Skip to main content

Entry of Enveloped Viruses Into Host Cells: Fusion Activity of the Influenza Virus Hemagglutinin

  • Conference paper
Trafficking of Intracellular Membranes:

Part of the book series: NATO ASI Series ((ASIH,volume 91))

  • 96 Accesses

Abstract

Considerable progress has been achieved in understanding the mechanism of entry of enveloped viruses into host cells during the last few years. Viruses have long been known to be capabable of transporting their genome and accessory proteins into the cytosol of the host cell, thus causing infections of variable severity. It is clear that the medical consequences of viral diseases remain an important reason to study the cellular entry of viruses, particularly since a knowledge of the molecular details underlying this event may help to develop new antiviral strategies. Apart from their importance as pathogens, viruses, particularly enveloped viruses, have proven to be an excellent tool for studying protein synthesis, processing and sorted transport, thus greatly contributing to our current knowledge of the complex pathways of intracellular traffic. To infect a host cell, enveloped viruses have evolved a mechanism which involves membrane fusion. Although the molecular details of this process remain unclear, it has been well established that specific virally encoded membrane proteins are responsible for triggering the fusion reaction. Because of the simplicity of the viral membrane protein composition of most enveloped viruses, viral systems provide a valuable tool for studying protein-mediated membrane fusion. Elucidation of the molecular mechanisms underlying virus-cell fusion may lead to a better understanding of the ubiquitous intracellular fusion events where specific proteins are also involved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bentz J, Ellens H, Alford D (1990) An architecture for the fusion site of influenza hemagglutinin. FEBS Lett. 276: 1–5

    Article  PubMed  CAS  Google Scholar 

  • Bergelson LD, Bukrinskaya AG, Provkazova NV, Shaposhnikjova GI, Kocharov SL, Shevchenko VP, Kornilaeva V, Fomina-Ageeva EV (1982) Role of gangliosides in reception of influenza virus. Eur. J. Biochem. 128: 467–474

    Article  PubMed  CAS  Google Scholar 

  • Breckenridge LJ, Almers W (1987) Final steps in exocytosis observed in cell with giant secretory granules. Proc. Natl. Acad. Sci. 84: 1945–1949

    Article  PubMed  CAS  Google Scholar 

  • Daniels RS, Douglas AR, Skehel JJ, Wiley DC (1983) Analysis of the antigenicity of influenza hemagglutinin at the pH optimum for virus-mediated membrane fusion. J. Gen. Virol. 64: 1657–1662

    Article  PubMed  CAS  Google Scholar 

  • Doms R, Helenius A (1988) Properties of a viral fusion protein. In Molecular Mechanisms of Membrane Fusion (Ohki S, Doyle D, Flanagan TD, Hui SW, Mayhew E, eds), pp. 385–398, Plenum Press, New York

    Google Scholar 

  • Doms RW, Helenius AH, White J (1985) Membrane fusion activity of the influenza virus hemagglutinin. The low-pH induced conformational change. J. Biol. Chem. 260: 2973–2981

    PubMed  CAS  Google Scholar 

  • Doms RW, White J, Boulay F, Helenius A (1990) Influenza virus hemagglutinin and membrane fusion. In Membrane Fusion (Wilschut J, Hoekstra D, eds), pp. 313–335, Marcel Dekker New York

    Google Scholar 

  • Düzgünes N, Pedroso de Lima MC, Stamatatos L, Flasher D, Alford D, Friend DS, Nir S (1992) Fusion activity and inactivation of influenza virus: Kinetics of low-pH induced fusion with cultured cells. J. Gen. Virol. 73: 27–37

    Article  PubMed  Google Scholar 

  • Ellens H, Bentz J, Zheng F, Mason D, White J (1990) The fusion site of influenza HA expressing fibroblasts requires more than one HA trimer. Biochemistry 59: 9697–9707

    Article  Google Scholar 

  • Gething MJ, Doms RW, York D, White J (1986) Studies on the mechanism of membrane fusion. Site-specific mutagenesis of the hemagglutinin of influenza virus. J. Cell Biol. 102: 11–23

    Article  PubMed  CAS  Google Scholar 

  • Harter C, James P, Bächi T, Semenza G, Brunner J (1989) Hydrophobic binding of the ectodomain of influenza hemagglutinin to membranes occurs through the “fusion peptide”. J. Biol. Chem. 264: 6459–6464

    PubMed  CAS  Google Scholar 

  • Hoekstra D, de Boer T, Klappe K, Wilshut J (1984) Fluorescence method for measuring the kinetics of fusion between biological membranes. Biochemistry 23, 5675–5681

    Article  PubMed  CAS  Google Scholar 

  • Hoekstra D, Kok JW (1989) Entry mechanisms of enveloped viruses. Implications for fusion of intracellular membranes. Biosc. Rep. 9: 273–305

    Article  CAS  Google Scholar 

  • Hoekstra D, Pedroso de Lima MC (1992) Molecular mechanisms of enveloped viruses entry into host cells: Protein dynamics and membrane fusion. In: Advances in Membrane Fluidity vol. 6: Membrane Interactions of HIV: Implications for Pathogenesis and Therapy in AIDS (Aloia, RC, Curtain, CC, eds), pp. 71–97, Wiley-Liss, New York

    Google Scholar 

  • Junankar PR, Cherry RJ (1986) Temperature and pH dependence of the hemolytic activity of influenza virus and of the rotational mobility of the spike glycoproteins. Biochim. Biophys. Acta 854: 198–206

    Article  PubMed  CAS  Google Scholar 

  • Kemble GW, Bodian DL, Rosé J, Wilson IA, White JM (1992) Intermonomer disulfide bonds impair the fusion activity of the influenza hemagglutinin. J. Virol. 66: 4940–4950

    PubMed  CAS  Google Scholar 

  • Klenk HD, Rott R, Orlich M, Blodorn J (1975) Activation of influenza A virus by trypsin treatment. Virology 68: 426–439

    Article  PubMed  CAS  Google Scholar 

  • Lamb RA, Choppin PW (1983) The gene structure and replication of influenza virus. Annu. Rev. Biochem. 52: 467–506

    Article  PubMed  CAS  Google Scholar 

  • Lamb RA (1989) Genes and proteins of the influenza virus. In The Influenza Viruses (Krug RM, ed.), pp. 1–87, Plenum Press, New York

    Google Scholar 

  • Lazarowitz S, Choppin PW (1975) Enhancement of the infectivity of influenza A and B viruses by proteolytic cleavage of the hemagglutinin polypeptide. Virology 68: 440–454

    Article  PubMed  CAS  Google Scholar 

  • Lear JD, DeGrado WF (1987) Membrane binding and conformational properties of peptides representing the NH2 terminus of influenza HA2. J. Biol. Chem. 262: 6500–6505

    PubMed  CAS  Google Scholar 

  • Lenard J, Compans RW (1974) The membrane structure of lipid containing viruses. Biochim. Biophys. Acta 344: 51–94

    PubMed  CAS  Google Scholar 

  • Marsh M, Helenius A (1989) Virus entry into animal cells. Adv. Virus Research 36: 107–150

    Article  CAS  Google Scholar 

  • Martin K, Helenius A (1991a) Nuclear transport of influenza virus ribonucleoproteins: The viral matrix protein (M1) promotes export and inhibits fusion. Cell 67: 117–130

    Article  PubMed  CAS  Google Scholar 

  • Martin K, Helenius A (1991b) Transport of incoming influenza virus nucleocapsids into the nucleus. J. Virol. 65: 232–244

    PubMed  CAS  Google Scholar 

  • Nir S, Bentz J, Wilschut J and Düzgünes N (1983) Aggregation and fusion of vesicles. Prog. Surface Sci. 13: 1–124

    Article  CAS  Google Scholar 

  • Paulson GNR, Murayama, JI, Sze G, Martin E (1986) Biological implications of influenza virus receptor specificity. In Virus Attachment and Entry into Cells (Crowell RL, Lonberg-Holm K, eds), pp. 144–151, American Society for Microbiology, Washington

    Google Scholar 

  • Pedroso de Lima MC, Hoekstra D (1994) Liposomes, viruses and membrane fusion. In Liposomes as Tools in Basic Research and Industry (Philippot JR, Schuber F, eds), pp. 137–156, CRC Press, New York

    Google Scholar 

  • Pedroso de Lima MC, Ramalho-Santos J, Flasher D, Nir S, Düzgünes N (1994) Target membrane sialic acid modulates both binding and fusion activity of influenza virus (submitted for publication)

    Google Scholar 

  • Ramalho-Santos J, Nir S, Düzgünes N, Carvalho AP, Pedroso de Lima MC (1993) A common mechanism for influenza virus fusion activity and inactivation. Biochemistry 32: 2771–2779

    Article  PubMed  CAS  Google Scholar 

  • Ramalho-Santos J, Negräo, R, Pedroso de Lima MC (1994) Role of hydrophobic interactions in the fusion activity of influenza and Sendai viruses towards model membranes. Biosc. Rep. 14: 15–24.

    Article  CAS  Google Scholar 

  • Ruigrok RWH, Wrigley NG, Calder LJ, Cusack S., Wharton SA, Brown EB, Skehel JJ (1986) Electron microscopy of the low pH structure of the influenza virus hemagglutinin. EMBO J. 5: 41–49

    PubMed  CAS  Google Scholar 

  • Sarkar DP, Morris SJ, Eidelman O, Zimmerberg J, Blumenthal R (1989) Initial stages of influenza hemagglutinin-induced cell fusion monitored simultaneously by two fluorescent events: Cytoplasmic continuity and lipid mixing. J. Cell Biol. 109: 113–122

    Article  PubMed  CAS  Google Scholar 

  • Sato SB, Kawasaki K, Ohnishi SI (1983) Hemolytic activity of influenza virus hemagglutinin glycoproteins activated in mildly acidic environments. Proc. Natl. Acad. Sci. 80: 3153–3157

    Article  PubMed  CAS  Google Scholar 

  • Skehel JJ, Bayley PM, Brown EB, Martin SR, Waterfield MD, White J, Wilson IA, Wiley DC (1982) Changes in the conformation of influenza hemagglutinin at the pH optimum of virus-mediated membrane fusion. Proc. Natl. Acad. Sci. 79: 968–972

    Article  PubMed  CAS  Google Scholar 

  • Stegmann T, Doms RW, Helenius A (1989) Protein-mediated membrane fusion. Annu. Rev. Biophys. Biophys. Chem. 18: 187–211

    Article  PubMed  CAS  Google Scholar 

  • Stegmann T, Hoekstra D, Scherphof G, Wilschut J (1986) Fusion activity of influenza virus: A comparison between biological and artificial target membrane vesicles. J. Biol. Chem. 261: 10966–10969

    PubMed  CAS  Google Scholar 

  • Stegmann T, White JM, Helenius A (1990) Intermediates in influenza induced membrane fusion. EMBO J. 9: 4231–4241

    PubMed  CAS  Google Scholar 

  • Sugrue RJ, Hay AJ (1991) Structural characteristics of the M2 protein of influenza A viruses: Evidence that it forms a tetrameric channel. Virology 180: 617–624

    Article  PubMed  CAS  Google Scholar 

  • Susuki Y, Matsunaga M, Matsumoto M (1985) N-acetylneuraminyllactosylceramide, GM3-NeuAc, a new influenza A virus receptor which mediates the adsorption-fusion process of viral infection. J. Biol. Chem. 260: 1362–1365

    Google Scholar 

  • Tsai KH, Lenard J (1975) Asymmetry of influenza virus membrane bilayer demonstrated with phospholipase C. Nature 253: 554–555

    Article  PubMed  CAS  Google Scholar 

  • Watson JD, Hopkins NH, Roberts JW, Steitz JA, Weiner AM (eds) (1987) Molecular Biology of the Gene. The Benjamin Cummings Publishing Company Inc., Menlo Park

    Google Scholar 

  • Wharton SA, Skehel JJ, Wiley DC (1986) Studies of influenza haemagglutinin-mediated membrane fusion. Virology 149: 27–35

    Article  PubMed  CAS  Google Scholar 

  • White J (1990) Viral and cellular membrane fusion proteins. Annu. Rev. Physiol. 52: 675–697

    Article  PubMed  CAS  Google Scholar 

  • White J (1992) Membrane fusion. Science 258: 917–924

    Article  PubMed  CAS  Google Scholar 

  • White J, Doms R, Gething MJ, Kielian M and Helenius A. (1986) Viral membrane fusion proteins. In Virus Attachment and Entry into Cells (Crowell RL, Lonberg-Holm K, eds), pp. 54–59, American Society for Microbiology, Washington

    Google Scholar 

  • White J, Helenius A, Gething MJ (1982) Haemagglutinin of influenza virus expressed from a cloned gene promotes membrane fusion. Nature 300: 658–659

    Article  PubMed  CAS  Google Scholar 

  • White JM, Wilson IA (1987) Antipeptide antibodies detect steps in a protein conformational change: Low pH activation of the influenza virus hemagglutinin. J. Cell Biol. 105: 2887–2896

    Article  PubMed  CAS  Google Scholar 

  • Wiley DC, Skehel JJ (1987) The structure and function of the hemagglutinin membrane glycoprotein of influenza virus. Annu. Rev. Biochem. 56: 365–394

    Article  PubMed  CAS  Google Scholar 

  • Wilson IA, Skehel JJ, Wiley DC (1981) Structure of the haemagglutinin membrane glycoprotem of influenza virus at 3 Å resolution. Nature 289: 366–373

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pedroso de Lima, M.C., Ramalho-Santos, J., Düzgünes, N., Flasher, D., Nir, S. (1995). Entry of Enveloped Viruses Into Host Cells: Fusion Activity of the Influenza Virus Hemagglutinin. In: De Lima, M.C.P., Düzgüneş, N., Hoekstra, D. (eds) Trafficking of Intracellular Membranes:. NATO ASI Series, vol 91. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79547-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79547-3_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79549-7

  • Online ISBN: 978-3-642-79547-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics