Skip to main content

Transformation of Tomato (Lycopersicon esculentum Mill.) for Virus Disease Protection

  • Chapter
Book cover Plant Protoplasts and Genetic Engineering IV

Part of the book series: Biotechnology in Agriculture and Forestry ((AGRICULTURE,volume 23))

  • 205 Accesses

Abstract

One of the major aims of plant biotechnology is to protect crop plants from diseases. Transforming plants with certain genes relating to disease resistance would be a direct and profitable strategy for producing transgenic disease-resistant plants. For completing this strategy, however, it would be important and may be essential to evaluate in advance the feasibility of a gene to be used for transformation. From this point of view, this chapter first describes an efficient system for transforming tomato callus cells to elucidate at a cellular level the effectiveness of transformation with respect to virus disease protection. A microinjection technique has been used for this purpose, since it has been well recognized that this technique is a reliable method for directly introducing foreign genes into the correct portions of target cells (Neuhaus and Spangenberg 1990; Potrykus 1990). Nevertheless, this system may not be necessarily effective for an efficient production of transgenic plants from transformed cells due to its complicated procedures and difficulty in plant regeneration. In order to promote and simplify production of transgenic plants, this chapter also describes an Agrobacterium-mediated gene transfer for an actual genetic transformation of tomato.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • An G, Watson BD, Chiang CC (1986) Transformation of tobacco, tomato, potato, and Arabidopsis thaliana using a binary Ti vector system. Plant Physiol 81:301–305

    Article  PubMed  CAS  Google Scholar 

  • Beachy RN, Loesch-Fries S, Turner NE (1990) Coat protein-mediated resistance against virus infection. Annu Rev Phytopathol 28:451–474

    Article  CAS  Google Scholar 

  • Bird CR, Ray JA, Fletcher JD, Boniwell JM, Bird AS, Teulieres C, Blain I, Bramley PM, Schuch W (1991) Using antisense RNA to study gene function: inhibition of carotenoid biosynthesis in transgenic tomatoes. Bio/Technol 9:635–639

    Article  CAS  Google Scholar 

  • Childs GV, Naor Z, Hazum E, Tibolt R, Westlund KN, Hancock MB (1983) Cytochemical characterization of pituitary target cells for biotinylated gonadotropin releasing hormone. Peptides 4:549–555

    Article  PubMed  CAS  Google Scholar 

  • Childs GV, Lloyd JM, Unabia G, Gharib SD, Wierman ME, Chin WW (1987) Detection of luteinizing hormone p messenger ribonucleic acid (RNA) in individual gonadotropes after castration: use of a new in situ hybridization method with a photobiotinylated complementary RNA probe. Mol Endocrinol 1:926–932

    Article  PubMed  CAS  Google Scholar 

  • Ditta G, Stanfield S, Corbin D, Helinski DR (1980) Broad host range DNA cloning system for gramnegative bacteria: construction of a gene bank of Rhizobium meliloti. Proc Natl Acad Sci USA 77:7347–7351

    Article  PubMed  CAS  Google Scholar 

  • Fan Y-S, Davis LM, Shows TB (1990) Mapping small DNA sequences by fluorescence in situ hybribization directly on banded metaphase chromosomes. Proc Natl Acad Sci USA 87:6223–6227

    Article  PubMed  CAS  Google Scholar 

  • Forster AC, Mclnnes JL, Skingle DC, Symons RH (1985) Non-radioactive hybridization probes prepared by the chemical labelling of DNA and RNA with a novel reagent, photobiotin. Nucleic Acid Res 13:745–761

    Article  PubMed  CAS  Google Scholar 

  • Gee CE, Robert JL (1983) In situ hybridization histochemistry: a technique for the study of gene expression in single cells. DNA 2:157–163

    Article  PubMed  CAS  Google Scholar 

  • Hemenway C, Fang R-X, Kaniewski WK, Chua N-H, Turner NE (1988) Analysis of the mechanism of protection in transgenic plants expressing the potato virus X coat protein or its antisense RNA. EMBO J 7:1273–1280

    PubMed  CAS  Google Scholar 

  • Hoefler H, Childers H, Montminy MR, Lechan RM, Goodman RH, Wolfe HJ (1986) In situ hybridization methods for the detection of somatostatin mRNA in tissue sections using antisense RNA probes. Histochem J 18:597–604

    Google Scholar 

  • Holbrook LA, Miki BL (1985) Brassica Crown gall tumourigenesis and in vitro of transformed tissue. Plant Cell Rep 4:329–332

    Google Scholar 

  • Jefferson RA (1987) Assaying chimeric genes in plants: The GUS gene fusion system. Plant Mol Biol Rep 5:387–405

    Google Scholar 

  • Jefferson RA, Burgess SM, Hirsh D (1986) β-Glucuronidase from Escherichia coli as a gene-fusion marker. Proc Natl Acad Sci USA 83:8447–8451

    Google Scholar 

  • Jongsma M, Koornneef M, Zabel P, Hille J (1987) Tomato protoplast DNA transformation: physical linkage and recombination of exogenous DNA sequences. Plant Mol Biol 8:383–394

    Google Scholar 

  • Joshi S, Vincentini AM (1990) Controlled cell wall regeneration for efficient microinjections of Nicotiana tabacum var. Carlson protoplasts. Plant Cell Rep 9:117–120

    Google Scholar 

  • Klee HJ, Yanofsky MF, Nester EW (1985) Vectors for transformation of higher plants. Bio/Technol 3:637–642

    Google Scholar 

  • Kolchinsky A, Kanazin V, Yakovleva E, Gazumyan A, Kole C, Ananiev E (1990) 5S-RNA genes of barley are located on the second chromosome. Theor Appl Genet 80:333–336

    Google Scholar 

  • Koornneef M, Hanhart C, Jongsma M, Toma I, Weider R, Zabel P, Hille J (1986) Breeding of a tomato genotype readily accessible to genetic manipulation. Plant Sci 45:201–208

    Google Scholar 

  • Koornneef M, Hanhart C, Jongsma M, Toma I, Weider R, Zabel P, Hille J (1986) Breeding of a tomato genotype readily accessible to genetic manipulation. Plant Sci 45:201–208

    Google Scholar 

  • Matsuda Y, Toyoda H, Ouchi S (1989) Resistance of tomato callus cells against tobacco mosaic virus. Plant Tissue Cult Lett 6:33–34

    Google Scholar 

  • Matsuda Y, Toyoda H, Morita M, Ikeda S, Ouchi S (1993) A novel method for in situ hybridization in fungal cells based on pricking introduction of photobiotin-labeled probes. J. Phytopathol (in press)

    Google Scholar 

  • McCormick S, Niedermeyer J, Fry J, Barnason A, Horsch R, Fraley R (1986) Leaf disc transformation of cultivated tomato (Lycopersicon esculentum) using Agrobacterium tumefaciens. Plant Cell Rep 5:81–84

    Google Scholar 

  • Morgan AJ, Cox PN, Turner DA, Peel E, Daver MR, Gartland KMA, Mulligan BJ (1986) Transformation of tomato using an Ri plasmid vector. Plant Sci 49:37–49

    Google Scholar 

  • Mugnier J (1988) Establishment of new axenic hairy root lines by inoculation with Agrobacterium rhizogenes. Plant Cell Rep 7:9–12

    Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio-assay with tobacco tissue cultures. Physiol Plant 15:473–497

    Google Scholar 

  • Neuhaus G, Spangenberg G (1990) Plant transformation by microinjection techniques. Physiol Plant 79:213–217

    Google Scholar 

  • Potrykus I (1990) Gene transfer to cereals: an assessment. Bio/Technol 8:535–542

    Google Scholar 

  • Shahin EA, Sukhapinda K, Simpson RB, Spivey R (1986) Transformation of cultivated tomato by a binary vector in Agrobacterium rhizogenes: transgenic plants with normal phenotypes harbor binary vector T-DNA, but no Ri-plasmid T-DNA. Theor Appl Genet 72:770–777

    Google Scholar 

  • Sheehy RE, Kramer M, Hiatt WR (1988) Reduction of polygalacturonase activity in tomato fruit by antisense RNA. Proc Natl Acad Sci USA 85:8805–8809

    Google Scholar 

  • Shiomi T, Shirakawa T, Takeuchi S, Oizumi T, Uematsu S (1987) Hairy root of melon caused by Agrobacterium rhizogenes Biovar 1. Ann Phytopathol Soc Jpn 53:454–459

    Google Scholar 

  • Smith CJS, Watson CF, Ray J, Bird CR, Morris PC, Schunch W, Grierson D (1988) Antisense RNA inhibition of polygalacturonase gene expression in transgenic tomato. Nature 334:724–726

    Google Scholar 

  • Smith CJS, Watson CF, Morris PC, Bird CR, Seymour GB, Gray JE, Arnold C, Tucker GA, Schunch W, Harding S, Grierson D (1990) Inheritance and effect on ripening of antisense polygalacturonase genes in transgenic tomatoes. Plant Mol Biol 14:369–379

    Google Scholar 

  • Takamatsu N, Ohno T, Meshi T, Okada Y (1983) Molecular cloning and nucleotide sequence of the 30K and the coat protein cistron of TMV (tomato strain) genome. Nucleic Acid Res 11:3768–3778

    Google Scholar 

  • Toyoda H, Tanaka N, Hirai T (1984) Effects of the culture filtrate of Fusarium oxysporum f. sp. lycopersici on tomato callus growth and the selection of resistant callus cells to the filtrate. Ann Phytopathol Soc Jpn 50:53–62

    Google Scholar 

  • Toyoda H, Matsuda Y, Hirai T (1985) Resistance mechanism of cultured plant cells to tobacco mosaic virus (III). Efficient microinjection of tobacco mosaic virus into tomato callus cells. Ann Phytopathol Soc Jpn 51:32–38

    Google Scholar 

  • Toyoda H, Matsuda Y, Hirai T (1986) Multiplication and translocation of tobacco mosaic virus microinjected into cell-aggregates of tomato callus. Plant Tissue Cult Lett 3:22–27

    Google Scholar 

  • Toyoda H, Matsuda Y, Utsumi R, Ouchi S (1988) Intranuclear microinjection for transformation of tomato callus cells. Plant Cell Rep 7:293–296

    Google Scholar 

  • Toyoda H, Oki T, Matsuda Y, Katsuragi K, Nishiguchi T, Ouchi S (1989) Transformation of constituent cells of tomato callus aggregates by intranuclear microinjection. Plant Tissue Cult Lett 6:95–97

    Article  CAS  Google Scholar 

  • Toyoda H, Hosoi Y, Yamamoto A, Nishiguchi T, Maeda K, Takebayashi T, Shiomi T, Ouchi S (1991) Transformation of melon (Cucumis melo L.) with Agrobacterium rhizogenes. Plant Tissue Cult Lett 8:21–27

    Article  Google Scholar 

  • Trulson AJ, Simpson RB, Shahin EA (1986) Transformation of cucumber (Cucumis sativus L.) plants with Agrobacterium rhizogenes. Theor Appl Genet 73:11–15

    Article  CAS  Google Scholar 

  • Tsukada M, Kusano T, Kitagawa Y (1989) Introduction of foreign genes into tomato protoplasts by electroporation. Plant Cell Physiol 30:599–603

    CAS  Google Scholar 

  • Turner NE, O’Connell KM, Nelson RS, Sanders PR, Beachy RN, Fraley RT, Shah DM (1987) Expression of alfalfa mosaic virus coat protein gene confers cross-protection in transgenic tobacco and tomato plants. EMBO J 6:1181–1188

    Google Scholar 

  • Widholm JM (1972) The use of fluorescein diacetate and phenosafranine for determining viability of cultured plant cells. Stain Technol 47:189–194

    PubMed  CAS  Google Scholar 

  • Yamamoto F, Furusawa M, Furusawa I, Obinata M (1982) The ‘pricking’ method. A new efficient technique for mechanically introducing foreign DNA into the nuclei of culture cells. Exp Cell Res 142:79–84

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Toyoda, H. (1993). Transformation of Tomato (Lycopersicon esculentum Mill.) for Virus Disease Protection. In: Bajaj, Y.P.S. (eds) Plant Protoplasts and Genetic Engineering IV. Biotechnology in Agriculture and Forestry, vol 23. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78037-0_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78037-0_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78039-4

  • Online ISBN: 978-3-642-78037-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics