Skip to main content

Membrane Transport and Oscillations in Plants

  • Chapter

Summary

Spatial and temporal oscillations occur in plants. Selected examples are used to show that macroscopic and rhytmic movements of plant organs arise form the activation and regulation of the electrogenic H+-ATPase and ion channels of the plasma membrane. In some cases, the electrocoupling between H+-ATPase and voltage-dependent ion channels could provide the basis for a membranar clock. Spatial patterns of pH and electrical potential along plants and plant cells could be a dissipative structure which arises when the H+-ATPase is working far from equilibrium.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexandre J, Lassalles JP, Kado RT (1990) Opening of Ca2+ channels in isolated red beet vacuole membrane by inositol 1,4,5-triphosphate. Nature 343: 567–570

    Article  CAS  Google Scholar 

  • Anderson JI, Huprikar SS, Kochian LV, Lucas WJ, Gaber RF (1992) Functional expression of a portable Arabidopsis thaliana potassium channel in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 89: 3736–3740

    Article  PubMed  CAS  Google Scholar 

  • Assmann SM (1993) Signal transduction in guard cells. Ann Rev Cell Biol 9: 345–375

    Article  PubMed  CAS  Google Scholar 

  • Assmann SM, Schwartz A (1992) Synergetic effect of light and fusicoccin on stomatal opening: epidermal peel and patch clamp experiments. Plant Physiol 98: 1349–1355

    Article  PubMed  CAS  Google Scholar 

  • Assmann SM, Simoncini L, Schroeder JI (1985) Blue light activates electrogenic ion pumping in guard cell protoplasts of Vicia faba. Nature 318: 285–287

    Article  CAS  Google Scholar 

  • Beilby MJ, Coster HGL (1979) The action potential in Chara corallina 1. Two activation- inactivation transients in voltage clamps of the plasmalemma. Aust J plant Physiol 6: 323–335

    CAS  Google Scholar 

  • Blatt MR (1988) Potassium-dependent bipolar gating of potassium channels in guard cells. J Membrane Biol 102: 235–246

    Article  Google Scholar 

  • Blatt MR, Thiel G, Trentham DR (1990) Reversible inactivation of K+ channels of Vicia stomatal guard cells following the photolysis of caged inositol 1,4,5-triphosphate. Nature 346: 766–769

    Article  PubMed  CAS  Google Scholar 

  • Blatt MR, Thiel G (1993) Hormonal control of ion channel gating. Ann Rev Plant Physiol Plant Mol Biol 44: 543–567

    Article  CAS  Google Scholar 

  • Braiman MS, Rothschild KJ (1988) Fourier transform infrared techniques for probing membrane protein structure. Ann Rev Biophys Biophys Chem 17: 541–570

    Article  CAS  Google Scholar 

  • Briskin DP, Hanson JB (1992) How does the plant plasma membrane H+-ATPase pump protons. J Exp Bot 43: 269–289

    Article  CAS  Google Scholar 

  • Cosgrove DJ and Hedrich R (1991) Stretch-activated chloride, potassium, and calcium channels coexisting in plasma membranes of guard cells of Vicia faba L. Planta 186: 143–153

    Article  PubMed  CAS  Google Scholar 

  • Dollinger G, Eisenstein L, Lin SL, Nakanishi K, Termini J (1986a) Fourier transform infrared difference spectroscopy of bacteriorhodopsin and its photoproducts regenerated with deuterated tyrosine. Biochemistry 25: 6524–6533

    Article  PubMed  CAS  Google Scholar 

  • Dollinger G, Eisenstein L, Lin SL, Nakanishi K, Odashima K, Termini J (1986b) bacteriorhodopsin: Fourier transform infrared difference methods for studies of protonation of carboxyl groups. Methods Enzymol 127: 649–662

    Google Scholar 

  • Ehrler WL (1971) Periodic noctural stomatal opening of Citrus in steady environment. Physiol Plant 25: 488–492

    Article  Google Scholar 

  • Fisahn J, Mikschl E, Hansen U-P (1986) Separate oscillations of the electrogenic pump and of a K+-channel in Nitella as revealed by simultaneous measurement of membrane potential and of resistance. J Exp Bot 37: 34–47

    Article  CAS  Google Scholar 

  • Gerwert K, Souvigner G, Hess B (1990) Simultaneous monitoring of light-induced changes in protein side-group protonation, chromophore isomerization, and backbone motion of bacteriorhodopsin by time-resolved Fourier-transform infrared spectroscopy. Proc Natl Acad Sci USA 87: 9774–9778

    Article  PubMed  CAS  Google Scholar 

  • Goormaghtigh E, Vigneron L, Scarborough GA, Ruysschaert JM, (1994) Tertiary conformational changes of the Neurospora crassaplasma membrane H+-ATPase monitored by hydrogen/deuterium exchange kinetics: a Fourier transform infrared spectroscopy approach. J Biol Chem 269: 27409–27413

    PubMed  CAS  Google Scholar 

  • Gradmann D, Hansen U-P, Long WS, Slayman CL, Warncke J (1978) Current voltage relationships for the plasma membrane and its principal electrogenic pump in Neurospora crassa: I. Steady-stae conditions. In Slayman CL, ed, Current Topics in Membranes and Transport, Volume 16, Academic Press, New York, pp 257–276

    Google Scholar 

  • Gradmann D, Blatt MR, Thiel G (1993) Electrocoupling of ion transporters in plants. J Membrane Biol 136: 327–332

    Article  CAS  Google Scholar 

  • Grignon C, Sentenac H (1991) pH and ionic conditions in the apoplast. Ann Rev Plant Physiol Plant Mol Biol 42: 103–128

    Google Scholar 

  • Hansen U-P (1978) Do light-induced changes in the membrane potential of Nitella reflect the feed-back regulation of cytoplasmic parameter? J Membrane Biol 41: 197–224

    Article  Google Scholar 

  • Hansen U-P, Gradmann D, Sanders D, Slayman CL (1981) Interpretation of current- voltage relationships for “active” ion transport systems: I. Steady-state reaction-kinetic analysis of class-I mechanisms. J Membrane Biol 63: 165–190

    Article  CAS  Google Scholar 

  • Harper JF, Surowy TK, Sussman MR (1989) Molecular cloning and sequence of cDNA encoding the plasma membrane proton pump (H+-ATPase) of Arabidopsis thaliana. Proc Natl Acad Sci USA 86: 1234–1238

    Article  PubMed  CAS  Google Scholar 

  • Hayashi H, Hirakawa K (1980) Nitella fluctuation and instability in the membrane potential near threshold. Biophys J 31: 31–44

    CAS  Google Scholar 

  • Hayashi H, Nakao M Hirakawa K (1982) Chaos in the self sustained oscillation of an excitable biological membrane under sinusoidal stimulation. Phys Lett 88A: 265–266

    Article  Google Scholar 

  • Hayashi H, Nakao M Hirakawa K (1983) Entrained, Harmonic, Quasiperiodic and Chaotic responses of the self-sustained oscillation of Nitella to sinusoidal stimulation. J Phys Soc Jpn 52: 344–351

    Article  Google Scholar 

  • Hedrich R and Neher E (1987) Cytoplasmic calcium regulates voltage-dependent ion channels in plant vacuoles. Nature 329: 833–836

    Article  Google Scholar 

  • Hedrich R, Schroeder JI (1989) The physiology of ion channels and electrogenic pumps in higher plants. Ann Rev Plant Physiol 40: 539–569

    Article  Google Scholar 

  • Hedrich R, Bush H, Raschke K (1990) Ca2+ and nucleotide dependent regulation of voltage-dependent anion channels in the plasma membrane of guard cells. EMBO J 9: 3889–3892

    PubMed  CAS  Google Scholar 

  • Hedrich R, Raschke K, Stitt M (1985) A role for fructose 2,6-biphosphate in regulating carbohydrate metabolism in guard cells. Plant Physiol 79: 977–982

    Article  PubMed  CAS  Google Scholar 

  • Hille B (1984) Ionic channels of excitable membranes. Sinauer Associates, Sunderland

    Google Scholar 

  • Hodick D, Sievers A (1988) The action potential of Dionaea muscipula Ellis. Planta 174: 8–18

    Google Scholar 

  • Hodick D, Sievers A (1989) On the mechanism of trap closure of Venus flytrap (Dionaea muscipula Ellis). Planta 179: 32–42

    Article  Google Scholar 

  • Homble F, Maiornikof F A, Lannoye R (1990) Correlation between the banding pattern and the cell wall composition in Chara corallina. J Plant Physiol 135: 686–691

    CAS  Google Scholar 

  • Homble F and Very AA (1992) Coupling of water and potassium ions in K+ channels of the tonoplast of Chara. Biophys J 63: 996–999

    Article  PubMed  CAS  Google Scholar 

  • Hosoi S, Iino M, Shimazaki KI (1988) Outward-rectifying K+ channels in stomatal guard cell protoplasts. Plant Cell Physiol 29: 907–911

    CAS  Google Scholar 

  • Iijima T, Hagiwara S (1987) Voltage-dependent K+ channels in protoplasts of trap-lobe cells of Dionaea muscipula

    Google Scholar 

  • Iiyama S, Toko K, Yamafuji K (1985) Band structure on surface electric potential in growing roots. Biophys Chem 21: 285–293

    Article  PubMed  CAS  Google Scholar 

  • Jaffe MJ, Nuccitelli R (1977) Electrical controls of development. Ann Rev Biophys Bioengin 6: 445–476

    Article  CAS  Google Scholar 

  • Kallas P, Meier-Augenstein W, Scliildknecht H (1990) The structure-activity relationship of the turgorin PLMF1 in the sensitive plant Mimosa pudica L. J Plant Physiol 136: 225–230

    CAS  Google Scholar 

  • Katsuhara M, Mimura T, Tazawa M (1990) ATP-regulated ion channels in the plasma membrane of a Characeae alga, Nitellopsis obtusa. Plant Physiol 93: 343–346

    Article  PubMed  CAS  Google Scholar 

  • Keller BU, Hedrich R, Raschke K (1989) Voltage-dependent anion channels in the plasma membrane of guard cells. Nature 341: 450–453

    Article  Google Scholar 

  • Lew RR, Krasnoshtein F, Serlin BS, Schauf CL (1992) Phytochrome activation of K+ channels and chloroplast rotation in Mougeotia. Plant Physiol 98: 1511–1514

    CAS  Google Scholar 

  • Linder B, Raschke K (1992) A slow anion channel in guard cells, activating at large hyperpolarization, may be principal for stomatal closing. FEBS Lett 313: 27–30

    Article  PubMed  CAS  Google Scholar 

  • Lohse G, Hedrich R (1992) Characterization of the plasma-membrane H+-ATPase from Vicia faba guard cells. Planta 188: 206–214

    Article  CAS  Google Scholar 

  • Lucas WJ, Smith FA (1973) The formation of acid and alkaline regions at the surface of Chara corallina cells. J Exp Bot 24: 1–14

    Article  CAS  Google Scholar 

  • Lunevsky VZ, Zherelova OM, Vostrikov IY, Berestovsky GN (1983) Excitation of Characea cell membranes as a result of activation of calcium and chloride channels. J Membrane Biol 72: 43–58

    Article  Google Scholar 

  • MacDonnald GM, Barry BA (1992) Difference FT-IR study of a novel Biochemical preparation of photosystem H. Biochemistry 31: 9848–9856

    Article  Google Scholar 

  • Marten I, Lohse G, Hedrieh R (1991) Plant growth hormones control voltage-dependent activity of anion channels in plasma membranes of guard cells. Nature 353: 758–762

    Article  CAS  Google Scholar 

  • Martin ES, Meidner H (1972) The phase-response of the dark stomatal rhythm in Tradescantia virginiana to light and dark treatments. New Phytol 71: 1045–1057

    Article  Google Scholar 

  • McCann MC, Hammouri M, Wilson R, Belton P, Roberts K (1992) Fourier transform infrared microspectroscopy is a new way to look at plant cell walls. Plant Physiol 100: 1940–1947

    Article  PubMed  CAS  Google Scholar 

  • Miller C (1986) Ion channel reconstitution. Plenum Press, New York

    Google Scholar 

  • Moran N, Ehrenstein G, Isawa K, Mischke C, Bare C, Satter RL (1988) Potassium channels in motor cells of Samanea saman. Plant Physiol 88: 643–648

    Article  PubMed  CAS  Google Scholar 

  • Moran N, Fox D, Satter RL (1990) Interaction of the depolarization-activated K+ channels in Samanea saman with inorganic ions. Plant Physiol 94: 424–431

    Article  PubMed  CAS  Google Scholar 

  • Nabedryk E, Andrianambinintsoa S, Breton J (1984) Transmembrane orientation of α-helices in the thylakoid membrane and in the light-harvesting complex. Biochim Biophys Acta 765: 380–387

    Article  CAS  Google Scholar 

  • Nabedryk E, Andrianambinintsoa S, Berger G, Leonhard M, Mantele W, Breton J (1990) Characterization of bonding interactions of the intermediary electron acceptor in the reaction center of photosystem II by FUR spectroscopy. Biochim Biophys Acta 1016: 49–54

    Article  CAS  Google Scholar 

  • Nishizaki Y (1968) Rhythmic changes in the resting potential of a single plant cell. Plant Cell Physiol 9: 613–616

    Google Scholar 

  • Ogata K, Kishimoto U (1976) Rhythmic change of membrane potential and cyclosis of Nitella internode. Plant Cell Physiol 17: 201–207

    Google Scholar 

  • Pedersen PL, Carafoli E (1987) Ion motive ATPases. Part I. Ubiquity, properties and significance to cell function. Trends Biochem Sci 12: 146–150

    Article  CAS  Google Scholar 

  • Radenovic C, Pencic M (1970) Oscillation bioelectriques dans des membranes de Nitella. Physiol Plant 23: 697–703

    Article  Google Scholar 

  • Roblin G, Perault J-M (1985) Effect of Ethephon, 1-aminocyclopropane-l-carboxylic acid, and inhibitors of ethylene synthesis on the gravitropically induced movement of Mimosa pudica pulvinus. Plant Physiol 77: 922–925

    Article  PubMed  CAS  Google Scholar 

  • Saeedi S, Gaillochet J, Bonmort J, Roblin G (1984) Effect of salicylic and acetylsalicylic acids on the scotonastic and photonastic leaflet movements of Cassia fasciculata. Plant Physiol 76: 851–853

    Article  PubMed  CAS  Google Scholar 

  • Sakmann B and Neher E (1983) Single-channel Recording. Plenum, New York

    Google Scholar 

  • Sanders D, Hansen U-P (1981) Mechanism of C1- transport at the plasma membrane of Chara corallina: Transinhibition and the determination of H+/C1- binding order from a reaction kinetic model. J Membrane Biol 58: 139–153

    Article  CAS  Google Scholar 

  • Sanders D, Hansen U-P, Slayman CL (1981) Role of the plasma membrane proton pump in pH regulation in non-animal cells. Proc Natl Acad Sci USA 78: 5903–5907

    Article  PubMed  CAS  Google Scholar 

  • Sanders D (1990) Kinetic modeling of plant and fungal membrane transport systems. Ann Rev Plant Physiol Plant Molec Biol 41: 77–107

    Article  CAS  Google Scholar 

  • Satter RL, Galston AW (1981) Mechanism of control of leaf movements. Ann Rev Plant Physiol. 32: 83–110

    Article  CAS  Google Scholar 

  • Schrempf M (1980) The action of abscisic acid on the circadian petal movement of Kalanchoe blossfeldiana. Z Pflanzenphysiol 100: 397–407

    CAS  Google Scholar 

  • Schroeder JI (1988) K+ transport properties of K+ channels in the plasma membrane of Vicia faba guard cells. J Gen Physiol 92: 667–683

    Article  PubMed  CAS  Google Scholar 

  • Schroeder JI, Fang HH (1991) Inward rectifying K+ channels in guard cells provide a mechanism for low-affinity K+ uptake. Proc Natl Acad Sci USA. 88: 11583–11587

    Article  PubMed  CAS  Google Scholar 

  • Schroeder JI, Hagiwara S (1989) Cytosolic calcium regulates ion channels in the plasma membrane of Vicia faba guard cells. Nature 338: 427–430

    Article  Google Scholar 

  • Schroeder JI, Keller BU (1992) Two types of anion channel currents in guard cells with distinct voltage regulation. Proc Natl Acad Sci USA 89: 5025–5029

    Article  PubMed  CAS  Google Scholar 

  • Schroeder JI, Hedrich R, Fernandez JM (1994) Potassium selective single channels in guard cell protoplasts of Vicia faba. Nature 312: 361–362

    Article  Google Scholar 

  • Schroeder JI, Raschke K, Neher E (1987) Voltage dependence of K+ channels in guard cell protoplasts. Proc Natl Acad Sci USA 84: 4108–4112

    Article  PubMed  CAS  Google Scholar 

  • Schildknecht H (1983) Turgorins, hormones of the endogenous daily rhythms of higher organized plants. Angew Chem Int Ed Engl 22: 695–710

    Article  Google Scholar 

  • Sentenac H, Bonneaud N, Minet N, Lacroute M, Salmon F, Gaymard J-F, Grignon C (1992) Cloning and expression in yeast of a potassium ion transport system. Science 256: 663–665

    Article  PubMed  CAS  Google Scholar 

  • Serrano EE, Zeiger E, Hagiwara S (1988) Red light stimulates an electrogenic ion pump in Vicia guard cell protoplasts. Proc Natl Acad Sci USA 85: 436–440

    Article  PubMed  CAS  Google Scholar 

  • Serrano R (1985) Plasma membrane ATPase of plant and fungi. CRC Press, Boca Raton

    Google Scholar 

  • Serrano R (1988) Structure and function of proton translocating ATPase in plasma membranes of plants and fungi. Biochim Biophys Acta 947: 1–28

    PubMed  CAS  Google Scholar 

  • Siboaka T (1962) Excitable cells in Mimosa. Science 137: 236

    Google Scholar 

  • Simon PJ (1981) The role of electricity in plant movements. New Phytol 87: 11–37

    Article  Google Scholar 

  • Slayman CL (1987) The plasma membrane ATPase of Neurospora: a proton-pumping electroenzyme. J Bioenerg Biomembr 19: 1–20

    PubMed  CAS  Google Scholar 

  • Spanswick RM (1981) Electrogenic ion pumps. Ann Rev Plant Phys 32: 267–289

    Article  CAS  Google Scholar 

  • Stalfeld MG (1963) Diurnal dark reactions in the stomatal movements. Physiol Plant 16: 756–766

    Article  Google Scholar 

  • Stalfeld MG (1965) The relation between the endogenous and induced elements of the stomatal movements. Physiol Plant 18: 177–184

    Article  Google Scholar 

  • Stoeckel H, Takeda K (1993) Plasmalemmal, voltage-dependent ionic currents from excitable pulvinar motor cells of Mimosa pudica. J Membrane Biol 131: 179–192

    Article  CAS  Google Scholar 

  • Taiz L (1984) Plant cell expansion: regulation of cell wall mechanical properties. Ann Rev Plant Physiol 35: 585–622

    Article  CAS  Google Scholar 

  • Tazawa M, Shimmen T (1982) Control of electrogenesis by ATP, Mg2+, H+, and light in perfused cells of Chara. In Slayman CL, ed, Current Topics in Membranes and Transport, Volume 16, Academic Press, New York, pp 49–67

    Google Scholar 

  • Tester M (1990) Plant ion channels: whole-cell and single-channel studies. New Phytol 114: 305–340

    Article  Google Scholar 

  • Toko K, Yamafuji K (1988) Spontaneous formation of the spatial pattern of electric potential in biological systems. Ferroelectrics 86: 269–279

    Article  CAS  Google Scholar 

  • Toko K, Chosa H, Yamafuji K (1985) Dissipative structure in the Characeae: spatial pattern of proton flux as a dissipative structure in Characeae. J Theor Biol 114: 127–175

    Article  CAS  Google Scholar 

  • Toko K, Iiyama S Tanaka C, Hayashi K, Yamafuji K, Yamafuji K (1987) Relation of growth process to spatial patterns of electric potential and enzyme activity in bean roots. Biophys Chem 27: 39–58

    Article  PubMed  CAS  Google Scholar 

  • Vanden Driessche T (1978) The molecular mechanism of Mimosa leaf seismonastic movement. A re-evaluation. Arch Biol 89: 435–449

    Google Scholar 

  • Van Kirk CA, Raschke K (1978) Release of malate from epidermal strip during stomatal closure. Plant Physiol 61: 474–475

    Article  PubMed  Google Scholar 

  • White PJ, Tester M (1994) Using planar lipid-bilayers to study plant ion channels. Physiol Plant 91: 770–774

    Article  CAS  Google Scholar 

  • Williams SE, Bennett AB (1982). Leaf closure in the Venus flytrap: an acid growth response. Science 218: 1120–1121

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Homblé, F. (1996). Membrane Transport and Oscillations in Plants. In: Vanden Driessche, T., Guisset, JL., Petiau-de Vries, G.M. (eds) Membranes and Circadian Rythms. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79903-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79903-7_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-60101-2

  • Online ISBN: 978-3-642-79903-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics