Skip to main content

Aquatic CAM Photosynthesis

  • Chapter
Crassulacean Acid Metabolism

Part of the book series: Ecological Studies ((ECOLSTUD,volume 114))

Abstract

CAM photosynthesis in an aquatic plant was first suggested by the observation of marked diel (24 h) changes in malic acid in photosynthetic tissues, but not in nonphotosynthetic tissues, of Isoetes howellii (Lycophyta: Isoetaceae) (Keeley 1981). At the time everyone “knew” that CAM was an adaptation for increasing water-use efficiency in xeric adapted plants, and thus there was some reluctance to accepting the notion of an aquatic CAM plant. Phrases such as “CAM-like” or “aquatic acid metabolism (AAM)” were coined to avoid this apparent paradox (Cockburn 1983).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aulio K (1985) Differential expression of diel acid metabolism in two life forms of Littorella uniflora (L.) Aschers. New Phytol 100: 533–536

    Article  CAS  Google Scholar 

  • Boston HL, Adams MS (1986) The contribution of crassulacean acid metabolism to the annual productivity of two aquatic vascular plants. Oecologia 68: 615–622

    Article  Google Scholar 

  • Cockburn W (1983) Stomatal mechanism as the basis for the evolution of CAM and C3 photosynthesis: a review. Plant Cell Environ 6: 275–279

    CAS  Google Scholar 

  • Farmer AM (1987) Photosynthetic adaptation in Lobelia dortmanna and other isoetids. Photosynthetica 21: 51–55

    CAS  Google Scholar 

  • Hostrup O, Wiegleb G (1991) The influence of different CO2 concentrations in the light and the dark on diurnal malate rhythm and phosphoenolpyruvate carboxylase activities in leaves of Littorella uniflora (L.) Aschers. Aquat Bot 40: 91–100

    Article  CAS  Google Scholar 

  • Johnston AM, Raven JA (1986) Dark carbon fixation studies on the intertidal macroalga Ascophyllum nodosum (Phaeophyta). J Phycol 22: 78–83

    Article  CAS  Google Scholar 

  • Jones R, Wilkins MB, Coggins JR, Fewson DA, Malcolm ADB (1978) Phosphoenolpyruvate carboxylase from the crassulacean plant Bryophyllum fedtschenkoi Hamet et Perrier. Biochem J 175: 391–406

    PubMed  CAS  Google Scholar 

  • Keeley JE (1981) Isoetes howellii: a submerged aquatic CAM plant? Am J Bot 68: 420–424

    Article  CAS  Google Scholar 

  • Keeley JE (1982) Distribution of diurnal acid metabolism in the genus Isoetes. Am J Bot 69: 254–257

    Article  CAS  Google Scholar 

  • Keeley JE (1983) Lack of diurnal acid metabolism in two terrestrial Isoetes species. Photosynthetica 17: 93–94

    CAS  Google Scholar 

  • Keeley JE (1987) The adaptive radiation of photosynthetic modes in the genus Isoetes (Isoetaceae). In: Crawford RMM (ed) Plant life in aquatic and amphibious habitats. Blackwell, Oxford, pp 113–128

    Google Scholar 

  • Keeley JE (1991) Interactive role of stresses on structure and function in aquatic plants. In: Mooney HA, Winner WE, Pell EI (eds) Response of plants to multiple stresses. Academic Press, New York, pp 329–343

    Google Scholar 

  • Keeley JE, Bowes G (1982) Gas exchange characteristics of the submerged aquatic crassulacean acid metabolism plant, Isoetes howellii. Plant Physiol 70: 1455–1458

    Article  PubMed  CAS  Google Scholar 

  • Keeley JE, Busch G (1984) Carbon assimilation characteristics of the aquatic CAM plant Isoetes howellii. Plant Physiol 76: 525–530

    Article  PubMed  CAS  Google Scholar 

  • Keeley JE, Morton BA (1982) Distribution of diurnal acid metabolism in submerged aquatic plants outside the genus Isoetes. Photosynthetica 16: 546–553

    CAS  Google Scholar 

  • Keeley JE, Sandquist DR (1991) Diurnal photosynthesis cycle in CAM and non-CAM seasonal pool aquatic macrophytes. Ecology 72: 716–727

    Article  Google Scholar 

  • Keeley JE, Sandquist DR (1992) Commissioned Review. Carbon: freshwater plants. Plant Cell Environ 15: 1021–1035

    Article  CAS  Google Scholar 

  • Keeley JE, Walker CM, Mathews RP (1983) Crassulacean acid metabolism in Isoetes bolanderi in high elevation oligotrophic lakes. Oecologia 58: 63–69

    Article  Google Scholar 

  • Keeley JE, Osmond CB, Raven JA (1984) Stylites, a vascular land plant without stomata absorbs CO2 via its roots. Nature 310: 694–695

    Article  CAS  Google Scholar 

  • Keeley JE, DeMasson D, Gonzalez R, Markham K (1994) Sediment-based carbon nutrition in tropical alpine Isoetes. In: Rundel PW, Meinzer FC, Smith AP (eds) Tropical alpine environments: plant form and function. Cambridge University Press, Cambridge, pp 167–194

    Chapter  Google Scholar 

  • Lorimer GH, Badger MR, Andrews TJ (1976) The activation of ribulose-1, 5-bisphosphate carboxylase by carbon dioxide and magnesium ions. Biochemistry 15: 529–536

    Article  PubMed  CAS  Google Scholar 

  • Madsen TV (1987) Interactions between internal and external CO2 pools in the photosynthesis of the aquatic CAM plants Littorella uniflora (L.) Aschers and Isoetes lacustris L. New Phytol 106: 35–50

    Article  Google Scholar 

  • Raven JA, Handley LL, MacFarlane JJ, Mclnroy S, McKenzie L, Richards JH, Samuelsson G (1988) Transley Review No. 13. The role of CO2 uptake by roots and CAM in acquisition of inorganic C by plants of the isoetid life-form: a review, with new data on Eriocaulon decangulare L. New Phytol 108: 125–148

    Article  CAS  Google Scholar 

  • Richardson K, Griffiths H, Reed ML, Raven JA, Griffiths NM (1984) Inorganic carbon assimilation in the isoetids, Isoetes lacustris L. and Lobelia dortmanna L. Oecologia 61: 115–121

    Article  Google Scholar 

  • Robe WE, Griffiths H (1990) Photosynthesis of Littorella uniflora grown under two PAR regimes: C3 and CAM gas exchange and the regulation of internal CO2 and O2 concentrations. Oecologia 85: 128–136

    Article  Google Scholar 

  • Sandquist DR, Keeley JE (1990) Carbon uptake characteristics in two high elevation populations of the aquatic CAM plant Isoetes bolanderi (Isoetaceae). Am J Bot 77: 682–688

    Article  CAS  Google Scholar 

  • Seddon B (1965) Occurrence of Isoetes echinospora in eutrophic lakes in Wales. Ecology 46: 747–748

    Article  Google Scholar 

  • Tryon RM, Tryon AF (1982) Ferns and allied plants. Springer, Berlin Heidelberg New York

    Book  Google Scholar 

  • Turpin DH, Vanlerberghe GC, Amory AM, Guy RD (1991) The inorganic carbon requirements for nitrogen assimilation. Can J Bot 69: 1139–1145

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Keeley, J.E. (1996). Aquatic CAM Photosynthesis. In: Winter, K., Smith, J.A.C. (eds) Crassulacean Acid Metabolism. Ecological Studies, vol 114. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79060-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79060-7_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79062-1

  • Online ISBN: 978-3-642-79060-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics