Skip to main content

Transcriptional Regulation of the Maize Anthocyanin Pathway

  • Conference paper
Plant Molecular Biology

Part of the book series: NATO ASI Series ((ASIH,volume 81))

Abstract

The genetics of pigment production and its control in maize are well understood (Figure 1). Two classes of regulatory genes (b/r andc1/pℓ), required for the transcription of the genes encoding the anthocyanin biosynthetic enzymes (target genes), have been characterized (Paz-Ares et al. 1986; Dellaporta et al. 1988; Chandler et al. 1989; Cone and Burr 1989). The proteins encoded by C1 and Pℓ alleles are 90% identical (K. Cone, personal communication). C1 alleles function in the seed and embryo, while Pℓ alleles function in most seedling and plant tissues. The proteins encoded by the B and R genes are 80% identical (Radicella et al. 1991), and both genes have a large allelic diversity with respect to their tissue-specific expression (Styles et al. 1973). Six target genes have been cloned, c2 (Wienand et al. 1986),chi (Grotewold and Peterson 1991), al (O’Reilly et al. 1985), a2 (Menssen et al. 1990), bzl (Fedoroff et al. 1984), and bz2 (McLaughlin and Walbot 1987; Theres et al. 1987). Herein, we review recent data on each class of regulatory protein and discuss models for their mechanism of action.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  • Callis J, Fromm M, and Walbot V (1987) Introns increase gene expression in cultured maize cells. Genes Dev. 1: 1183–1200.

    Article  PubMed  CAS  Google Scholar 

  • Chandler VL, Radicella JP, Robbins TP, Chen J, and Turks D (1989) Two regulatory genes of the maize anthocyanin pathway are homologous: Isolation of b utilizing r genomic sequences. Plant Cell 1: 1175–1183.

    Article  PubMed  CAS  Google Scholar 

  • Coe EH Jr, Hoisington DA and Neuffer MG (1988) The Genetics of Corn. In: Corn and Corn Improvements ( Sprague, GF, Dudley, J, eds.) American Society of Agronomy, Madison, WI, pp. 88–258.

    Google Scholar 

  • Cone KC, Burr FA and Burr B (1986) Molecular analysis of the maize anthocyanin regulatory locus c1. PNAS USA 83: 9631–9635.

    Article  PubMed  CAS  Google Scholar 

  • Cone KC and Burr B (1989) Molecular and genetic analyses of the light requirement for anthocyanin synthesis in maize. In: The Genetics of Flavanoids. ( DE Styles, GA Gavazzi, and ML Racchi, eds.) Edizioni Unicopli Milan, pp. 142–145.

    Google Scholar 

  • Dellaporta S, Greenblatt I, Kermicle J, Hicks JB and Wessler S (1988) Molecular cloning of the maize R-nj allele by transpos- on-tagging with Ac. In: Chromosome structure and function: Impact of new concepts, 18th Stadler Genetics Symposium (ed. Gustafson JP and Appels R ), pp. 263–282. Plenum Press, NY.

    Google Scholar 

  • Dooner HK, Robbins TP and Jorgenson RA (1991) Genetic and developmental control of anthocyanin biosynthesis. Annu. Rev. Genet. 25: 173–199.

    Article  PubMed  CAS  Google Scholar 

  • Fedoroff NV, Furtek DB and Nelson OE (1984) Cloning of the bronze locus in maize by a simple and generalizable procedure using the transposable element Activator (Ac). PNAS USA 81: 3825–3829.

    Article  PubMed  CAS  Google Scholar 

  • Fields S and Song O (1989) A novel genetic system to detect protein-protein interactions. Nature 340: 245–246.

    Article  PubMed  CAS  Google Scholar 

  • Gabrielsen OS, Sentenac A and Fromageot P (1991) Specific DNA binding by c-Myb: evidence for a double helix-turn-helix- related motif. Science 253: 1140–1143.

    Article  PubMed  CAS  Google Scholar 

  • Goff SA, Klein TM, Roth BA, Fromm MF, Cone KC, Radicella JP and Chandler VL (1990) Transactivation of anthocyanin biosynthetic genes following transfer of b regulatory genes into maize tissues. Embo J. 9: 2517–2522.

    PubMed  CAS  Google Scholar 

  • Goff SA, Cone KC, and Fromm MF (1991) Identification of functional domains in the maize transcriptional activator Cl: comparison of wild-type and dominant inhibitor proteins. Genes Dev 5: 298–309.

    Article  PubMed  CAS  Google Scholar 

  • Goff SA, Cone KC and Chandler VL (1992) Functional analysis of the transcriptional activator encoded by the maize b gene: Evidence for a direct functional interaction between two classes of regulatory proteins. Genes & Dev. 6: 864–875.

    Article  CAS  Google Scholar 

  • Grotewold E, Athma P and Peterson T (1991) Alternatively spliced products of the maize p gene encode proteins with homology to the DNA binding domain of myb-like transcription factors. Proc. Natl. Acad. Sci. USA 88: 4587–91.

    Article  PubMed  CAS  Google Scholar 

  • Grotewold E and Peterson T (1991) Cloning of a P-regulated chalcone-flavanone isomerase gene from maize. Maize Genet. Coop. Newslet. 65: 46–47.

    Google Scholar 

  • Klein T, Roth BA and Fromm M (1989) Regulation of anthocyanin biosynthetic genes introduced into intact tissues by microprojectiles. PNAS USA 86: 6681–6685.

    Article  PubMed  CAS  Google Scholar 

  • Leung DW, Chen E and Goeddel (1989) A method for random mutagenesis of a defined DNA segment using a modified polymerase chain reaction. J. Methods Cell Mol. Bio 1: 11–15.

    Google Scholar 

  • Ludwig SR, Habera LF, Dellaporta SL, and Wessler SR (1989) Lc, a member of the maize r gene family responsible for tissue-specific anthocyanin production, encodes a protein similar to transcriptional activators and contains the myc-homology region. Proc. Natl. Acad. Sci. 86: 7092–7096.

    Article  PubMed  CAS  Google Scholar 

  • Lüscher B and Eisenman RN (1990) New light on Myc and Myb. Part II. Myb. Genes Dev. 4: 2235–2241.

    Article  Google Scholar 

  • McLaughlin M and Walbot V (1987) Cloning of a mutable bz2 allele of maize by transposon tagging and differential hybridization. Genetics 117: 771–776.

    PubMed  CAS  Google Scholar 

  • Menssen A, Hohmann WM, Schnable PS, Peterson PA, and Saedler H (1990) The En/Spm transposable element of Zea mays contains splice sites at the termini generating a novel intron from a dSpm element in the a2 gene. Embo J. 9: 3051–3057.

    PubMed  CAS  Google Scholar 

  • Miller JH (1972) Assay of ß-galactosidase. In: Experiments in molecular genetics, pp. 352–355. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.

    Google Scholar 

  • O’Reilly C, Shepherd NS, Pereira A, Schwarz-Sommer Z, Bertram I, Robertson DS, Peterson PA, and Saedler H (1985) Molecular cloning of the al locus of Zea mays using the transposable elements En and Mul. The Embo J. 4: 877–882.

    Google Scholar 

  • Paz-Ares J, Wienand U, Peterson PA and Saedler H (1986) Molecular cloning of the c locus of Zea mays: a locus regulating the anthocyanin pathway. Embo J. 5: 829–833.

    PubMed  CAS  Google Scholar 

  • Paz-Ares J, Ghosal D, Wienand U, Peterson P and Saedler H (1987) The regulatory c1 locus of Zea mays encodes a protein with homology to myb proto-oncogene products and with structural similarities to transcriptional activators. Embo J. 6: 3553–3558.

    PubMed  CAS  Google Scholar 

  • Paz-Ares J, Ghosal D, and Saedler H (1990) Molecular analysis of the C1-I allele from Zea mays: A dominant mutant of the regulatory cl locus. Embo J. 9: 315–321.

    PubMed  CAS  Google Scholar 

  • Perrot GH and Cone KC (1989) Nucleotide sequence of the maize R-S gene. Nucleic Acids Res. 17: 8003.

    Article  PubMed  CAS  Google Scholar 

  • Radicella JP, Turks D and Chandler VL (1991) Cloning and nucleotide sequence of a cDNA encoding B-Peru, a regulatory protein of the anthocyanin pathway in maize. Plant Mol. Biol. 17: 127–130.

    Article  PubMed  CAS  Google Scholar 

  • Roth BA, Goff SA, Klein TM and Fromm ME (1991) C1- and R-dependent expression of the maize bzl gene requires sequences with homology to mammalian myb and myc binding sites. Plant Cell 3: 317–325.

    Article  PubMed  CAS  Google Scholar 

  • Styles ED, Ceska O and Seah KT (1973) Developmental differences in action of r and b alleles in maize. Can. J. Genet. Cytol. 15: 59–72.

    Google Scholar 

  • Theres N, Scheele T and Starlinger P (1987) Cloning of the Bz2 locus of Zea mays using the transposable element Ds as a gene tag. Mol. Gen. Genet. 209: 193–197.

    Article  PubMed  CAS  Google Scholar 

  • Wienand U, Weydemann U, Niesbach-Kloesgen U, Peterson PA and Saedler H (1986) Molecular cloning of the c2 locus of Zea mays, the gene coding for chalcone synthase. Mol. Gen. Genet. 203: 202–207.

    Article  Google Scholar 

  • Zurawski DB and Chourey P (1981) Callus formation from protoplasts of a maize cell culture. Theor. & Appl. Genetics 59: 341–344.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sainz, M.B., Goff, S.A., Krahn, J.M., Chandler, V.L. (1994). Transcriptional Regulation of the Maize Anthocyanin Pathway. In: Coruzzi, G., Puigdomènech, P. (eds) Plant Molecular Biology. NATO ASI Series, vol 81. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78852-9_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78852-9_36

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78854-3

  • Online ISBN: 978-3-642-78852-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics