Skip to main content

Polysaccharide synthesis in Azospirillum brasilense

  • Conference paper
Azospirillum VI and Related Microorganisms

Part of the book series: NATO ASI Series ((ASIG,volume 37))

Abstract

The surface of bacteria consists of polysaccharides, like the exopolysaccharides and lipopolysaccharides and, as it is the case for Azospirillum brasilense, glycoproteins like glycosylated flagella. The precursors for the synthesis of polysaccharides are sugarnucleotides. Several genes, coding for enzymes involved in the synthesis and in the modification of sugarnucleotides, have been characterised is Azospirillum brasilense Sp7.

Two copies of exoB genes, encoding UDP-glucose 4′-epimerase, have been isolated. exoB1, localised on the p90 megaplasmid is responsible for 20% of UDP-glucose 4′-epimerase activity, and exoB2, localised on the chromosome is responsible for the remaining 80% of the activity. Azospirillum is the first micro-organism which has two totally functional copies of this important enzyme. exoC encodes a phosphomannomutase, involved in the synthesis of mannose-1-phosphate, a precursor for the synthesis of GDP-mannose. The upstream localised exoD encodes a GDP-mannose-dehydrogenase, which catalyzes the synthesis of GDP-mannuronic acid. The exoD gene may be cotranscribed with exoC.

In view of these data, it can be understood why mutations in some of these genes have a pleiotropic effect, whereas for others no apparent phenotype is observed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams CW, Fornwald JA, Schmidt FJ, Rosenberg M, Brawner ME (1988) Gene organization and structure of the Streptococcus lividans gal operon. J. Bacteriol. 170: 203–212.

    PubMed  CAS  Google Scholar 

  • Boyd J, Oza MN, Murphy JR (1990) Molecular cloning and DNA sequence analysis of the diphtheria tox iron-dependent regulatory element (dtxR) from Corynebacterium diphtheriae. Proc. Natl. Acad. Sci. USA 87: 5968–5972.

    Article  PubMed  CAS  Google Scholar 

  • Buendia AM, Enenkel B, Koplin R, Niehaus K, Arnold W, Puhler A (1991) The Rhizobium meliloti exoZ/exoB fragment of megaplasmid 2: ExoB functions as a UDP-glucose 4′-epimerase and ExoZ shows homology to NodX of Rhizobium leguminosarum bv. strain TOM. Mol. Microbiol. 5: 1519–1530.

    Article  PubMed  CAS  Google Scholar 

  • Coyne MJ, Russell KS, Coyle CL, Goldberg JB (1994) The Pseudomonas aeruginosa algC gene encodes phosphoglucomutase, required for the synthesis of a complete lipopolysaccharide core. J. Bacteriol. 176: 3500–3507.

    PubMed  CAS  Google Scholar 

  • Croes C, Van Bastelaere E, Declercq E, Eyers M, Vanderleyden J, Michiels K (1991) Identification and mapping of loci involved in motility, adsorption to wheat roots, colony morphology, and growth in minimal medium on the Azospirillum brasilense Sp7 90-MDa plasmid. Plasmid 26: 83–93.

    Article  PubMed  CAS  Google Scholar 

  • Dai JB, Liu Y, Ray WJ, Konno M (1992) The crystal structure of muscle phosphoglucomutase refined at 2.7-angstrom resolution. J. Biol. Chem. 267: 6322–6337.

    PubMed  CAS  Google Scholar 

  • Deretic V, Gill JF, Chakrabarty AM (1987) Pseudomonas aeruginosa infection in cystic fibrosis: nucleotide sequence and transcriptional regulation of the algD gene. Nucleic Acids Res. 15: 4567–4581.

    CAS  Google Scholar 

  • De Troch P, Keijers V, Vanderleyden J (1994) Sequence analysis of the Azospirillum brasilense exoB gene, encoding UDP-glucose 4-epimerase. Gene 144, 143–144.

    Article  PubMed  Google Scholar 

  • Houng HSH, Kopecko DJ, Baron, LS (1990) Molecular cloning and physical and functional characterization of tha Salmonella typhimurium and Salmonella typhi galactose utilization operons. J. Bacteriol. 172: 4392–4398.

    PubMed  CAS  Google Scholar 

  • Jayaratne P, Bronner D, MacLachlan R, Dodgson C, Kido N, Whitfield C (1994) Cloning and analysis of duplicated rfbM and rfbK genes involved in the formation of GDP-mannose in Escherichia coli 09.K30 and participation of rfb genes in the synthesis of the group I K30 capsular polysaccharide. J. Bacteriol. 176: 3126–3139.

    PubMed  CAS  Google Scholar 

  • Jennings MP, van der Ley P, Wilks KE, Maskell DJ, Poolman JT, Moxon ER (1993) Cloning and molecular analysis of tha galE genes of Neisseria meningitidis and its role in lipopolysaccharide biosynthesis. Mol. Microbiol. 10: 361–369.

    Article  PubMed  CAS  Google Scholar 

  • Köplin R, Arnold W, Hötte B, Simon R, Wang G, Pühler A. (1992) Genetics of xanthan production in Xanthomonas campestris: the xanA and xanB genes are involved in UDP-glucose and GDP-mannose biosynthesis. J. Bacteriol. 174: 191–199.

    PubMed  Google Scholar 

  • Lee SJ, Romana LK, Reeves PR (1992) Sequence and structural analysis of the rfb (O antigen) gene cluster from a group CI Salmonella enterica strain. J. Gen. Microbiol 138: 1843–1855.

    PubMed  CAS  Google Scholar 

  • Lemaire H-G, Müller-Hill B. (1986) Nucleotide sequences of the galE gene and the galT gene of£. coli. Nucl. Acids. Res. 14: 7705–7711.

    Article  PubMed  CAS  Google Scholar 

  • Marolda CL, Valvano, MA (1993) Identification, expression, and DNA sequence of the GDP-mannose biosynthesis genes encoded by the 07 rfb gene cluster of strain VW187 (Escherichia coli 07:K1). J. Bacteriol. 175: 148–158

    PubMed  CAS  Google Scholar 

  • Maskell DJ, Szabo MJ, Butler PD, Williams AE, Moxon, ER (1991) Molecular analysis of a complex locus from Haemophilus influenzae involved in phase-variable lipopolysaccharide biosynthesis. Mol. Microbiol. 5: 1013–1022.

    Article  PubMed  CAS  Google Scholar 

  • Metzger M, Bellemann P, Bugert P, Geider K. (1994) Genetics of galactose metabolism of Erwinia amylovora and its influence on polysaccharide synthesis and virulence of the fire blight pathogen. J. Bacteriol. 176: 450–459.

    PubMed  CAS  Google Scholar 

  • Michiels K, Vanderleyden J, Van Gool A, Signer ER (1988) Isolation and characterization of Azospirillum brasilense loci that correct Rhizobium meliloti exoB and exoC mutants. J. Bacteriol. 170: 5401–5404.

    PubMed  CAS  Google Scholar 

  • Michiels K, De Troch P, Onyeocha I, Van Gool A, Elmerich C, Vanderleyden J (1989) Plasmid localization and mapping of two Azospirillum brasilense loci that affect exopolysaccharide synthesis. Plasmid 21: 142–146.

    Article  PubMed  CAS  Google Scholar 

  • Michiels KW, Croes CL, Vanderleyden J (1991) Two different modes of attachment of Azospirillum brasilense Sp7 to wheat roots. J. Gen. Microbiol. 137: 2241–2246.

    CAS  Google Scholar 

  • Peng H-L, Fu T-F, Liu S-F, Chang H-Y (1992) Cloning and expression of the Klebsiella pneumoniae galactose operon. J. Biochem. 112: 604–608.

    PubMed  CAS  Google Scholar 

  • Poolman B, Royer TJ, Mainzer SE, Schmidt BF (1990) Carbohydrate utilization in Streptococcus thermophilus: characterization of the genes for aldose 1-epimerase (mutarotase) and UDP-glucose 4′-epimerase. J. Bacteriol. 172: 4037–4047.

    PubMed  CAS  Google Scholar 

  • Robertson BD, Frosch M, Van Putten JPM (1993) The role of galE in the biosynthesis and function of gonococcal lipopolysaccharide. Mol. Microbiol. 8: 891–901.

    Article  PubMed  CAS  Google Scholar 

  • Stevenson G, Lee S, Romana LK, Reeves PR (1991) The cps gene cluster of Salmonella strain LT2 includes a second mannose pathway: sequence of two genes and relationship to genes in the rfb gene cluster. Mol. Gen. Genet. 227: 173–180.

    Article  PubMed  CAS  Google Scholar 

  • Uttaro AD, Cangelosi GA, Geremia RA, Nester EW, Ugalde RA (1990) Biochemical characterization of avirulent exoC mutants of Agrobacterium tumefaciens. J. Bacteriol. 172: 1640–1646.

    PubMed  CAS  Google Scholar 

  • Wieringa RK, Terpstra P, Hoi WGJ (1986) Prediction of the occurrence of the ADP-binding ßaß-fold in proteins using an amino acid sequence fingerprint. J. Mol. Biol. 187: 101–107.

    Article  Google Scholar 

  • Ye RW, Zielinski NA, Chakrabarty AM (1994) Purification and characterization of phosphomannomutase/phosphoglucomutase from Pseudomonas aeruginosa involved in biosynthesis of both alginate and lipopolysaccharide. J. Bacteriol. 176: 4851–4857.

    PubMed  CAS  Google Scholar 

  • Zhou D, Stephens DS, Gibson BW, Angstrom JJ, McAllister CF, Lee FK, Apicella MA (1994) Lipooligosaccharide biosynthesis in pathogenic Neisseria: cloning, identification, and characterization of the phosphoglucomutase gene. J. Biol. Chem. 269: 11162–11169.

    PubMed  CAS  Google Scholar 

  • Zielinski NA, Chakrabarty AM, Berry A (1991) Characterization and regulation of the Pseudomonas aeruginosa algC gene encoding phosphomannomutase. J. Biol. Chem. 266: 9754–9763.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

De Troch, P., Petersen, D.J., Vanderleyden, J. (1995). Polysaccharide synthesis in Azospirillum brasilense . In: Fendrik, I., del Gallo, M., Vanderleyden, J., de Zamaroczy, M. (eds) Azospirillum VI and Related Microorganisms. NATO ASI Series, vol 37. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79906-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79906-8_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79908-2

  • Online ISBN: 978-3-642-79906-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics