Skip to main content

Röntgenstrahlen in der Biochemie

  • Chapter
  • 123 Accesses

Zusammenfassung

Von ihren Anfängen an ist es ein Erfolgskonzept der Biochemie gewesen, die biologischen Funktionen auf der Basis chemischer Strukturen zu erklären. So ist unser heutiges Verständnis der Lebenserscheinungen nachhaltig von den Strukturaufklärungen biochemisch relevanter Moleküle beeinflußt worden. Dies gilt insbesondere für die Makromoleküle, die die zentralen Träger biologischer Information und Funktion sind: die Nukleinsäuren und Proteine. Ganz offensichtlich ist die Entschlüsselung ihres Aufbaus notwendige Voraussetzung für das Verständnis ihrer Funktion; M. Perutz schrieb dazu mit Blick auf die Enzyme, einer Klasse von Proteinen, die als biologische Katalysatoren in allen biochemischen Prozessen mitwirken:

„Um die chemischen Grundlagen des Lebens verstehen zu können, müssen wir den Apparat kennen, der komplizierte Pflanzen und Tiere aus einfachen chemischen Verbindungen aufbaut. Welche Werkzeuge besitzen lebende Zellen, um große organische Moleküle in wässrigem Medium bei normalen Temperaturen und in neutraler Lösung aufzubauen, ein Vorhaben, für das der Chemiker wirksame Lösungsmittel, hohe Temperaturen, niedrige Drücke und starke Säuren oder Basen braucht?“ (Perutz 1971).

Gemeinhin sagt man, es gebe Feuer, Wasser, Luft und Erde. Es gebe süß und bitter, heiß und kalt. Gemeinhin sagt man, es gebe eine natürliche Ordnung im Universum. In Wahrheit gibt es nichts als Atome und Leere. Demokrit, 400 v. Chr.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Adams MJ, Blundell TL, Dodson EJ et al. (1969) Structure of rhombohedral 2 zinc insulin crystals. Nature 224:491–495.

    Article  CAS  Google Scholar 

  • Adams MJ, Ford GC, Koekoek R et al. (1970) Structure of lactate dehydrogenase at 2,8 Å resolution. Nature 227:1098–1103.

    Article  PubMed  CAS  Google Scholar 

  • Albrecht G, Corey RB (1939) The crystal structure of glycine. J Am Chem Soc 61:1087–1103.

    Article  CAS  Google Scholar 

  • Astbury WT (1931) X-ray investigations of the inner structure of wool. J Textile Sci 4:1–5.

    CAS  Google Scholar 

  • Astbury WT (1933) Fundamentals of fibre structure. Oxford University Press, New York.

    Google Scholar 

  • Astbury WT (1961) Molecular biology or ultrastructural biology? Nature 190:1124.

    Article  PubMed  CAS  Google Scholar 

  • Astbury WT, Bell FC (1938) X-ray study of thymonucleic acid. Nature 141:747–748.

    Article  CAS  Google Scholar 

  • Astbury WT, Bell FC (1941) Nature of the intramolecular fold in α-keratin and α-myosin. Nature 147:696–699.

    Article  CAS  Google Scholar 

  • Astbury WT, Sisson WA (1935) X-ray studies of the structures of hair, wool and related fibers. III. The configuration of the keratin molecule and its orientation in the biological cell. Proc Roy Soc (London) A 150:333–351.

    Article  Google Scholar 

  • Astbury WT, Street A (1931) X-ray studies of the structure of hair, wool and related fibers. I. General. Trans Roy Soc (London) A230:75–101.

    CAS  Google Scholar 

  • Astbury WT, Woods JH (1930) The X-ray interpretation of the structure and elastic properties of hair keratin. Nature 126:913–914.

    Article  CAS  Google Scholar 

  • Astbury WT, Woods HJ (1931) Moiecular weights of proteins. Nature 127:663–665.

    Article  CAS  Google Scholar 

  • Astbury WT, Woods HJ (1934) X-ray studies of the structure of hair, wool and related fibers. II, The molecular structure and elastic properties of hair keratin. Trans Roy Soc (London) A232:333–394.

    Article  Google Scholar 

  • Astbury WT, Dickinson S, Bailey K (1935) The X-ray interpretation of denaturation and the structure of the seed globulin. Biochem J 29:2351–2361.

    PubMed  CAS  Google Scholar 

  • Avery OT, MacLeod CM, MacCarty M (1944) Studies on the chemical nature of the substance inducing transformation of pneumococcal types. J Exp Med 79:137–158.

    Article  PubMed  CAS  Google Scholar 

  • Baldwin J, Chothia C (1979) Haemoglobin: The structural changes related to binding and its allosteric mechanism. J Mol Biol 129:175–220.

    Article  PubMed  CAS  Google Scholar 

  • Bamford CH, Brown L, Cant EM, Elliott A, Hanley WE, Malcolm BR (1955) Structure of polyglycine, Nature 176:396–397.

    Article  CAS  Google Scholar 

  • Baumann U, Shan W, Flaherty KM, McKay DB (1993) Three-dimensional structure of the alkaline protease of pseudomonas aemginosa: A two-domain protein with a calcium binding parallel beta roll motif. EMBO J 12:3357–3364.

    PubMed  CAS  Google Scholar 

  • Baumgärtner KH (1830) Beobachtungen über die Nerven und das Blut. Freiburg.

    Google Scholar 

  • Bernal JD (1931) The crystal structure of natural amino acids and related compounds. Z Krist 78:363–369.

    CAS  Google Scholar 

  • Bernal JD, Crowfoot D (1934) X-ray photographs of crystalline pepsin. Nature 133:794–795.

    Article  CAS  Google Scholar 

  • Bernal JD, Fankuchen I (1941) X-ray and crystallographic studies of plant virus preparations. I. Introduction and preparation of specimens. II. Mode of aggregation of the virus particle. III. X-ray and crystaliographic studies of plant virus preparations. J Gen Physiol 25:111–165.

    Article  PubMed  CAS  Google Scholar 

  • Bernai JD, Fankuchen I, Perutz MF (1938) X-ray study of chymotrypsin and hemoglobin. Nature 141:523–524.

    Article  Google Scholar 

  • Bernstein FC, Koetzle TF, Williams GJB et al. (1977) The protein data bank: A computer-based archival file for macromolecular structures. J Mol Biol 112:535–542.

    Article  PubMed  CAS  Google Scholar 

  • Bijvoet JM (1954) Structure of optically active compounds in the solid state. Nature 173:888–891.

    Article  Google Scholar 

  • Blake CCF, Koenig DF, Mair GA, North ACT, Phillips DC, Sarma VR (1965) Structure of hen egg-white lysozyme. A three-dimensional Fourier-synthesis at 2Å resolution. Nature 206:757–761.

    Article  PubMed  CAS  Google Scholar 

  • Bloomer AC, Champness JN, Bricogne G, Staden R, Klug A (1978) Protein discs of tobacco mosaic virus at 2,8 Å resolution showing the interactions within and between subunits, Nature 276:362–368.

    Article  PubMed  CAS  Google Scholar 

  • Blow DM (1958) The structure of haemoglobin. VII. Determination of phase angles in the noncentrosymmetric (100) zone. Proc Roy Soc (London) A247:302–336.

    Google Scholar 

  • Blow DM, Crick FHC (1959) The treatment of errors in the isomorphous replacement method. Acta Cryst 12:794–802.

    Article  CAS  Google Scholar 

  • Blow DM, Rossmann MG (1961) The single isomorphous replacement methode. Acta Cryst 14:1195–1202.

    Article  CAS  Google Scholar 

  • Blow DM, Birkroft JJ, Hartley BS (1969) Role of a buried acid group in the mechanism of action of chymotrypsin. Nature 221:337–340.

    Article  PubMed  CAS  Google Scholar 

  • Blow DM, Janin J, Sweet RM (1974) Mode of action of soybean trypsin inhibitor (Kunitz) as a model for specific protein-protein-interactions. Nature 249:54–57.

    Article  PubMed  CAS  Google Scholar 

  • Blow DM, Wright CS, Kukla D, Rühlmann A, Steigemann W, Huber R (1972) A model for the association of bovine pancreatic trypsin inhibitor with chymotrypsin and trypsin. J Mol Biol 69:137–144].

    Article  PubMed  CAS  Google Scholar 

  • Bode W, Schwaer P (1975) The refined crystal structure of bovine ß-trypsin at 1,8 Å resolution. II. Crystallographic refinement, calcium binding site, benzamidine binding site and active site at pH 7.0. J Mol Biol 98:693–717.

    Article  PubMed  CAS  Google Scholar 

  • Bodo G, Dintzis HM, Kendrew JC, Wyckoff HW (1959) Crystal structure of myogiobin, V. Low-resolution three-dimensional Fourier synthesis of sperm whale myogiobin crystals, Proc Roy Soc (London) A253:70–102.

    Google Scholar 

  • Bolton W, Cox JM, Perutz MF (1968) Structure and function of haemoglobin IV. A three-dimensional Fourier synthesis of horse deoxyhaemoglobin at 5,5 Å resolution. J Mol Biol 33:283–297.

    Article  PubMed  CAS  Google Scholar 

  • Bolton W, Perutz MF (1970) Three-dimensional Fourier synthesis of horse deoxyhaemoglobin at 2,8 AÅresolution. Nature 228:551–552.

    Article  PubMed  CAS  Google Scholar 

  • Bokhoven C, Schoone JC, Bijvoet JM (1949) On the crystal structure of strychnine sulfate and selenate. III. [001]-Projection. Proc Kgl Ned Akad Wet 52:120–121.

    CAS  Google Scholar 

  • Bokhoven C, Schoone JC, Bijvoet JM (1951) The Fourier synthesis of the crystal structure of strychnine sulfate pentahydrate. Acta Cryst 4:275–280.

    Article  CAS  Google Scholar 

  • Bragg WH (1915) IX. Bakerian Lecture: X-rays and crystal structures. Trans Roy Soc (London) A215:253–274.

    Article  Google Scholar 

  • Bragg WL, Perutz MF (1952a) The structure of hemoglobin. Proc Roy Soc (London) A213:425–435.

    Google Scholar 

  • Bragg WL, Perutz MF (1952b) The external form of the haemoglobin molecule. II, Acta Cryst 5:323–328.

    Article  CAS  Google Scholar 

  • Bragg WL, Perutz MF (1954) The structure of hemoglobin. VI. Fourier projections on the 010 plane. Proc Roy Soc (London) A225:315–329.

    Google Scholar 

  • Bragg WL, Kendrew JC, Perutz MF (1950) Polypeptide chain configurations in crystalline proteins. Proc Roy Soc (London) A203:321–357.

    Google Scholar 

  • Bricogne G (1976) Methods of programms for directspace exploitation of geometric-redundancies. Acta Cryst A32:832–847.

    CAS  Google Scholar 

  • Brill R (1923) Über Seidenfibroin. Liebigs Ann Chemie 434:204–217.

    Article  CAS  Google Scholar 

  • Brünger AT, Kuriyan J, Karpius M (1987) Crystaliographic R-factor refinement by moiecular dynamics. Science 235:458–460.

    Article  PubMed  Google Scholar 

  • Brünger AT, Karplus M, Petsko GA (1989) Crystaliographic refinement by simulated annealing: Application to Crambin. Acta Cryst A45:50–61.

    Google Scholar 

  • Brünger AT, Krakowski A, Erikson J (1990) Slow-cooling protocols for crystallographic refinement by simulated annealing. Acta Cryst A46:585–593.

    Google Scholar 

  • Butler PJG, Klug A (1978) The assembly of a virus. Sci Am 239:62–69.

    PubMed  CAS  Google Scholar 

  • Caspar DLD, Klug A (1962) Physical principles in the construction of regular viruses. Cold Spring Harbour Symp Quant Biol 27:1–24.

    Article  CAS  Google Scholar 

  • Chargaff E (1950) Chemical specificity of nucleic acids and mechanism of their enzymatic degradation. Experientia 6:201–209.

    Article  PubMed  Google Scholar 

  • Cochran W (1951) The structures of pyrimidines and purines. V. The electron distribution in adenine hydrochloride. Acta Cryst 4:81–92.

    Article  CAS  Google Scholar 

  • Cochran W, Crick FHC, Vand V (1952) Structure of synthetic polypeptides. I. The transform of atoms on a helix. Acta Cryst 5:581–586.

    Article  CAS  Google Scholar 

  • Corey RB (1938) Crystal structure of diketopiperazine. J Am Chem Soc 60:1598–1604.

    Article  CAS  Google Scholar 

  • Cork JM (1927) Crystal structures of the alums. Phil Mag 4:688–698.

    Google Scholar 

  • Coster D, Knol KS, Prins JA (1930) Unterschiede in der Intensität der Röntgenstrahlenreflexion an den beiden 111-Flächen der Zinkblende. Z Phys 63:345–369.

    Article  CAS  Google Scholar 

  • Cowan PM, McGavin S (1955) Structure of Poly-L-proline. Nature 176:501–503.

    Article  CAS  Google Scholar 

  • Crick FHC (1953a) Is α-Keratin a coiled coil? Nature 170:882–883.

    Article  Google Scholar 

  • Crick FHC (1953b) The packing of α-helices: Simple coiled-coils. Acta Cryst 6:689–697.

    Article  CAS  Google Scholar 

  • Crick FHC, Magdoff BS (1956) The theory of the method of isomorphous replacement for protein crystals. I. Acta Cryst 9:901–908.

    Article  CAS  Google Scholar 

  • Crick FHC, Rich A (1955) Structure of polyglycine II. Nature 176:780–781.

    Article  PubMed  CAS  Google Scholar 

  • Crick FHC, Watson JD (1956) Structure of small viruses. Nature 177:473–475.

    Article  PubMed  CAS  Google Scholar 

  • Crowfoot D (1935) X-ray single crystal photographs of insulin. Nature 135:591–592.

    Article  CAS  Google Scholar 

  • Crowfoot-Hodgkin D (1979) Crystailographic measurements and the structure of protein molecules as they are. Ann N Y Acad Sci 325:121–145.

    Article  Google Scholar 

  • Crowfoot D, Riley DP (1938) X-ray study of Palmer’s lactoglobulin. Nature 141:521–522.

    Article  CAS  Google Scholar 

  • Crowfoot D, Riley DP (1939) X-ray measurements of wet insulin crystals. Nature 144:1011–1012.

    Article  CAS  Google Scholar 

  • Crowfoot-Hodgkin D, Riley DP (1968) Some ancient history of protein X-ray analysis, in: Rich A, Davidson N (eds) Structural chemistry and molecular biology. Freeman, San Francisco.

    Google Scholar 

  • Crowther RA, Blow DM (1967) A method of positioning a know molecule in an unknown crystal structure. Acta Cryst 23:544–548.

    Article  CAS  Google Scholar 

  • Cullis AF, Muirhead H, Perutz MF, Rossmann MG, North ACT (1961a) Structure of haemoglobin. VIII. A three-dimensional Fourier synthesis at 5,5 Å resolution. Determination of phase angles. Proc Roy Soc (London) A265:15–38.

    Google Scholar 

  • Cullis AF, Muirhead H, Perutz MF, Rossmann MG, North ACT (1961b) Structure of haemoglobin. IX. A Three-dimensional Fourier synthesis at 5,5 resolution: Description of the structure. Proc Roy Soc (London) A 265:161–387.

    Article  Google Scholar 

  • Deisenhofer J, Epp O, Miki K, Huber R, Michel H (1984) X-ray structure analysis of a membrane protein complex: Electron density map at 3 Ä resolution and a model of the chromophores of the photosynthetic reaction center from rhodopseudomonas viridis. J Mol Biol 180:385–398.

    Article  PubMed  CAS  Google Scholar 

  • Deisenhofer J, Epp O, Miki K, Huber R, Michel H (1985) Structure of the protein subunits in the photosynthetic reaction centre of rhodopseudomonas viridis at 3 A Resolution. Nature 318:618–624.

    Article  Google Scholar 

  • Diamond R (1971) A real-space refinement procedure for proteins. Acta Cryst A 27:436–452.

    Article  CAS  Google Scholar 

  • Dickerson RE, Kendrew JC, Strandberg BE (1961) The crystal structure of myoglobin: Phase determination to a resolution of 2 Å by the method of isomorphous replacement. Acta Cryst 14:1188–3195.

    Article  CAS  Google Scholar 

  • Donohue J (1953) Hydrogen-bonded helical configurations of the poiypeptide chain. Proc Natl Acad Sci USA 39:470–478.

    Article  PubMed  CAS  Google Scholar 

  • Drenth J, Jansonius JN, Koekoek R, Swen HM, Wolthers BG (1968) Structure of papain. Nature 218:929–932.

    Article  PubMed  CAS  Google Scholar 

  • Drenth J, Hol WG, Jansonius JN, Kroekoek R (1971) A comparison of the three-dimensional structures of Subtilisin BPN’ and Subtilisin Novo. Cold Spring Harbour Symp Quant Biol 36:107–116.

    Article  CAS  Google Scholar 

  • Duane W (1925) The calculation of the X-ray diffraction power at points in a crystal. Proc Natl Acad Sci USA 11:489–493.

    Article  PubMed  CAS  Google Scholar 

  • Ealick SE, Walter RL (1993) Synchrotron beamlines for macromolecular crystallography. Curr Opin Struct Biol 3:725–736.

    Article  CAS  Google Scholar 

  • Fehthammer H, Bode W (1975) The refined crystal structure of bovine β-trypsin at 1,8 Å resolution. I. Crystallization, data collection and application of Patterson search techniques. J Mol Biol 98:683–692.

    Article  Google Scholar 

  • Finzel BC (1993) Software for macromolecular crystallography: A user’s overview. Curr Opin Struct Biol 3:741–747.

    Article  CAS  Google Scholar 

  • Forest K, Schutt C (1992) Protein engineering for structure determination. Curr Opin Struct Biol 2:576–581.

    Article  CAS  Google Scholar 

  • Franklin RE, Gosling RG (1953a) The structure of sodium thymonucleate fibers. I. The influence of water content. Acta Cryst 6:673–677.

    Article  CAS  Google Scholar 

  • Franklin RE, Gosling RG (1953b) The structure of sodium thymonucleate fibers. II. The cylindrically symmetrical Patterson-function. Acta Cryst 6:678–685.

    Article  CAS  Google Scholar 

  • Franklin RE, Gosling RG (1953c) Molecular configuration of sodium thymonucleate. Nature 171:740–741.

    Article  PubMed  CAS  Google Scholar 

  • Franklin RE, Gosling RG (1953d) Evindence for 2-chain helix in crystalline structure of sodium desoxyribonucleate. Nature 172:356–357.

    Article  Google Scholar 

  • Franklin RE, Gosling RG (1955) The structure of sodium thymonucleate fibers. III. The three-dimensional Patterson function. Acta Cryst 8:151–156.

    Article  CAS  Google Scholar 

  • Freer ST, Kraut J, Robertus JD, Wright HT, Xuong NH (1970) Chymotrypsinogen: 2,5 Å crystal structure, comparison with α-chymotrypsin, and implications for zymogen activation. Biochemistry 9:1997–2009.

    Article  PubMed  CAS  Google Scholar 

  • Freer ST, Alden RA, Carter CW, Kraut J (1975) Crystallographic structure refinement of chromatin high potential protein at 2 A resolution. J Biol Chem 250:46–54.

    PubMed  CAS  Google Scholar 

  • Friedel G (1913) Sur les symétries cristallines que peut reveler la diffraction des rayons Röntgen. Compt Rend 157:1533–1536.

    Google Scholar 

  • Friedrich W, Knipping P, Laue M (1912) Interferenz-Erscheinungen bei Röntgenstrahlen. Sitzungsber Kgl Bayer Akad Wiss 303-322.

    Google Scholar 

  • Fujinaga M, Gros P, van Gunsteren WF (1989) Testing the method of crystallographic refinement using molecular dynamics. J Appl Cryst 22:1–8.

    Article  CAS  Google Scholar 

  • Furberg S (1949a) Crystal structure of cytidine. Nature 164:22.

    Article  PubMed  CAS  Google Scholar 

  • Furberg S (1949b) An X-ray study of some nucleosides and nucleotides. Dissertation, Universität London.

    Google Scholar 

  • Furberg S (1950a) The crystal structure of cytidine. Acta Cryst 3:325–333.

    Article  CAS  Google Scholar 

  • Furberg S (1950b) X-ray studies on the decomposition products of the nucleic acids. J Chem Soc Faraday Trans 46:791.

    Google Scholar 

  • Furberg S (1952) On the structure of nucleic acids. Acta Chem Scand 6:634–640.

    Article  CAS  Google Scholar 

  • Green DW, Ingram VM, Perutz MF (1954) The structure of haemoglobin. IV. Sign determination by the isomorphous replacement method. Proc Roy Soc (London) A225:287–307.

    Google Scholar 

  • Gulland JM, Jordan DO, Taylor HFW (1947) Desoxypentose nucleic acids. II. Electrometric titration of the acidic and basic groups of the desoxypentose nucleic acid of calf thymus. J Chem Soc 1131-1141.

    Google Scholar 

  • Gurskaya GV (1968) The molecular structure of amino acids. Determination by X-ray diffraction analysis. Consultants Bureau, New York.

    Google Scholar 

  • Harding MM, Crowfoot-Hodgkin DC, Kennedy AF, O’Connor A, Weitzmann PDJ (1966) The crystal structure of insulin. II. An investigation of rhombohedral zinc insulin crystals and a report of other crystalline forms. J Mol Biol 16:212–226.

    Article  PubMed  CAS  Google Scholar 

  • Harker D (1936) The application of the three-dimensional Patterson method and the crystal structure of prousite Ag3AsS3, and pyrargyrite, Ag3SbS3. J Chem Phys 4:381–390.

    Article  CAS  Google Scholar 

  • Harker D (1956) The determination of the phases of the structure factors of non-centrosymmetric crystals by the method of double isomorphous replacement. Acta Cryst 9:1–9.

    Article  CAS  Google Scholar 

  • Harrington CR, Neuberger A (1936) Electrometric titration of insulin. Preparation and properties of iodinated insulin. Biochem J 30:809–820.

    Google Scholar 

  • Harrison SC (1968) A point-focussing camera for singlecrystal diffraction. J Appl Cryst 1:84–90.

    Article  Google Scholar 

  • Harrison SC, Olson AJ, Schutt CE, Winkler FK, Bricogne G (1978) Tomato bushy stunt virus at 2,9 Å resolution. Nature 276:368–373.

    Article  PubMed  CAS  Google Scholar 

  • Hartsuck JA, Ludwig ML, Muirhead H, Steitz TA, Lipscomb WN (1965) Carboxypeptidase A. II. The three-dimensional electron density map at 6 Å resolution. Proc Natl Acad Sci USA 53:396–403.

    Article  PubMed  CAS  Google Scholar 

  • Havighurst RJ (1926) Parameters in crystal structure. The mercurous halides. J Am Chem Soc 48:2113–2125.

    Article  CAS  Google Scholar 

  • Henderson R (1970) Structure of crystalline α-chymotrypsin. IV. The structure of indoleacryloyl-α-chymotrypsin and its relevance to the hydrolytic mechanism of the enzyme. J Mol Biol 54:341–354.

    Article  PubMed  CAS  Google Scholar 

  • Henderson R, Wright CS, Hess GP, Blow DM (1971) α-Chymotrypsin: What can we learn about catalysis from X-ray diffraction. Cold Spring Harbour Symp Quant Biol 36:63–70.

    Article  CAS  Google Scholar 

  • Hendrickson WA, Lattmann EE (1970) Representation of phase probability distributions for simplified combination of independent phase information. Acta Cryst B26:136–143.

    Google Scholar 

  • Hendrickson WA (1985) Stereochemically restrained refinement of macromolecuiar structures. Meth Enzymol 115:252–270.

    Article  PubMed  CAS  Google Scholar 

  • Hendrickson WA (1991) Determination of macromolecular structures from anomalous diffraction of synchrotron radiation. Science 254:51–58.

    Article  PubMed  CAS  Google Scholar 

  • Herriott JR, Sicker LC, Jensen LH, Lovensberg W (1970) Structure of rubredoxin: An X-ray study to 2,5 Å resolution. J Moi Biol 50:391–406.

    Article  CAS  Google Scholar 

  • Hershey AD, Chase M (1952) Independent functions of viral protein and nucleic acid in growth of bacteriophage. J Gen Physiol 36:39–56.

    Article  PubMed  CAS  Google Scholar 

  • Herzog RO, Jahncke W (1920) Über den physikalischen Aufbau einiger hochmolekularer organischer Verbindungen. Ber Dtsch Chem Ges 53:2162–2164.

    Article  Google Scholar 

  • Hoppe W (1957a) Die Faltmolekülmethode: eine neue Methode zur Bestimmung der Kristallstruktur bei ganz oder teilweise bekannten Molekülstrukturen. Acta Cryst 10:750–751.

    Google Scholar 

  • Hoppe W (1957b) Die Faltmolekülmethode und ihre Anwendung in der röntgenographischen Konstitutionsanalyse von Biflorin (C20H20O4). Z Elektrochem 61:1076–1083.

    CAS  Google Scholar 

  • Hoppe W (1959) Die Bestimmung genauer Schweratomparameter in isomorphen azentrischen Kristallen. Acta Cryst 12:665–674.

    Article  CAS  Google Scholar 

  • Hönl H (1933) Zur Dispersionstheorie der Röntgenstrahlen. Z Phys 84:1–16.

    Article  Google Scholar 

  • Huber R (1965) Die automatisierte Faltmolekülmethode. Acta Cryst 19:353–356.

    Article  CAS  Google Scholar 

  • Huber R, Epp O, Formanek H (1969) Aufklärung der Molekülstruktur des Insekten-Hämoglobins. Naturwissenschaften 56:362–367.

    Article  PubMed  CAS  Google Scholar 

  • Huber R, Kukla D, Rühlmann A, Epp O, Formanek H (1970) The basic trypsin inhibitor of bovine pancreas. I. Structure analysis and conformation of the poiypeptide chain. Naturwissenschaften 57:389–392.

    Article  PubMed  CAS  Google Scholar 

  • Huber R, Kukla D, Bode W, Schwager P, Bartels K, Deisenhofer J, Steigemann W (1974) Structure of the complex formed by bovine trypsin and bovine pancreatic trypsin inhibitor. II. Crystallographic refinement at 1, 9 Å resolution. J Mol Biol 89:73–101.

    Article  PubMed  CAS  Google Scholar 

  • Huggins ML (1940) Some hydrogen-bridge modells for globular proteins. J Chem Phys 8:598–600.

    Article  CAS  Google Scholar 

  • Huggins ML (1943) The structure of fibrous proteins. Chem Rev 32:195–218.

    Article  CAS  Google Scholar 

  • Hughes EW, Moore WJ (1949) The crystal structure of α-glycylglycine. J Am Chem Soc 71:2618–2623.

    Article  CAS  Google Scholar 

  • Jack A, Levitt MA (1978) Refinement of large structures by simultaneous minimization of energy and R-factor. Acta Cryst A34:931–935.

    CAS  Google Scholar 

  • Jones TA (1978) A graphics model building and refinement system for macromolecules. J Appl Cryst 11:268–272.

    Article  CAS  Google Scholar 

  • Kallmann H, Mark H (1927) Über die Dispersion und Streuung von Röntgenstrahlen. Ann Phys 82:585–604.

    Article  CAS  Google Scholar 

  • Kartha G, Parthasarathy R (1965a) Combination of multiple isomorphous replacement and anomalous dispersion data for protein structure determination. I. Determination of heavy atom positions in protein derivatives. Acta Cryst 18:745–749.

    Article  CAS  Google Scholar 

  • Kartha G, Parthasarathy R (1965b) Combination of multiple isomorphous replacement and anomalous dispersion data for protein structure determination. II. Correlation of the heavy-atom positions in different isomorphous protein crystals. Acta Cryst 18:749–753.

    Article  CAS  Google Scholar 

  • Kartha G, Bello J, Harker D (1967) Tertiary structure of ribonuclease. Nature 213:862–865.

    Article  PubMed  CAS  Google Scholar 

  • Kendrew JC (1948) Preliminary X-ray data for horse and whale myoglobins. Acta Cryst 1:336.

    Article  CAS  Google Scholar 

  • Kendrew JC (1954) The crystalline proteins: Recent X-Ray studies and structural hypotheses. Prog Biophys Biophys Chem 4:244–287.

    CAS  Google Scholar 

  • Kendrew JC, Bodo G, Dintzis HM, Parrish RG, Wyckoff H (1958) A three-dimensional model of the myoglobin molecule obtained by X-ray analysis. Nature 181:662–666.

    Article  PubMed  CAS  Google Scholar 

  • Kendrew JC, Dickerson RE, Strandberg BE, Hart RG, Davis DR (1960) Structure of myoglobin. A three-dimensional Fourier synthesis at 2 Å resolution. Nature 185:422–427.

    Article  PubMed  CAS  Google Scholar 

  • Konnert H (1976) A restrained-parameter structurefactor least-squares refinement procedure for large asymmetric units. Acta Crystr A32:614–617.

    Article  CAS  Google Scholar 

  • Koshland DE jr, Némethy G, Filmer D (1966) Comparison of experimental binding data and theoretical models in proteins containing subunits. Biochemistry 5:365–385.

    Article  PubMed  CAS  Google Scholar 

  • Lipson H, Beevers CA (1935) The crystal structure of the alaums. Proc Roy Soc (London) A148:664–680.

    Google Scholar 

  • Lipson H, Beevers CA (1936) An improved numerical method of two-dimensional Fourier synthesis for crystals. Proc Phys Soc (London) 48:772–780.

    Article  Google Scholar 

  • Ludwig ML, Hartsuck JA, Steitz TA, Muirhead H, Coppola JC, Reeke GN, Lipscomb WN (1967) The structure of carboxypeptidase A, IV, Preliminary results at 2,8 Å resolution, and a substrate complex at 6Å resolution. Proc Natl Acad Sci USA 57:511–514.

    Article  CAS  Google Scholar 

  • Leung YC, Marsch RE (1958) The crystal structure of L-leucyl-L-prolyl-glycine. Acta Cryst 11:17–31.

    Article  CAS  Google Scholar 

  • Low BW, Baybutt RB (1952) The π-helix — A hydrogen bonded configuration of the polypeptide chain. J Am Chem Soc 74:5806–5807.

    Article  CAS  Google Scholar 

  • Low BW, Grenville-Wells (1953) Generalized mathematical relationships for polypeptide chain helices. The coordinates of the π-helix. Proc Natl Acad Sci USA 39:785–801.

    Article  PubMed  CAS  Google Scholar 

  • Main P (1967) Phase determination using non-crystallo-graphic symmetry. Acta Cryst 23:50–54.

    Article  CAS  Google Scholar 

  • Main P, Rossmann MG (1966) Relationships among structure factors due to identical molecules in different crystallographic environments. Acta Cryst 21:67–72.

    Article  CAS  Google Scholar 

  • Mark H, Szilard L (1925) Ein einfacher Versuch zur Auffindung eines selektiven Effektes bei der Zerstreuung von Röntgenstrahlen. Z Phys 33:688–691.

    Article  CAS  Google Scholar 

  • Matthews BW (1966a) The extension of the isomorphous replacement method to include anomalous scattering measurements. Acta Cryst 20:82–86.

    Article  CAS  Google Scholar 

  • Matthews BW (1966b) The determination of the position of anomaiously scattering heavy atom groups in protein crystals. Acta Cryst 20:230–239.

    Article  CAS  Google Scholar 

  • Matthews BW, Colman PM, Jansonius JN, Titani K, Walsh KA, Neurath H (1972b) Structure of thermolysin. Nature New Biol 238:41–43.

    Article  PubMed  CAS  Google Scholar 

  • Matthews BW, Jansonius JN, Colman PM, Schoenborn BP, Dupourque D (1972a) Three-dimensional structure of thermolysin. Nature New Biol 238:37–41.

    Article  PubMed  CAS  Google Scholar 

  • Matthews BW, Sigler PB, Henderson R, Blow DM (1967) Three-dimensional structure of tosyl-α-chymotrpysin. Nature 214:652–656.

    Article  PubMed  CAS  Google Scholar 

  • Meselson M, Stahl FW (1958) The replication of DNA in Escherichia Coli. Proc Natl Acad Sci USA 44:671–682.

    Article  PubMed  CAS  Google Scholar 

  • Meyer KH, Mark H (1928a) Über den Bau des krystallisierten Anteils der Cellulose. Ber Dtsch Chem Ges 61:593–614.

    Article  Google Scholar 

  • Meyer KH, Mark H (1928b) Über den Aufbau des Seiden-Fibroins. Ber Dtsch Chem Ges 61:1932–1936.

    Article  Google Scholar 

  • Meyer KH, Mark H (1928c) Über den Aufbau des Chitins. Ber Dtsch Chem Ges 61:1936–1939.

    Article  Google Scholar 

  • Meyer KH, Mark H (1928d) Über den Kautschuk. Ber Dtsch Chem Ges 61:1939–1949.

    Article  Google Scholar 

  • Michel H (1982) Three-dimensional crystals of a membrane protein complex. The photosynthetic reaction center from Rhodopseudomonas viridis. J Mol Biol 158:562–567.

    Article  Google Scholar 

  • Mitscherlich E (1819) Über die Kristallisation der Salze in denen das Metall der Basis mit zwei Proportionen Sauerstoff verbunden ist. Abh Kgl Akad Wiss (Berlin): 427-437.

    Google Scholar 

  • Monod J, Wyman J, Changeux J-P (1965) On the nature of allosteric transitions: A plausible model. J Mol Biol 12:88–118.

    Article  PubMed  CAS  Google Scholar 

  • Muirhead H, Greer J (1970) Three-dimensional Fourier synthesis of human deoxyhaemoglobin at 3, 5 Å resolution. Nature 228:516–519.

    Article  PubMed  CAS  Google Scholar 

  • Muirhead H, Cox JM, Mazzarella L, Perutz MF (1967) Structure and function of haemoglobin. III. A threedimensional Fourier synthesis of human deoxyhaemogiobin at 5,5 Å resolution. J Mol Biol 28:117–156.

    Article  PubMed  CAS  Google Scholar 

  • Nishikawa S, Ono S (1913) Transmission of X-rays through fibrous, lamellar and granular substances. Proc Tokyo Math Phys Soc 7:131–138.

    CAS  Google Scholar 

  • Nishikawa S, Matukawa K (1928) Hemihedry of zinc blende and X-ray reflection. Proc Imp Acad (Japan) 4:96–97.

    CAS  Google Scholar 

  • Nordman CE, Nakatsu K (1963) Interpretation of the Patterson function of crystals containing a known molecular fragment. The structure of an alstonine alkaloid. J Am Chem Soc 85:353–354.

    Article  CAS  Google Scholar 

  • North ACT (1965) The combination of isomorphous replacement and anomalous scattering data in phase determination of non-centrosymmetric reflexions. Acta Cryst 18:212–216.

    Article  CAS  Google Scholar 

  • Patterson AL (1934) A Fourier series method for the determination of the components of interatmic distances in crystals, Phys Rev 46:372–376.

    Article  CAS  Google Scholar 

  • Patterson AL (1935) A direct method for the determination of the components of interatomic distances in crystals. Z Krist A90:517–542.

    Google Scholar 

  • Pauling L, Sherman J (1933) The nature of the chemical bond. VI. The calculation from thermochemical data of the energy of resonance of molecules among several electronic structures. J Chem Phys 1:606–617.

    Article  CAS  Google Scholar 

  • Pauling L, Corey RB (1950) Two hydrogen-bonded spiral configurations of the poiypeptide chain. J Am Chem Soc 72:5349.

    Article  CAS  Google Scholar 

  • Pauling L, Corey RB (1951a) Atomic coordinates and structure factors for two helical configurations of poiypeptide chains. Proc Natl 37:235–240.

    Article  CAS  Google Scholar 

  • Pauling L, Corey RB (1951b) The pleated sheet, a new layer configuration of poiypeptide chains. Proc Natl Acad Sci USA 37:251–256.

    Article  PubMed  CAS  Google Scholar 

  • Pauling L, Corey RB (1951c) The structure of hair, muscle and related proteins. Proc Natl Acad Sci USA 37:261–271.

    Article  PubMed  CAS  Google Scholar 

  • Pauling L, Corey RB (1951d) The structure of fibrous proteins of the collagen-gelatin group. Proc Natl Acad Sci USA 37:272–281.

    Article  PubMed  CAS  Google Scholar 

  • Pauling L, Corey RB (1953) Compound helical configurations of poiypeptide chains: Structure of proteins of the a-keratin type. Nature 171:59–61.

    Article  PubMed  CAS  Google Scholar 

  • Pauling L, Corey RB, Branson HR (1951)The structure of proteins: Two hydrogen-bonded helical configurations of the poiypeptide chain. Proc Natl Acad Sci USA 37:205–211.

    Article  PubMed  CAS  Google Scholar 

  • Perutz MF (1949) X-ray studies of crystalline proteins. Research 2:52–61.

    PubMed  CAS  Google Scholar 

  • Perutz MF (1951) New X-ray evidence on the configuration of poiypeptide chains. Poiypeptide chains m poly-γ-benzyi.L-glutamate, keratin and haemoglobin. Nature 167:1053–1054.

    Article  PubMed  CAS  Google Scholar 

  • Perutz MF (1956) Isomorphous replacement and phase determination in non-centrosymmetric space groups. Acta Cryst 9:867–873.

    Article  CAS  Google Scholar 

  • Perutz MF (1970) Stereochemistry of cooperative effects in haemoglobin. Nature 228:726–734.

    Article  PubMed  CAS  Google Scholar 

  • Perutz MF (1971) Geleitwort. In: Dickerson RE, Geis I (Hrsg) Struktur und Funktion der Proteine. Verlag Chemie, Weinheim.

    Google Scholar 

  • Perutz MF, Muirhead H, Cox JM, Goaman LCG, Mathews FS, McGandy EL, Webb LE (1968a) Threedimensional Fourier synthesis of horse oxyhaemoglobin at 2,8 Å resolution. I. X-ray analysis. Nature 219:29–32.

    Article  PubMed  CAS  Google Scholar 

  • Perutz MF, Muirhead H, Cox JM, Goaman LCG (1968b) Three-dimensional Fourier synthesis of horse oxyhaemoglobin at 2,8 A resolution. II The atomic model. Nature 219:131–139.

    Article  PubMed  CAS  Google Scholar 

  • Pflugrath W (1992) Developments in X-ray detectors. Curr Opin Struct Biol 2:811–815.

    Article  CAS  Google Scholar 

  • Polanyin M (1921) Faserstruktur im Röntgenlichte. Naturwissenschaften 9:337–340.

    Article  Google Scholar 

  • Prins JA (1928) Über die Dispersion und Absorption von Röntgenstrahlen. Z Phys 47:479–498.

    Article  CAS  Google Scholar 

  • Ramachandran GN, Kartha G (1954) Structure of collagen. Nature 174:269–270.

    Article  PubMed  CAS  Google Scholar 

  • Ramachandran GN, Kartha G (1955) Structure of collagen. Nature 176:593–595.

    Article  PubMed  CAS  Google Scholar 

  • Ramachandran GN, Raman S (1956) New method for the structure analysis of noncentrosy m metric crystals. Curr Sci 25:348–351.

    CAS  Google Scholar 

  • Rich A, Crick FHC (1955) The structure of collagen. Nature 176:915–916.

    Article  PubMed  CAS  Google Scholar 

  • Richards FM (1968) The matching of physical models to three-dimensional electron-density maps: A simple optical device. J Mol Biol 37:225–230.

    Article  PubMed  CAS  Google Scholar 

  • Riggs AF (1952) Sulfhydryi groups and the interaction between the hems in hemoglobin. J Gen Physiol 36:1–16.

    Article  PubMed  CAS  Google Scholar 

  • Robertson JM (1936) An X-ray study of phthalocyanines. Part II Quantitative structure determination of the metal-free compound. J Chem Soc 1195-1209.

    Google Scholar 

  • Robertson JM (1939) Vector maps and heavy atoms in crystal analysis and the insulin structure. Nature 143:75–76.

    Article  CAS  Google Scholar 

  • Rossmann MG (1960) The accurate determination of the position and shape of heavy-atom replacement groups in Proteins. Acta Cryst 13:221–226.

    Article  CAS  Google Scholar 

  • Rossmann MG (1961) The position of anomalous scatterers in protein crystals. Acta Cryst 14:383–388.

    Article  CAS  Google Scholar 

  • Rossmann MG, Blow DM (1962) The detection of subunits within the crystallographic asymmetric unit. Acta Cryst 15:24–31.

    Article  CAS  Google Scholar 

  • Rossmann MG, Blow DM (1963) Determination of phases by the conditions of non-crystallographic symmetry, Acta Cryst 16:39–45.

    Article  CAS  Google Scholar 

  • Rühlmann A, Kukla D, Schwager P, Bartels K, Huber R (1973) Structure of the complex formed by bovine trypsin and bovine pancreatic trypsin inhibitor. I. Crystal structure determination and stereochemistry of the contact region. J Moi Biol 77:417–436.

    Article  Google Scholar 

  • Sayre D (1974) Least-squares phase refinement. II. Highresolution Phasing of a small protein. Acta Cryst A30:180–184.

    Google Scholar 

  • Schulz GE, Schirmer RH (1978) Principles of protein structure. Springer, New York.

    Google Scholar 

  • Segal DM, Cohen GC, Davies DR, Powers JC, Wilcox PE (1971a) The stereochemistry of substrate binding to chymotrypsin Ay. Cold Spring Harbour Symp Quant Biol 36:85–90.

    Article  CAS  Google Scholar 

  • Segal DM, Powers JC, Cohen GC, Davies DR, Wilcox PE (1971b) Substrate binding sites in bovine chymotrypsin Aγ. A crystallographic study using peptide chloromethyl ketones as site-specific inhibitors. Biochemistry 10:3728–3738.

    Article  PubMed  CAS  Google Scholar 

  • Shotton DM, Watson HC (1970) Three-dimensional structure of tosyl-elastase. Nature 225:811–816.

    Article  PubMed  CAS  Google Scholar 

  • Staudinger H (1926) Die Chemie der hochmolekularen orgnischen Stoffe im Sinne der Kekuléschen Strukturlehre. Ber Dtsch Chem Ges 59:3019–3043.

    Article  Google Scholar 

  • Steinbacher S, Seckler R, Miller S, Steipe B, Huber R, Reinemer P (1994) X-ray structure of a shortened P22 tailspike: Intcrdigitated subunits in a thermostabie trimer. Science 265:383–386.

    Article  PubMed  CAS  Google Scholar 

  • Steitz TA, Henderson R, Blow DM (1969) Structure of crystalline α-chymotrypsin. III, Crystallographic studies of substrates and inhibitors bound to the active site of α-chymotrypsin. J Moi Biol 46:337–348.

    Article  CAS  Google Scholar 

  • Stokes AR (1955) The theory of X-ray fibre diagramms. Prog Biophys 5:140–167.

    CAS  Google Scholar 

  • Stroud RM, Kay LM, Dickerson RE (1971) The crystal and molecular structure of DIP-inhibited bovine trypsin at 2,7 Å resolution. Cold Spring Harbour Symp Quant Biol 36:125–140.

    Article  CAS  Google Scholar 

  • Stuart DI, Jones EY (1993) Weissenberg data collection for macromolecular crystallography. Curr Opin Struct Biol 3:737–740.

    Article  CAS  Google Scholar 

  • Sussman JL, Holbrook SR, Church GM, Kim SH (1977) A structure-factor least-squares refinement procedure for macromoiecular structures using constrained and restrained parameters. Acta Cryst A 33:800–804.

    Article  Google Scholar 

  • Sweet RM, Wright HT, Janin J, Chothia CH, Clow DM (1974) Crystal structure of the complex of bovine trypsin with soybean trypsin inhibitor (Kunitz) at 2,6Å resolution. Biochemistry 13:4212–4228.

    Article  PubMed  CAS  Google Scholar 

  • Tollin P (1966) On the determination of molecular location. Acta Cryst 21:613–614.

    Article  CAS  Google Scholar 

  • Tollin P (1969) Determination of the orientation and position of the myoglobin molecule in the crystal of seal myoglobin. J Mol Biol 45:481–490.

    Article  PubMed  CAS  Google Scholar 

  • Tollin P, Rossmann MG (1966) A description of various rotation function programms. Acta Cryst 21:872–876.

    Article  CAS  Google Scholar 

  • Warren B, Bragg WL (1928) The structure of diopoide, CaMg(SiO3)2. Z Krist 69:168–193.

    CAS  Google Scholar 

  • Warren BE, Gingrich NS (1934) Fourier integral analysis of X-ray powder patterns. Phys Rev 46:368–372.

    Article  CAS  Google Scholar 

  • Waser J (1963) Least-squares refinement with subsidiary conditions, Acta Cryst 16:1091–1094.

    Article  CAS  Google Scholar 

  • Watenpaugh KD, Sieker LC, Herriot JR, Jensen LH (1973) Refinement of the model of a protein: Rubredoxin at 1,5 Å resolution. Acta Cryst B29:943–956.

    Google Scholar 

  • Watson HC, Shotton DM, Cox JM, Muirhead H (1970) Three-dimensional Fourier synthesis of Tosyl-elastase at 3,5 Å resolution. Nature 225:806–811.

    Article  PubMed  CAS  Google Scholar 

  • Watson JD, Crick FHC (1953a) A structure of deoxyribose nucleic acid. Nature 171:737–738.

    Article  PubMed  CAS  Google Scholar 

  • Watson JD, Crick FHC (1953b) Geneticai implications of the sturcture of deoxyribonucleic acid. Nature 171:962–967.

    Article  Google Scholar 

  • Weiss MS, Wacker T, Weckesser J, Weite W, Schultz GE (1990) The three-dimensional structure of porin from rhodobacter capsulatus at 3 Å resolution. FEBS Lett 267:268–272.

    Article  PubMed  CAS  Google Scholar 

  • Weissenberg K (1924) Ein neues Röntgengoniometer. ZPhys 23:229–238.

    Google Scholar 

  • Wilkins MHF, Randall JT (1953) Crystalllnity in sperm heads: Molecular structure of nucleoprotein in vivo. Biochim Biophys Acta 10:192–193.

    Article  PubMed  CAS  Google Scholar 

  • Wilkins MHF, Gosling RG, Seeds WE (1951) Nucleic acid: An extensible molecule. Nature 167:759–760.

    Article  PubMed  CAS  Google Scholar 

  • Wilkins MHF, Stokes AR, Wilson HR (1953a) Molecular structure of deoxypenstose nucleic acids. Nature 171:738–740.

    Article  PubMed  CAS  Google Scholar 

  • Wilkins MHF, Seeds WE, Stokes AR, Wilson HR (1953b) Helical structure of crystalline deoxypentose nucleic acid. Nature 172:759–762.

    Article  PubMed  CAS  Google Scholar 

  • Wright CS, Alden RA, Kraut J (1969) Structure of subtilisin BPN’ at 2,5 Å resolution. Nature 221:235–242.

    Article  PubMed  CAS  Google Scholar 

  • Wütherich K (1989) Protein structure determination in solution by nuclear magnetic resonance spectroscopy. Science 243:45–50.

    Article  Google Scholar 

  • Wyckoff HW, Hardman KD, Alleweil NM, Inagami T, Tsernoglou D, Johnson LN, Richards FM (1967a) The structure of ribonuclease-S at 6 Å resolution. J Biol Chem 242:3749–3753.

    PubMed  CAS  Google Scholar 

  • Wyckoff HW, Hardman KD, Alleweil NM, Inagami T, Johnson LN, Richards FM (1967b) The structure of ribonuciease-S at 3,5 Å resolution. J Biol Chem 242:3984–3988.

    PubMed  CAS  Google Scholar 

  • Wyckoff RWG, Corey RB (1936) X-ray diffraction patterns of crystalline tobacco mosaic virus. J Biol Chem 116:51–56.

    CAS  Google Scholar 

  • Yakel HL jr, Hughes EW (1954) The crystal structure of N,N’-diglycyl-L-cysteine Dihydrate. Acta Cryst 7:291–297.

    Article  Google Scholar 

  • Yoder MD, Keen NT, Jurnak F (1993) New domain motif: The structure of pectate lyase C, a secreted plant virulence factor. Science 260:1503–1507.

    Article  PubMed  CAS  Google Scholar 

  • Zernike F, Prins JA (1927) The bending of X-rays in liquid as an effect of molecular arrangement. Z Phys 41:184–194.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Reinemer, P., Huber, R. (1995). Röntgenstrahlen in der Biochemie. In: Heuck, F.H.W., Macherauch, E. (eds) Forschung mit Röntgenstrahlen. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78841-3_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78841-3_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78842-0

  • Online ISBN: 978-3-642-78841-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics