) Mass transport from a rotating disk into power-law liquids. Chem. Engrg. Sci., 23, 849–864.

    Article  Google Scholar 

  • Haritonidis, J. H. (1989) Measurements of mean and fluctuating wall shear stress. Lecture Notes in Engineering: Advances in Fluid Mechanics Measurements, ed. M. Gad-el-Hak ( Springer-Verlag, New York).

    Google Scholar 

  • Hart, J. E. (1971) Instability and secondary motion in a rotating channel flow. J. Fluid Mech., 45, 341–351.

    Article  MATH  ADS  Google Scholar 

  • Hart, J. E. (1972) A laboratory study of baroclinic instability. Geophys. Fluid Dyn., 3, 181–209.

    Article  ADS  Google Scholar 

  • Hart, J. E. (1985) A laboratory study of baroclinic chaos on the f-plane. Tellus, 37A, 286–296.

    Google Scholar 

  • Hart, J. E. and Kittleman, S. (1986) A method for measuring interfacial wave fields in the laboratory. Geophys. Astrophys. Fluid Dyn., 36, 179–185.

    Article  ADS  Google Scholar 

  • Hart, J. E., Toomre, J., Deane, A. E., Hurlburt, N. E., Glatzmaier, G. A., Fichtl, G. H., Leslie, F., Fowlis, W. W. and Gilman, P. A. (1986) Laboratory experiments on planetary and stellar convection performed on Spacelab 3. Science, 234, 61–64.

    Article  ADS  Google Scholar 

  • Harvey, E. N. (1940) Living Light. ( Princeton University Press, Princeton).

    Google Scholar 

  • Hathaway, D. H. and Fowlis, W. W. (1986) Flow regimes in a shallow rotating cylindrical annulus with temperature gradients imposed on the horizontal boundaries. J. Fluid Mech., 172, 401–418.

    Article  ADS  Google Scholar 

  • Head, M. R. and Rani, V. V. (1971) Simplified presentation of Preston tube calibration. Aeronaut. Q., 22, 295–300.

    Google Scholar 

  • Heikes, K. E. and Maxworthy, T. (1982) Observations of inertial waves in a homogeneous rotating fluid. J. Fluid Mech., 125, 319–345.

    Article  ADS  Google Scholar 

  • Heinrichs, R. M., Cannell, D. S., Ahlers, G. and Jefferson, M. (1988) Experimental test of the perturbation expansion for the Taylor instability at various wavevectors. Phys. Fluids, 31, 250–255.

    Article  ADS  Google Scholar 

  • Herzog, S. and Lumley, J. L. (1979) Determination of large eddy structures in the viscous sublayer: A progress report. Proceedings of the Dynamic Flow Conference, 869–336, P. O. Box 121, DK-2740 Skolunde, Denmark.

    Google Scholar 

  • Hide, R. (1958) An experimental study of thermal convection in a rotating liquid. Proc. Roy. Soc. Lond., A250, 441–477.

    ADS  Google Scholar 

  • Hide, R. and Titman, C. W. (1967) Detached shear layers in a rotating fluid. J. Fluid Mech.,29, 39–60.

    Google Scholar 

  • Hide, R., Mason, P. J. and Plumb, R. A. (1977) Thermal convection in a rotating fluid subject to a horizontal temperature gradient: Spatial and temporal characteristics of fully developed baroclinic waves. J. Atm. Sci.. 34, 930–950.

    Article  ADS  Google Scholar 

  • Hinze, J. O. (1959) Turbulence, an introduction to its mechanism and theory.(McGraw Hill, New York).

    Google Scholar 

  • Ho, C.-M. (1982) Response of a split film probe under electrical perturbations. Rev. Sci. Instrum., 58, 1240–1245.

    Article  ADS  Google Scholar 

  • Hopfinger, E. J., Browand, F. K. and Gagne, Y. (1982) Turbulence and waves in a rotating tank. J. Fluid Mech., 125, 505–534.

    Article  ADS  Google Scholar 

  • Howland, B., Pitts, W. H. and Gesteland, R. C. (1962) Use of electrochemiluminescence for visualizing fields of flow. Tech. Rep. 404, Research Laboratory of Electronics, M.I.T.

    Google Scholar 

  • Hsueh, Y. and Legeckis, R. (1973) Western intensification in a rotating water tunnel. Geophys. Fluid Dyn., 5, 333–358.

    Article  ADS  Google Scholar 

  • Hudson, J. L., Tang, D, and Abell, S. (1978) Experiments on centrifugally driven thermal convection in a rotating cylinder. J. Fluid Mech., 86, 147–159.

    Article  ADS  Google Scholar 

  • Hummel, D. (1965) Untersuchungen uber das Aufplatzen der Wirbel an schlanken Deltaflugeln. Z. Flugwiss., 13, 158–168.

    Google Scholar 

  • Iluner, B. and Hussey, R. G. (1977) Cylinder drag at low Reynolds number. Phys. Fluids, 20, 1211–1218.

    Article  ADS  Google Scholar 

  • lbbetson, A. (1967) Some laboratory experiments on Rossby waves in a rotating annulus. Tellus, 19, 81–87.

    Article  ADS  Google Scholar 

  • Ibbetson, A. and Tritton, D. J. (1975) Experiments on turbulence in a rotating fluid. J. Fluid Mech., 68, 639–672.

    Article  ADS  Google Scholar 

  • Imaichi, K. and Ohmi, K. (1983) Numerical processing of flow-visualization pictures–measurement of two-dimensional vortex flow. J. Fluid Mech., 129, 283–311.

    Article  ADS  Google Scholar 

  • Ingram, G. R. (1971) Experiments in a rotating source-sink annulus. PhD thesis, Massachusetts Intsitute of Technology, Cambridge, MA.

    Google Scholar 

  • Iribarne, A., Frantisak, F., Hummel, R. L. and Smith, J. W. (1972) An experimental study of instabilities and other flow properties of a laminar pipe jet. Amer. Inst. Chem. Engr. J., 18, 689–698.

    Google Scholar 

  • Jeffrey, G. B. (1922) The motion of ellipsoidal particles immersed in a viscous fluid. Proc. Roy. Soc. Lond., A102, 161–179.

    Article  ADS  Google Scholar 

  • Jeong, K. and Park, K. (1987) Observation of a very-low-frequency oscillation in a Taylor-Couette flow. Phys. Rev., A35, 4854–4855.

    ADS  Google Scholar 

  • Jerskey, T. and Penner, S. S. (1973) Velocity profiles in steady and unsteady rotating flows for a finite cylindrical geometry. Phys. Fluids, 16, 769–774.

    Article  ADS  Google Scholar 

  • Johnston, J. P., Halleen, R. M. and Lezius, D. K. (1972) Effects of spanwise rotation on the structure of two-dimensional fully developed turbulent channel flow. J. Fluid Mech., 56, 533–557.

    Article  ADS  Google Scholar 

  • Jonas, P. R. and Kent, P. M. (1979) Two-dimensional velocity measurement by automatic analysis of trace particle motion. J. Phys. E: Sci. Instrum., 12, 604–609.

    Article  ADS  Google Scholar 

  • Joseph, D. D., Beavers, G. S. and Fosdick, R. L. (1973) The free surface on a liquid between cylinders rotating at different speeds. Part I1. Arch. Rat. Mech. Anal., 49, 381–401.

    MATH  MathSciNet  Google Scholar 

  • Joseph, D. D., Nguyen, K. and Beavers, G. S. (1984a) Non-uniqueness and stability of the configuration of flow of immiscible fluids with different viscosities. J. Fluid Mech., 141, 319–345.

    Article  MATH  ADS  Google Scholar 

  • Joseph, D. D., Beavers, G. S., Cers, A., Dewald, C., Hoger, A. and Than, P. T. (1984b) Climbing constants for various liquids. J. Rheology, 28, 325–345.

    Article  ADS  Google Scholar 

  • Kabanov, G. N. and Siver, Y. G. (1948) Zhur. Fiz. Khirn., 22, 53. See also Levich, V. G., Physicochemical Hydrodynamics. ( Printice Hall, New Jersey, 1962 ).

    Google Scholar 

  • Karlsson, S. K. F. and Snyder, H. A. (1965) Observations on a thermally induced instability between rotating cylinders. Annals Phys., 31, 314–324.

    Article  ADS  Google Scholar 

  • Kataoka, K. (1975) Heat-transfer in a Taylor vortex flow. J. Chem. Engrg. Japan, 8, 271–276.

    Article  Google Scholar 

  • Kaye, J. and Elgar, E. C. (1958) Modes of adiabatic and diabatic fluid flow in an annulus with an inner rotating cylinder. A.S.M.E. Trans., 80, 753–765.

    Google Scholar 

  • Keller, J. J. and Escudier, M. P. (1980) Theory and observations of waves on hollow-core vortices. J. Fluid Mech., 99, 495–511.

    Article  MATH  ADS  Google Scholar 

  • Kidron, I. (1966) Measurement of the transfer function of hot-wire and hot-film turbulence transducers. IEEE Trans. Instrum. Meas., 15, 76–81.

    Article  Google Scholar 

  • King, G. P., Li, Y., Lee, W., Swinney, H. L. and Marcus, P. S. (1984) Wave speeds in wavy Taylor-vortex flow. J. Fluid Mech., 141, 365–390.

    Article  ADS  Google Scholar 

  • King, L. V. (1914) On the convection of heat from small cylinders in a stream of fluid: Determination of the convection constants of small platinum wires, with applications to hot-wire anemometry. Proc. Roy. Soc. Lond., 90, 563–570.

    Article  ADS  Google Scholar 

  • Kohuth, K. R. and Neitzel, G. P. (1988) Experiments on the stability of an impulsively-initiated circular Couette flow. Exp. Fluids, to appear.

    Google Scholar 

  • Koop, G. C. (1976) Instability and turbulence in a stratified shear layer. PhD thesis, University of Southern California, Los Angeles, CA.

    Google Scholar 

  • Koschmieder, E. L. (1972) Convection in a rotating laterally-heated annulus. J. Fluid Mech., 51, 637–656.

    Article  ADS  Google Scholar 

  • Koschmieder, E. L. (1979) Turbulent Taylor vortex flow. J. Fluid Mech., 93, 5IS-527.

    Google Scholar 

  • Koschmieder, E. L. and Lewis, E. R. (1986) Hadley circulations on a nonuniformly heated rotating plate. J. Atm. Sci., 43, 2514–2526.

    Article  ADS  Google Scholar 

  • Kung, R. K., Buzyna, G. and Pfeffer, R. L. (1987) Velocity and temperature measurement with thermistor anemometers in a thermally stratified rotating fluid. J. Phys. E: Sci. Instrum., 20, 461–467.

    Article  ADS  Google Scholar 

  • Kreith, F., Taylor, J. H. and Chong, J. P. (1959) Heat and mass transfer from a rotating disk. J. Heat Transfer, 81, 95–105.

    Google Scholar 

  • Kreith, F., Ellis, D. and Giesing, J. (1962) Boundary layer and transition characteristics of a rotating cone. A.S.M.E., Paper No. 62-WA-105 ( American Society of Mechanical Engineers, New York).

    Google Scholar 

  • Krothapalli, A. and Smith, C. A. (1989) Particle image displacement velocimetry. Lecture Notes in Engineering: Advances in Fluid Mechanics Measurements, ed. Gadel-Hak ( Springer-Verlag, New York )

    Google Scholar 

  • Krumdieck, S. and Weidman, P. D. (1988) The shape and stability of rotating capillary rivulets. Bull. Amer. Phys. Soc., 30, 1732.

    Google Scholar 

  • Lamb, D. E., Manning, F. S. and Wilhelm, R. H. (1960) Measurement of concentration fluctuations with an electrical conductivity probe. Amer. Inst. Chem. Eng. J., 6, 682–685.

    Google Scholar 

  • Lambert, R. B., Snyder, H. A. and Karlsson, S. K. F. (1965) Hot thermistor anemometer for finite amplitude stability measurements. Rev. Sci. Instr., 36, 924–928.

    Article  ADS  Google Scholar 

  • Lambert, R. B. and Snyder, H. A. (1966) Experiments on the effect of horizontal shear and change of aspect ratio on convective flow in a rotating annulus. J. Geophys. Res., 71, 5225–5234.

    ADS  Google Scholar 

  • Lambert, R. B. and Davey, M. (1974) Continuously direct-reading polarimeter for density contrast measurements in optically active solutions. Rev. Sci. Instrum., 45, 1531–1536.

    Article  ADS  Google Scholar 

  • Larsen, J. and Rosner, K. G. (1982) Optical flow-velocity measurement in irregularly shaped cavities. Recent Contributions to Fluid Mechanics, ed. W. Haase ( Springer-Verlag, Berlin).

    Google Scholar 

  • Lasso, I. and Weidman, P. D. (1986) Stokes drag on hollow cylinders and conglomerates. Phys. Fluids, 29, 3921–3934.

    Article  ADS  Google Scholar 

  • Lauterborn, W. and Vogel, A. (1984) Modern optical techniques in fluid mechanics. Ann. Rev. Fluid Mech., 16, 223–244.

    Article  ADS  Google Scholar 

  • Leveque, M. A. (1928) Transmission de chaleur par convection. Ann. des Mines, 13, 201–299.

    Google Scholar 

  • Liepmann, H. W. and Skinner, G. T. (1954) NACA Tech. Note No. 3268.

    Google Scholar 

  • Linden, P. F. (1977) The flow of a stratified fluid in a rotating annulus. J. Fluid Mech., 79, 435–447.

    Article  ADS  Google Scholar 

  • Leehey, P. (1989) Dynamic wall pressure measurements. Lecture Notes in Engineering: Advances in Fluid Mechanics Measurements, ed. M. Gad-el-Hak ( Springer-Verlag, New York).

    Google Scholar 

  • Levich, V. G. (1942) Acta Physicochim. U.R.S.S., 17, 257. See also Levich, V. G., Physicochemical Hydrodynamics. ( Printice Hall, New Jersey, 1962 ).

    Google Scholar 

  • Levich, V. G. (1962) Physicochemical Hydrodynamics. ( Printice Hall, New Jersey).

    Google Scholar 

  • Li, G.-Q., Kung, R. and Pfeffer, R. L. (1986) An experimental study of baroclinic flows with and without two-wave bottom topography. J. Atm. Sci., 43, 2585–2599.

    Article  ADS  Google Scholar 

  • Ling, S. C. (1955) Measurements of flow characteristics by the hot-film technique. PhD thesis, State University of Iowa, Ames, Iowa.

    Google Scholar 

  • Ling, S. C. (1960) Heat-transfer characteristics of hot-film sensing element used in flow measurement. J. Basic Engrg., 82, 629–634.

    Article  Google Scholar 

  • Ling, S. C. and Hubbard, P. G. (1956) The hot-film: A new device for fluid mechanics research. J. Aeronaut. Sci., 23, 890–891.

    Google Scholar 

  • Lorenzen, A. (1985) Anomalous modes and finite length effects in Taylor Couette flow. Max-Planck-Instutut Fur Stromungslorschung, Bericht 102, Gottingen.

    Google Scholar 

  • Lourenco, L. and Krothapalli, A. (1987) The role of photographic parameters in laser speckle or particle image displacement velocimetry. Exp. Fluids, 5, 29–32.

    Google Scholar 

  • Lowell, H. H. and Patton, N. (1955) NACA Tech. Note No. 3415.

    Google Scholar 

  • Luguovtsov, B. A. (1982) Laboratory models of tornado-like vortices. Topics in Atmospheric and Oceanographic Sciences: Intense Atmospheric Vortices, eds. L. Bengtsson and J. Lighthill, 299–312 ( Springer-Verlag, Berlin ).

    Google Scholar 

  • Ludwieg, H. (1964) Experimentelle Nachprufung der Stabilitatstheorien fur reibungsfreie Stromungen mit schraubenlinienformigne Stromlinien. Z. Flugwiss., 12, 304–309.

    Google Scholar 

  • Lumley, J. L. (1962) The constant temperature hot-thermistor. ASME Symposium Proceedings: Measurements in Unsteady Flow. ( ASME, New York).

    Google Scholar 

  • L’vov, V. S. and Predtechensky, A. A. (1979) On Landau and “stochastic attractor” pictures in the problem of transition to turbulence. Institute of Automation and Electrometry, Siberian Branch, USSR Academy of Science, Preprint No. Ill.

    Google Scholar 

  • Malkus, W. V. R. (1968) Precession of the Earth as a couse of geomagnetism. Science, 160, 259–264.

    Article  ADS  Google Scholar 

  • Mallock, A. (1889) Determination of the viscosity of water. Proc. Roy. Soc. Lond., A45, 126–132.

    Google Scholar 

  • Mallock, A. (1896) Experiments on Fluid Viscosity. Phil Trans. Roy. Soc. Load., A187, 41–56.

    Article  MATH  ADS  Google Scholar 

  • Maltby, R. L. and Keating, R. F. A. (1962) Smoke techniques for use in low speed wind tunnels. AGARDograph, No. 70, 87–109.

    Google Scholar 

  • Manuel, F., Crespo, A. and Castro, F. (1987) Wave and cavity propagation along a tip vortex interface. Physico-Chemical Hydrodynamics, 9, 611–630.

    Google Scholar 

  • Mason, P. J. (1975) Forces on bodies moving transversely through a rotating fluid. J. Fluid Mech., 71, 577–599.

    Article  ADS  Google Scholar 

  • Maxworthy, T. (1965) An experimental determination of the slow motion of a sphere in a rotating viscous fluid.J. Fluid Mech.

    Google Scholar 

  • Mason, P. J. (1977) Forces on spheres moving horizontally in a rotating stratified fluid. Geophys. Astrophys. Fluid Dyn., 8, 137–154.

    Article  ADS  Google Scholar 

  • Matisse, P. and Gorman, M. (1984) Neutrally buoyant anisotropic particles for flow visualization. Phys. Fluids, 27, 759–760.

    Article  ADS  Google Scholar 

  • Maxworthy, T. (1965) An experimental determination of the slow motion of a sphere in a rotating viscous fluid. J. Fluid Mech., 23, 373–384.

    Article  ADS  Google Scholar 

  • Maxworthy, T. (1967) The flow creating a concentration of vorticity over a stationary plate. Jet Prop. Lab. Space Prog. Sum., IV, 243–250.

    Google Scholar 

  • Maxworthy, T. (1968) The observed motion of a sphere through a short, rotating cylinder of fluid. J. Fluid Mech., 31, 543–655.

    Google Scholar 

  • Maxworthy, T. (1970) The flow created by a sphere moving along the axis of a rotating, slightly-viscous fluid. J. Fluid Mech., 40, 453–479.

    Article  MATH  ADS  Google Scholar 

  • Maxworthy, T. (1972) On the structure of concentrated, columnar vortices. Astron. Acta., 17, 363–374.

    Google Scholar 

  • Maxworthy, T. (1982) The laboratory modelling of atmospheric vortices: A critical review. Topics in Atmospheric and Oceanographic Sciences: Intense Atmospheric Vortices, eds. L. Bengtsson and J. Lighthill, 229–246 ( Springer-Verlag, Berlin ).

    Google Scholar 

  • Maxworthy, T. (1983) Experiments on solitary internal Kelvin waves. J. Fluid Mech., 129, 365–383.

    Article  ADS  Google Scholar 

  • Maxworthy, T. and Browand F. K. B. (1974) Experiments in rotating and stratified flows: Oceanographic application. Ann. Rev. Fluid Mech., 7, 273–305.

    Article  ADS  Google Scholar 

  • Maxworthy, T., Hopfinger, E. J. and Redekopp, L. G. (1985) Wave motions on vortex cores. J. Fluid Mech., 151, 141–165.

    Article  ADS  Google Scholar 

  • Mazumder, M. K. and Wankum, D. L. (1969) SNR and spectral broadening in turbulence structure measurement using CW laser. IEEE J. Quant. Electr., 5, 316–318.

    Article  ADS  Google Scholar 

  • McGoldrick, L. F. (1970) An experiment on second-order capillary gravity resonant wave interactions.J. Fluid Mech.

    Google Scholar 

  • McEwan, A. D. (1982) Convection and mixing at high Rossby numbers in rotating systems. Topics in Atmospheric and Oceanographic Sciences: Intense Atmospheric Vortices, eds. L. Bengtsson and J. Lighthill, 271–283 ( Springer-Verlag, Berlin ).

    Google Scholar 

  • McGoldrick, L. F. (1970) An experiment on second-order capillary gravity resonant wave interactions. J. Fluid Mech., 40, 251–271.

    Article  ADS  Google Scholar 

  • Merzkirch, W. (1987) Flow Visualization. ( Academic Press, New York).

    MATH  Google Scholar 

  • Mellor, G. L., Chapple, P. J. and Stokes, V. K. (1968) On the flow between a rotating and a stationary disk. J. Fluid Mech., 31, 95–112.

    Article  MATH  ADS  Google Scholar 

  • Meynart, R. (1980) Equal velocity fringes in a Rayleigh-Benard flow by a speckle method. Appl. Optics, 19, 1385–1386.

    Article  ADS  Google Scholar 

  • Meynart, R. (1983) Speckle velocity study of vortex pairing in a low-Re unexcited jet. Phys. Fluids, 26, 2074–2079.

    Article  ADS  Google Scholar 

  • Mizushina, T. (1971) Advances in Heat Trans/er, 7, p. 87 ( Academic Press, New York ).

    Book  Google Scholar 

  • Moore, J. (1967) Gas Turbine Lab, M.I.T. Rep. No. 89.

    Google Scholar 

  • Morris, J. T. (1912) The electrical measurement of wind velocity. Engineering, 94, 892–894.

    Google Scholar 

  • Mory, M., Stern, M. E. and Griffiths, R. W. (1987) Coherent baroclinic eddies on a sloping bottom. J. Fluid Mech., 183, 45–62.

    Article  MATH  ADS  Google Scholar 

  • Mullen, J. B. and Maxworthy, T. (1977) A laboratory study of dust devil vorticies. Dyn. Atm. Oceans 1, 181–214.

    Article  ADS  Google Scholar 

  • Mueller, T. J. (1983) Flow visualization by direct injection. Fluid Mechanics Measurements, ed. R. L. Goldstein, 307–372 ( Hemisphere, Washington ).

    Google Scholar 

  • Mullin, T. (1982) Mutations of steady cellular flows in the Taylor experiment. J. Fluid Mech., 121, 207–218.

    Article  ADS  Google Scholar 

  • Mullin, T., Lorenzen, A. and Pfister, G. (1983) Transition to turbulence in a nonstandard rotating flow. Phys. Lett., 96A, 236–238.

    Article  Google Scholar 

  • Mullin, T., Tavener, S. J. and Cliffe, K. A. (1987) A codimension-2 bifurcation in Taylor-Couette flow with rotating ends. TP No. 1231, Theorteical Physics Division, Harwell Laboratory, Oxon, England.

    Google Scholar 

  • Nakatani, N. Fujiwara, K. Matsumoto, M. and Yamada, T. (1971) Measurement of flow velocity distribution by luminescence. Japan J. App/. Phys., 10, 1748–1749.

    Google Scholar 

  • Nakatani, N. Fujiwara, K. Matsumoto, M. and Yamada, T. (1975) Measurement of velocity distributions by pulse luminescence method. J. Phys. E: Sci. Instrum., 8, 1042–1056.

    Google Scholar 

  • Narimousa, S. and Maxworthy, T. (1985) Two-layer model of shear-driven coastal upwelling in the presence of bottom topography. J. Fluid Mech., 159, 503–531.

    Article  ADS  Google Scholar 

  • Niler, P. P. (1965) Performance of a thermistor anemometer in constant density shear flow. Rev. Sci. Instr., 36, 921–924.

    Article  ADS  Google Scholar 

  • Oberbeck, A. (1895) Uber die Abkuehlende Wirkung von Lufstroemen. Annalen Physik Chemie, 56, 397–411.

    Article  ADS  Google Scholar 

  • Ohji, M., Shionoya, S. and Amagai, K. (1986) Mode selection in the transition of circular Couette flow. Proceedings of the 3rd Asian Congress on Fluid Mechanics, 34–37, Tokyo, Japan.

    Google Scholar 

  • Ohji, M. (1987) Structure of modulated wavy vortical flows in the circular Couette system. IUTAM Symposium on Fundamental Aspects of Vortex Motion, 92–95, Tokyo, Japan.

    Google Scholar 

  • Ohlsen, D. (1988) Nonlinear baroclinic instability on the beta-plane. PhD thesis, University of Colorado, Boulder, CO.

    Google Scholar 

  • Oster, G. (1965) Density gradients. Sci. Amer., 213, 70–76.

    Article  Google Scholar 

  • Owen, F. S., Hale, R. W., Johnson, B. V. and Travers, A. (1961) Experimental investigation of characteristics of confined jet-driven vortex flows. United Aircraft Res. Lab. Rep., No. R-2494–2, AD-328.

    Google Scholar 

  • Park, K. and Donnelly, R. J. (1981) Study of the transition to Taylor vortex flow. Phys. Rev., A24, 2277–2279.

    Article  ADS  Google Scholar 

  • Park, K., Crawford, G. L. and Donnelly, R. J. (1983) Characteristic lengths in the wavy vortex state of Taylor-Couette flow. Phys. Rev. Lett.. 51, 1352–1354.

    Article  ADS  Google Scholar 

  • Penner, S. S. and Jerskey, T. (1973) Use of lasers for local measurement of velocity components, species densities, and temperatures. Ann. Rev. Fluid Mech., 5, 9–30.

    Article  ADS  Google Scholar 

  • Penney, C. M. (1969) Differential doppler velocity measurements. IEEE J. Quant. Electr., 318, 318.

    Article  Google Scholar 

  • Perry, A. E. (1982) Hot Wire Anemometry. ( Clarendon Press, Oxford).

    Google Scholar 

  • Perry, A. E. and Morrison, G. L. (1971) A study of the constant-temperature hot-wire anemometer. J. Fluid Mech., 47, 577–599.

    Article  ADS  Google Scholar 

  • Pfeffer, R. L., Fowlis, W. W., Fein, J. and Buckley, J. (1970) Experimental determination of the transition between the symmetrical and wave regimes in a rotating differentially heated annulus of fluid. Rev. Pure Appl. Geophys., 81, 263–271.

    Article  ADS  Google Scholar 

  • Pfeffer, R. L., Buzyna, G. and Kung, R. (1980a) Time-dependent modes of behavior of thermally driven rotating fluids. J. Atmos. Sci., 37, 2129–2149.

    Article  ADS  Google Scholar 

  • Pfeffer, R. L., Buzyna, G. and Kung, R. (1980b) Relationships among eddy fluxes of heat, eddy temperature variances and basic-state temperature parameters in thermally dirven rotating fluids. J. Atrnos. Sci., 37, 2577–2599.

    Article  ADS  Google Scholar 

  • Pfister, G., Gerdts, U., Lorenzen, A. and Schatzel, K. (1983) Hardware and software implementation of on-line velocity correlation measurements in oscillatory and turbulent rotational Couette flow. Photon Correlation Techniques in Fluid Mechancis, ed. Schultz-duBois ( Springer-Verlag, Berlin).

    Google Scholar 

  • Plateau, J. (1863) Experimental and theoretical researches on the figures of equilibrium of a liquid mass withdrawn from the action of gravity. Annual Report of the Board of Regeants of the Smithsonian Institution, (Government Printing Office, Washington, D. C.).

    Google Scholar 

  • Pope, A. (1958) Wind-tunnel testing. ( Wiley, New York).

    Google Scholar 

  • Popovich, A. T. and Hummel, R. L. (1967) A new method for non-disturbing turbulent flow measurements very close to the wall. Chem. Eng. Sci., 22, 21–25.

    Article  Google Scholar 

  • Prandtl, L. (1904) Uber Slussigkeitsbewegung bei sehr kleiner Reibung.

    Google Scholar 

  • Proceedings 3rd International Mathematics Congress 484–491 (Heidelberg, Germany).

    Google Scholar 

  • Prandtl, L. (1937) Betrachtungen zur Mechanik der freien Atmosphare.Abhandlungen der Gesellschaft der Wissencha/ten zu Gottingen, Mathematisch physikalische Klasse, III, Folge, Heft 18, 75–84.

    Google Scholar 

  • See also Ludwig Prandtl Gesammelte Abhandlungen 1100–1108 (Springer-Verlag, Berlin, 1961).

    Google Scholar 

  • Prausnitz, J. M. and Wilhelm, R. H. (1956) Turbulent concentration fluctuations through electrical conductivity measurements. J. Sci. Instrum., 26, 941–943.

    ADS  Google Scholar 

  • Preston, J. H. (1953) The determination of turbulent skin friction by means of Pitot tubes. J. Roy. Aero. Soc., 58, 109–121.

    Google Scholar 

  • Pritchard, W. G. (1969) The motion generated by a body moving along the axis of a uniformly rotating fluid. J. Fluid Mech., 39, 443–464.

    Article  ADS  Google Scholar 

  • Rabaud, M. and Couder, Y. (1983) A shear-flow instability in a circular geometry. J. Fluid Mech. 136, 291–319.

    Article  ADS  Google Scholar 

  • Rasmussen, R. A. (1962) Application of thermistors to measurements in moving fluids. Rev. Sci. Instr., 33, 38–42.

    Article  ADS  Google Scholar 

  • Read, P. L. and Hide, R. (1984) An isolated baroclinic eddy as a laboratory analogue of the Great Red Spot on Jupiter. Nature, 308, 45–48.

    Article  ADS  Google Scholar 

  • Redon, M. H. and Vinsonneau, M. F. (1936) Etude de l’ecoulement de l’air autour d’une maquette. Aeronautique, 18, 60–66.

    Google Scholar 

  • Reif, F. and Meyer, L. (1960) Study of superfluidity in liquid He by ion motion. Phys. Rev., 119, 1164–1173.

    Article  ADS  Google Scholar 

  • Renouard, D. P., Chabert D’Hieres, G. and Zhang, X. (1987) An experimental study of strongly nonlinear waves in a rotating system. J. Fluid Mech., 177, 381–294.

    Article  ADS  Google Scholar 

  • Riabouchinsky, D. (1909) Appareil pour l’etude du frottement de l’air contre un plan. Bull. Inst. Aerodyn. Doutchino, 2, 115–120.

    Google Scholar 

  • Richards, E. J. and Burstall, F. H. (1945) The “China Clay” method of indicating transition. Rep. Memor. Aero. Res. Coun., Lond., No. 2126.

    Google Scholar 

  • Rignot, E. J. M. and Spedding, G. R. (1988) Performance analysis of automated image processing and grid interpolation techniques for fluid flows. Univ. Southern. Cal. Aero. Engr. Rep., No. 143.

    Google Scholar 

  • Robinson, D. A. (1968) The electrical properties of metal microelectrodes. Proc. IEEE, 56, 1065–1071.

    Article  Google Scholar 

  • Rodriguez, J. M., Patterson, G. K. and Zakin, J. L. (1970) J. Hydronautics, 4, 16–21.

    Article  Google Scholar 

  • Ronnenberg, B. (1977) Ein selfstjustierendes 3-Komponenten-Laserdoppler-anemometer nach dem Vergleichsstrahlverfahern, angewandt fur Untersuchungen in einer stationaren zylindersymmetrischen Drehstromung mit einem Ruckstromgebiet. Max-Planck-Institute Fur Stromungs/orschung, ISSN 0436–1199.

    Google Scholar 

  • Ross, M. P. and Hussain A. K. M. F. (1987) Effects of cylinder length on transition to doubly periodic Taylor-Couette flow. Phys. Fluids, 30, 607–609.

    Article  ADS  Google Scholar 

  • Rossby, H. T. (1969) A study of Benard convection with and without rotation. J. Fluid Mech., 36, 309–335.

    Article  ADS  Google Scholar 

  • Ruiz, X., Massons, F. D., Aguilo, M. and Gali, S. (1986) Image processing of Czochralski bulk flow. J. Crystal Growth, 79, 92–95.

    Article  ADS  Google Scholar 

  • Roesner, K. G. (1988) Zur Wirbelbidund in rotierenden fluessigkeiten. ZAMM, 68, to appear.

    Google Scholar 

  • Sandborn, V. A. (1972) Resistance temperature transducers. ( Metrology Press, Fort Collins).

    Google Scholar 

  • Sarpkaya, T. (1971) On stationary and travelling vortex breakdowns. J. Fluid Mech., 45, 545–559.

    Article  ADS  Google Scholar 

  • Savas, O. (1983) Circular waves on a stationary disk in rotating flow. Phys. Fluids, 26, 3445–3448.

    Article  ADS  Google Scholar 

  • Savas, O. (1985) On flow visualization using reflective flakes. J. Fluid Mech., 152, 235–248.

    Article  ADS  Google Scholar 

  • Savas, O. (1987) Stability of Bodewadt flow. J. Fluid Mech., 183, 77–94.

    Article  ADS  Google Scholar 

  • Schaflinger, U. (1987) Enhanced centrifugal separation with finite Rossby numbers in cylinders with compartment walls. Chem. Engrg. Sci., 42, 1197–1205.

    Article  Google Scholar 

  • Schaflinger, U., Koppl, A. and Filipezak, G. (1986) Sedimentation in cylindrical centrifuges with compartments. Ing. Arch., 56, 321–331.

    Article  Google Scholar 

  • Schaflinger, U. and Stibi, H. (1987) On centrifugal separation of suspensions in cylindrical vessels. Acta Mech., 67, 163–181.

    Article  Google Scholar 

  • Schanne, O. F., Lavallee, M. Laprade, R. and Gagne, S. (1968) Electrical properties of glass microelectrodes. Proc. IEEE, 56, 1072–1082.

    Google Scholar 

  • Schmitt, R. W. and Lambert, R. B. (1979) The effects of rotation on salt fingers. J. Fluid Mech., 90, 449–463.

    Article  ADS  Google Scholar 

  • Schultz-Grunow, F. and Hein, H. (1956) Beitrag zur Couettestromung. Z.Flugwiss., 4, 28–30.

    Google Scholar 

  • Schwarz, K. W., Springett, B. E. and Donnelly, R. J. (1964) Modes of instability in spiral flow between rotating cylinders. J. Fluid Mech., 20, 281–289.

    Google Scholar 

  • Schraub, F. A., Kline, S. J., Henry, J., Runstadler, P. W., Jr. and Littell, A. (1965) Use of hydrogen bubbles for quantitative determination of time-dependent velocity fields in low-speed water flows. J. Basic Engrg., 87, 429–444.

    Article  Google Scholar 

  • Sdougos, H. P., Bussolari, S. R. and Dewey, C. F. (1984) Secondary flow and turbulence in a cone-and-plate device. J. Fluid Mech., 138, 379–404.

    Article  ADS  Google Scholar 

  • Shulz-DuBois, E. O. and Rehberg, L. (1981) Structure function in lieu of correlation function. Appl. Phys., 24, 323–329.

    Article  ADS  Google Scholar 

  • Shirtcliffe, T. G. L. and Turner, J. S. (1970) Observations of the cell structure of salt fingers. J. Fluid Mech., 41, 707–720.

    Article  ADS  Google Scholar 

  • Simmers, D. A. and Coney, J. E. R. (1979) The experimental determination of velocity distribution in annular flow. Int. J. Heat and Fluid Flow, 1, 177–184.

    Article  Google Scholar 

  • Simmers, D. A. and Coney, J. E. R. (1980) Velocity distributions in Taylor vortex flow with imposed laminar axial flow and isothermal surface heat transfer. Int. J. Heat and Fluid Flow, 2, 85–91.

    Google Scholar 

  • Simpkins, P. G. and Dudderar, T. D. (1978) Laser speckle measurements of transient Benard convection. J. Fluid Mech., 89, 665–671.

    Article  ADS  Google Scholar 

  • Simpson, R. L. (1989) Scanning laser anemometry and other measurement techniques for separated flows. Lecture Notes in Engineering: Advances in Fluid Mechanics Measurements, ed. M. Gad-el-Hak ( Springer-Verlag, New York).

    Google Scholar 

  • Sirivat, A., Rajagopal, K. R. and Szeri, A. Z. (1988) An experimental investigation of the flow of non-Newtonian fluids between rotating disks. J. Fluid Mech., 186, 243–256.

    Article  ADS  Google Scholar 

  • Snow, J. T. (1982) Pressure fields beneath tornado-like vortices. Topics in Atmospheric and Oceanographic Sciences: Intense Atmospheric Vortices, eds. L. Bengtsson and J. Lighthill, 259–270 (Springer-Verlag Berlin).

    Google Scholar 

  • Snyder, H. A. and Karlsson, S. K. F. (1964) Experiments on the stability of Couette motion with a radial thermal gradient. Phys. Fluids, 7, 1696–1706.

    Article  ADS  Google Scholar 

  • Snyder, H. A. and Lambert, R. B. (1966) Harmonic generation in Taylor vorticies between rotating cylinders. J. Fluid Mech., 26, 545–562.

    Article  ADS  Google Scholar 

  • So, K. L. (1967) Vortex phenomena in a conical diffuser. AIAA J., 5, 1072–1078.

    Article  ADS  Google Scholar 

  • Soloukhin, R. I., Curtis, C. W. and Emrich, R. J. (1981) Measurement of Pressure. Methods of Experimental Physics: Fluid Dynamics–Part B, 18, ed. R. J. Emrich, 499–610 ( Academic Press, New York ).

    Google Scholar 

  • Sommeria, J., Meyers, S. D. and Swinney, H. L. (1989) Experiments on vortices and Rossby waves in eastward and westward jets. Nonlinear Topics in Ocean Physics, ed. A. Osborne ( North Holland, Amsterdam).

    Google Scholar 

  • Sommerscales, E. F. C. (1981) Measurement of velocity: Tracer methods. Methods of Experimental Physics: Fluid Dynamics–Part A, 18, ed. R. J. Emrich, 1–240 ( Academic Press, New York ).

    Google Scholar 

  • Spence, D. A. and Brown, G. L. (1968) Heat transfer to a quadratic shear profile. J. Fluid Mech., 33, 753–773.

    Article  MATH  ADS  Google Scholar 

  • Springer, G. S. (1964) Use of electrochemiluminescence in the measurement of mass transfer rates. Rev. Sci. Instrum., 35, 1277–1280.

    Article  ADS  Google Scholar 

  • Staritz, R. F. (1960) Die Elektronische Messung der Stroemungsgeschwindligkeit und der Turbulenz, VDI Zeitschrift, 102, 94–97.

    Google Scholar 

  • Stern, M. E., Whitehead, J. A. and Hua, B.-L. (1982) The intrusion of a density current along the coast of a rotating fluid. J. Fluid Mech., 123, 237–265.

    Article  ADS  Google Scholar 

  • Stommel, H., Arons, A. B., Faller, A. J. (1958) Some examples of stationary planetary flow patterns in bounded basins. Tellus, 10, 179–187.

    Article  ADS  Google Scholar 

  • Sullivan, D. L. (1972) Alignment of rotational prisms. Appl. Opt., 11, 2028–2032.

    Article  ADS  Google Scholar 

  • Szeri, A. Z., Schneider, S. J., Labbe, F. and Kaufman, II. N. (1983) Flow between rotating disks. Part I. Basic flow. J. Fluid Mech., 134, 103–131.

    Article  ADS  Google Scholar 

  • Tagg, R., Cammack, L., Croonquist, A. and Wang, T. G. (1980) Rotating liquid drops: Plateau’s experiment revisited. Jet Prop. Lab. Pub., No. 80–66.

    Google Scholar 

  • Takeuchi, D. I. and Jankowski, D. F. (1981) A numerical and experimental investigation of the stability of spiral Poiseuille flow. J. Fluid Mech., 102, 101-126.

    Google Scholar 

  • Tam, W. Y. and Swinney, H. L. (1988) Mass transport in turbulent Couette-Taylor flow. Submitted to Phys. Rev. A.

    Google Scholar 

  • Taneda, S. and Honji, H. (1971) Unsteady flow past a flat plate normal to the direction of motion. J. Phys. Soc. Japan, 30, 262–272.

    Article  ADS  Google Scholar 

  • Taneda, S., Honji, H. and Tatsuno, A. (1974) The behaviour of tracer particles in flow visualization by electrolysis of water. J. Phys. Soc. Japan, 37, 784–788.

    Article  ADS  Google Scholar 

  • Tatro, P. R. and Mollo-Christensen, E. (1967) Experiments on Ekman layer instability. J. Fluid Mech., 28, 531–543.

    Article  ADS  Google Scholar 

  • Taylor, G. I. (1917) Motion of solids in fluids when the flow is not irrotational. Proc. Roy. Soc. Lond., A93, 99–113.

    Article  MATH  ADS  Google Scholar 

  • Taylor, G. I. (1922) The motion of a sphere in a rotating liquid. Proc. Roy. Soc. Lond., A102, 180–189.

    Article  MATH  ADS  Google Scholar 

  • Taylor, G. I. (1923a) Experiments on the motion of solid bodies in rotating fluids. Proc. Roy. Soc. Lond., A104, 213–218.

    Article  ADS  Google Scholar 

  • Taylor, G. I. (1923b) Stability of a viscous liquid contained between two rotating cylinders, Phil. Trans. Roy. Soc. Lond., A223, 289–343.

    Article  MATH  ADS  Google Scholar 

  • Taylor, G. I. (1935) Distribution of velocity and temperature between concentric rotating cylinders. Proc. Roy. Soc. Lond., A151, 494–512.

    Article  MATH  ADS  Google Scholar 

  • Taylor, G. I. (1936) Fluid friction between rotating cylinders. I–Torque measurements. Proc. Roy. Soc. Lond., A157, 546–564.

    Article  ADS  Google Scholar 

  • Thompson, J. (1855) Report made to the President and Council of the Royal Society, of experiments on the friction of discs revolving in water. Proc. Roy. Soc. Lond., 7, 509–511.

    Google Scholar 

  • Tietjens, O. G. (1934) Applied Hydro-and Aeromechanics. ( Dover, New York, 1957 ).

    Google Scholar 

  • Tritton, D. J. (1985) Experiments on turbulence in geophysical fluid dynamics. I. Turbulence in rotating fluids. Proc. International School of Physics, “Enrico Fermi” Course LXXXVIII: Turbulence and predictability in geophysical fluid dynamics and climate dynamics, 172–192 ( Soc. Stat. Fis., North Holland )

    Google Scholar 

  • Truxillo, S. G. and Hussey, R. G. (1969) Delay times in fluid spin-up; Contrast to liquid helium. Phys. Rev. Lett., 22, 509–510.

    Article  ADS  Google Scholar 

  • Turner, J. S. and Lilly, D. K. (1963) The carbonated-water tornado vortex. J. Atmos. Sci., 20, 468–471.

    Article  ADS  Google Scholar 

  • Unwin, W. C. (1885) Experiments on the friction of disks rotated in fluid. Inst. Civ. Engin. Proc., 80, 221–230.

    Google Scholar 

  • Van Atta, C. (1966) Exploratory measurements in spiral turbulence. J. Fluid Mech., 25, 495–512.

    Article  ADS  Google Scholar 

  • Vehrenkamp, R., Schatzel, K., Pfister, G. and Schultz-DuBois, E. O. (1979a) Direct measurement of velocity correlation functions using the Erdmann-Gellert rate correlation technique. J. Phys. E: Sci. Instrum., 12, 119–125.

    Article  ADS  Google Scholar 

  • Vehrenkamp, R., Schatzel, K., Pfister, G., Fedders, B. S. and Schultz-DuBois, E. O. (1979b) A comparison between analog LDA, photon correlation LDA and rate correlation techniques. Physica Scripta, 19, 379–382.

    Article  ADS  Google Scholar 

  • Versteegen, P. L. and Jankowski, D. F. (1969) Experiments on the stability of viscous flow between eccentric rotating cylinders. Phys. Fluids, 12, 1138–1143.

    Article  ADS  Google Scholar 

  • Vogel, H. U. (1971) Uber den stetigen Anschluss reibungsfreier Stromungen an Stromungsfelder met Newtonscher Reibung. ZAMM, 51, T177 - T179.

    Article  Google Scholar 

  • Walden, R. W. and Donnelly, R. J. (1979) Reemergent order of chaotic circular Couette flow. Phys. Rev. Lett., 42, 301–304.

    Article  ADS  Google Scholar 

  • Walsh, T. J., Wagner, W. T. and Donnelly, R. J. (1987) Stability of modulated Couette flow. Phys. Rev. Leu., 58, 2543–2546.

    Article  ADS  Google Scholar 

  • Wan, C. A. and Chang, C. C. (1972) Measurement of the velocity field in a simulated tornado-like vortex using a three-dimensional velocity probe. J. Atmos. Sci., 29, 116–127.

    Article  ADS  Google Scholar 

  • Wan, C. C. and Coney, J. E. R. (1980) Transition modes in adiabatic spiral vortex flow in narrow and wide annular gaps. Int. J. Heat and Fluid Flow, 2, 131–138.

    Article  Google Scholar 

  • Wan, C. C. and Coney, J. E. R. (1982) An investigation of adiabatic spiral vortex flow in wide annular gaps by visualisation and digital analysis. Int. J. Heat and Fluid Flow, 3, 39–44.

    Google Scholar 

  • Wang, T. G., Trinh, E. H., Croonquist, A. P. and Elleman, D. D. (1986) Shapes of rotating free drops: Spacelab experimental results. Phys. Rev. Leu., 56, 452–455.

    Article  ADS  Google Scholar 

  • Warn-Varnas, A., Fowlis, W. W., Piacsek, S. and Lee, S. M. (1978) Numerical solutions and laser-Doppler measurements of spin-up. J. Fluid Mech., 85, 609–639.

    Article  ADS  Google Scholar 

  • Warpinski, N. R., Nagib, H. M. and Lavan, Z. (1972) Experimental investigation of recirculating cells in laminar coaxial jets. AIAA J., 10, 1204–1210.

    Article  ADS  Google Scholar 

  • Watkins, W. B. and Hussey, R. G. (1973) Spin-up from rest: Limitations of the Wedemeyer model. Phys. Fluids, 16, 1530–1531 (1973).

    Article  ADS  Google Scholar 

  • Weidman, P. D. (1976) On the spin-up and spin-down of a rotating fluid. Part 2. Measurements and stability. J. Fluid Mech., 77, 709–735.

    Article  ADS  Google Scholar 

  • Weidman, P. D. and Browand, F. K. (1975) Analysis of a simple circuit for constant temperature anemometry. J. Phys. E: Sci. Instrum., 8, 553–560.

    Article  ADS  Google Scholar 

  • Weidman, P. D. and Johnson, M. (1982) Experiments on leapfrogging internal solitary waves. J. Fluid Mech., 122, 195–213.

    Article  ADS  Google Scholar 

  • Weidman, P. D. and Mehrdadtehranfar, G. (1985) Instability of natural convection in a tall vertical annulus. Phys. Fluids, 28, 776–787.

    Article  ADS  Google Scholar 

  • Werle, H. (1973) Hydrodynamic flow visualization. Ann. Rev. Fluid Mech., 5, 361–383.

    Article  ADS  Google Scholar 

  • White, D. E., Litt, M. and Heymach, G. J. III. (1974) Diffusion-limited heterogeneous catalytic reactions on a rotating disk. I. Hydrogenation of a-methylstyrene. Ind. Eng. Chem., Fundam., 13, 143–150.

    Article  Google Scholar 

  • White, D. E. and Litt, M. (1975) Diffusion-limited heterogeneous catalytic reactions on a rotating disk. Il. Hydrogenation of phenylacetylene over palladium. Ind. Eng. Chem., Fundam., 14, 183–190.

    Article  Google Scholar 

  • White, II. D. and Koschmieder, E. L. (1981a) Convection in a rotating, laterally heated annulus. The wavenumber transition. Geophys. Astrophys. Fluid Dynamics, 18, 279–299.

    Article  ADS  Google Scholar 

  • White, H. D. and Koschmieder, E. L. (1981b) Convection in a rotating, laterally heated annulus. Pattern velocities and amplitude oscillations. Geophys. Astrophys. Fluid Dynamics, 18, 301–320.

    Article  ADS  Google Scholar 

  • Whitehead, J. A. Jr. (1980) Selective withdrawal from a rotating stratified fluid. Dyn. Atmos. Oceans, 5, 507–515.

    Google Scholar 

  • Whitehead, J. A. Jr. (1985) A laboratory study of gyres and uplift near the straight of Gibraltar. J. Geophys. Res., 90, 7045–7060.

    Article  ADS  Google Scholar 

  • Whitehead, J. A. (1986) Flow of a homogeneous rotating fluid through straights. Geophys. Astrophys. Fluid Dyn., 36, 187–205.

    Article  ADS  Google Scholar 

  • Whitehead, J. A. and Chapman, D. C. (1986) Laboratory observations of a gravity current on a sloping bottom: the generation of shelf waves. J. Fluid Mech., 172, 373–399.

    Article  ADS  Google Scholar 

  • Whitehead, J. A., Jr. and Gershenfeld, N. (1981) Selective withdrawal from a rotating stratified current with applications to OTEC. Ocean Engrg., 8, 507–515.

    Article  Google Scholar 

  • Whitehead, J. A. and Porter, D. L. (1977) Axisymmetric critical withdrawal of a rotating fluid. Dyn. Atm. Oceans 2, 1–18.

    Google Scholar 

  • Wilcke, J. C. (1785) Forsok til Uplysning om Luft-hvirflar och Sky-drag.K. Vet. Acad. nya Hand.

    Google Scholar 

  • Whitehead, J. A., Leetmaa, A. and Knox, R. A. (1974) Rotating hydraulics of strait and sill flows. Geophys. Fluid Dyn., 6, 101-125.

    Google Scholar 

  • Wilcke, J. C. (1785) Forsok til Uplysning om Luft-hvirflar och Sky-drag. K. Vet. Acad. nya Hand., 6, 290–307.

    Google Scholar 

  • Wimmer, M. (1976) Experiments on a viscous fluid flow between concentric rotating spheres. J. Fluid Mech., 78, 317–335.

    Article  ADS  Google Scholar 

  • Wimmer, M. (1978) Die zahe Stromung im Spalt zwischen einer rotierenden Scheibe und einem ruhenden Gehause. ZAMM, 58, T350 - T353.

    Google Scholar 

  • Wimmer, M. (1981) Experiments on the stability of viscous flow between two concentric rotating spheres. J. Fluid Mech., 103, 117–131.

    Article  ADS  Google Scholar 

  • Wimmer, M. (1983) Die viskose Stromung zwischen rotierenden Kegelflachem. ZAMM, 63, T299 - T301.

    Google Scholar 

  • Wortmann, F. X. (1953) Eine Methode zur Beobachtung un Messung von Wasserstromungen mit Tellur. Z. Angew. Phys., 5, 201–206.

    Google Scholar 

  • Yaglom, A. M. (1962) An introduction to the theory of stationary random functions. English edition: ( Prentice Hall, Englewood Cliffs).

    Google Scholar 

  • Yeh, Y. and Cummins, H. Z. (1964) Localized fluid flow measurements with an He-Ne laser spectrometer. Appl. Phys. Lett., 4, 176–178.

    Article  ADS  Google Scholar 

  • Zhang, L.-H. and Swinney, H. L. (1985) Nonpropagating oscillatory modes in Couette-Taylor flow. Phys. Rev., A31, 1006–1009.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin, Heidelberg

About this chapter

Cite this chapter

Weidman, P.D. (1989). Measurement Techniques in Laboratory Rotating Flows. In: Gad-el-Hak, M. (eds) Advances in Fluid Mechanics Measurements. Lecture Notes in Engineering, vol 45. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-83787-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-83787-6_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-51136-6

  • Online ISBN: 978-3-642-83787-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics