Skip to main content

Mineral Nutrition: Inducible and Repressible Nutrient Transport Systems

  • Chapter
Progress in Botany

Part of the book series: Progress in Botany/Fortschritte der Botanik ((BOTANY,volume 52))

Abstract

Compartmentation and transport of solutes across membranes of plants, including movements of nutrient anions and cations, are governed by primary active H+-pumping, predominantly by H+-ATPases at the plasmalemma and tonoplast. Nutrient transports are linked to the H+-pumps via cotransport, antiport, and uniport mechanisms. Elucidation of the physiological, biochemical, and genetic regulation of the primary active H+-pumps is making rapid progress, and complex networks of control are revealed. Thus, the catalytic mechanism of the plasmalemma ATPase requires its phosphorylation at one site (Briskin and Leonard 1982; Briskin and Poole 1983a, b; Briskin 1986,1988), but the enzyme also needs phosphorylation at another site for its activation. Various systems like zucchini hypocotyls (Salimath and Marme 1983), corn coleoptiles (Veluthambi and Poovaiah 1984), spinach leaves (Aducci et al. 1987) and apple fhiit membranes (Battey and Venis 1988) were shown to have Ca2+ and calmodulin-regulated, membrane-related protein kinases. In corn root cells both the plasmalemma and the tonoplast contain protein kinase activities (Ladror and Zielinski 1989). Calcium was found to regulate the plasmalemma H+-pump of Neurospora crassa (Lew 1989). From pea plants a calcium/calmodulin-reg- ulated protein kinase was isolated (Blowers et al. 1985), and in oat roots the plasmalemma H+-ATPase was demonstrated to be the main substrate of the membrane-bound and calcium/calmodulin-regulated protein kinase (Schaller and Sussman 1987, 1988). Cytosolic calcium itself inter alia is controlled by a Ca2+-extruding ATPase at the plasmalemma, which also appears to be calmodulin-dependent in leaves of maize (Robinson et al. 1988) but not of Commelina communis (Gräf and Weiler 1989). Lipid interactions are involved. A newly discovered plant phospholipid similar to the platelet-activating factor of animals stimulates the protein-kinase and H+-ATPase in plant-membranes vesicles of plasmalemma and tonoplast origin (Scherer and Stoffel 1987; Scherer et al. 1988). The phosphatidylinositol cycle known for the calcium-messenger and protein-phospho- rylation mechanisms of animals is also operative in plants (Poovaiah et al. 1987; Owen 1988) and is associated with the plasmalemma (Pfaffman et al. 1987; Wheeler and Boss 1987; Morse et al. 1989). Sequencing and cloning of polypeptide-subunits of the H+- pumps is advancing fast (Bowman et al. 1988a, b; Manolson et al. 1988; Zimniak et al. 1988; Nelson and Nelson 1988; Nelson et al. 1989; Serrano 1989, 1990), and this offers insights into regulation at the genetic level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aducci P, Ballio A, Marra M, Walton J (1987) J Plant Physiol 128: 327–335.

    CAS  Google Scholar 

  • Allnutt FCT, Bonner WD (1987) Plant Physiol 85: 746–750.

    Article  PubMed  CAS  Google Scholar 

  • Anghinoni I, Barber SA (1980) Agron J 72: 685–688.

    Article  CAS  Google Scholar 

  • Attia A El F, Jeanjean R (1983) Physiol Veg 21: 39–47.

    CAS  Google Scholar 

  • Battey NH, Venis MA (1988) Planta 176: 91–97.

    Article  CAS  Google Scholar 

  • Beever RE, Burns DJW (1977) J Bacteriol 132: 520–525.

    PubMed  CAS  Google Scholar 

  • Beever RE, Bums DJW (1980) Adv Bot Res 8: 127–219.

    Article  CAS  Google Scholar 

  • Behl R, Tischner R, Raschke K (1988) Planta 176: 235–240.

    Article  CAS  Google Scholar 

  • Bell CI, Cram WJ, Clarkson DT (1990) Turnover of sulfate in leaf vacuoles limits re-translocation under sulfur stress. In: Rennenberg H, Brunold C, de Kok U, Stulen I (eds) Sulfur nutrition and sulfur assimilation in higher plants. SPD Academic Publishing, The Hague, pp 163–165.

    Google Scholar 

  • Ben-Hayyim G, Vaadia Y, Williams BG (1989) Physiol Plant 77: 332–340.

    Article  CAS  Google Scholar 

  • Bergmann L, Rennenberg H (1978) Z Pflanzenphysiol 88:175–185.

    Google Scholar 

  • Bienfait F, Liittge U (1988) Plant Physiol Biochem 26:665–671.

    Google Scholar 

  • Bilbao MM, Gabas JM, Senra JL (1981) Biochem Soc Trans 9:476–477.

    Google Scholar 

  • Binzel ML, Hasegawa PM, Handa AK, Bressan RA (1985) Plant Physiol 79:118–125.

    Google Scholar 

  • Blasco F, Ducet G, Azoulay E (1976) Biochimie 58:351–357.

    Google Scholar 

  • Blowers DP, Hetherington A, Trewavas A (1985) Planta 166:208–215.

    Google Scholar 

  • Blumwald E, Poole RJ (1987) Plant Physiol 83:884–887.

    Google Scholar 

  • Bothe H (1990) Prog Bot 52 (this Vol.).

    Google Scholar 

  • Bowman BJ, Allen R, Wechser MA, Bowman EJ (1988a) J Biol Chem 263:14002–14007.

    Google Scholar 

  • Bowman EJ, Tenney K, Bowman BJ (1988b) J Biol Chem 263:13994–14001.

    Google Scholar 

  • Braun Y, Hassidim M, Lerner HR, Reinhold L (1986) Plant Physiol 81:1050–1056.

    Google Scholar 

  • Bremberger C (1990) Dynamik der Tonoplastenproteine von Mesembryanthemum crystallinum bei der Umstellung von der C3-Photosynthese zum Crassulaceen-Sauremetabolismus unter Salzstress. Dissertation, TH Darmstadt. Bremberger C, Haschke H-P, Liittge U (1988) Planta 175:465–470.

    Google Scholar 

  • Breteler H, Arnozis PA (1985) Phytochem 24:653–658.

    Google Scholar 

  • Breteler H, Luczak W (1982) Planta 156:226–232.

    Google Scholar 

  • Breteler H, Siegerist M (1984) Plant Physiol 75:1099–1103.

    Google Scholar 

  • Breton A, Surdin-Kerjan Y (1977) J Bacterid 132:224–232.

    Google Scholar 

  • Briskin DP (1986) Physiol Plant 68:159–163.

    Google Scholar 

  • Briskin DP (1988) Plant Physiol 88:77–83.

    Google Scholar 

  • Briskin DP, Leonard RT (1982) Plant Physiol 70:1459–1464.

    Google Scholar 

  • Briskin DP, Poole RJ (1983a) Plant Physiol 71:507–512.

    Google Scholar 

  • Briskin DP, Poole RJ (1983b) Plant Physiol 72:1133–1135.

    Google Scholar 

  • Brownell PF, Crossland CJ (1972) Plant Physiol 49:794–797.

    Google Scholar 

  • Brownell PF, Crossland CJ (1974) Plant Physiol 54:416–417.

    Google Scholar 

  • Bruggemann W, Janiesch P (1987) J Plant Physiol 130:395–411.

    Google Scholar 

  • Bruggemann W, Janiesch P (1988) Physiol Plant 74:615–622.

    Google Scholar 

  • Bruggemann W, Janiesch P (1989) J Plant Physiol 134:20–25.

    Google Scholar 

  • Bullerjahn GS, Sherman LA (1986) J Bacteriol 167:396–399.

    Google Scholar 

  • Butz RG, Jackson WA (1977) Phytochemistry 16:409–417.

    Google Scholar 

  • Burns DJW, Beever RE (1977) J Bacteriol 132:511–519.

    Google Scholar 

  • Caddiek MX, Arst HN Jr, Taylor LH, Johnson RI, Brownless AG (1986) EMBO J 5:1087–1090.

    Google Scholar 

  • Cairney JWC, Jennings DH, Ratcliffe RG, Southon TE (1988) New Phytol 109:327–333.

    Google Scholar 

  • Chapin FS III (1978) Phosphate uptake and nutrient utilization by Barrow forest tundra. In: Tieszen LL (ed) Vegetative and production ecology of an Alaskan arctic tundra. Springer, New York, pp 483–507.

    Google Scholar 

  • Chapin FS HI (1980) Airnu Rev Ecol Syst 11:233–260.

    Google Scholar 

  • Chapin FS III, Clarkson DT, Lenton JS, Walter CHS (1988) Planta 173:340–351.

    Google Scholar 

  • Chopin T, Hourmant A, Floc’H J-V, Penot M (1990) Can J Bot 68:512–517.

    Google Scholar 

  • Clarkson DT (1986) Regulation of the absorption and release of nitrate by plant cells: a review of current ideas and methodology. In: Lambers H, Neetesen JJ, Stulen I (eds) Fundamental, ecology and agricultural aspects of nitrogen metabolism in higher plants. Nijhoff, Dordrecht, pp 3–27.

    Google Scholar 

  • Clarkson DT, Saker LR (1989) Planta 178:249–257.

    Google Scholar 

  • Clarkson DT, Scattergood CB (1982) J Exp Bot 33:865–875.

    Google Scholar 

  • Clarkson DT, Liittge U (1989) Prog Bot 51:91–112.

    Google Scholar 

  • Clarkson DT, Smith FW, Vanden Berg PJ (1983) J Exp Bot 34:1463–1483.

    Google Scholar 

  • Clarkson DT, Saker LR, Purves JV (1989a) J Exp Bot 40:953–963.

    Google Scholar 

  • Clarkson DT, Hawkesford M, Saker L (1989b). In: Dainty J, de Michaelis MI, Marre E, Rasi-Caldogno F (eds) Plant membrane transport: the current position. Elsevier, Amsterdam, pp 401–402.

    Google Scholar 

  • Clipson NJW, Cairney JWG, Jennings DH (1987) New Phytol 105:449–457.

    Google Scholar 

  • Cogliatti DH, Santa Maria GE (1990) J Exp Bot 41:601–607.

    Google Scholar 

  • Cogliatti DH, Clarkson DT (1983) Physiol Plant 58:287–294.

    Google Scholar 

  • Collos Y (1980) Limnol Oceanogr 25:1075–1081.

    Google Scholar 

  • Collos Y (1987) Oceanis 13:505–513.

    Google Scholar 

  • Cordoba F, Cardenas J, Fernandez E (1986) Plant Physiol 82:904–908.

    Google Scholar 

  • Cram WJ (1983a) Plant Sci Lett 31:329–38.

    Google Scholar 

  • Cram WJ (1983b) Plant Physiol 72:204–211.

    Google Scholar 

  • Cram WJ (1990) In: Rennenberg H, Brunold Ch, de Kok LJ, Stulen I (eds) Sulfur nutrition and sulfur assimilation in higher plants. SPB Publ, The Hague pp 3–11.

    Google Scholar 

  • Cresswell CF, Syrett PJ (1979) Plant Sci Lett 14:321–325.

    Google Scholar 

  • Cresswell CF, Syrett PJ (1982) J Exp Bot 33:1111–1121.

    Google Scholar 

  • Cullimore JV, Sims AP (1981) Planta 153:18–24.

    Google Scholar 

  • Cuppoletti J, Segel IH (1974) J Membr Biol 17:239–252.

    Google Scholar 

  • Cuppoletti J, Segel IH (1975) Biochem 14:4712–4718.

    Google Scholar 

  • Daines RJ, Gould AR (1985) J Plant Physiol 119:269–280.

    Google Scholar 

  • Datko AH, Mudd SH (1984a) Plant Physiol 75:366–473.

    Google Scholar 

  • Datko AH, Mudd SH (1984b) Plant Physiol 75:474–479.

    Google Scholar 

  • Deane-Drummond CE (1985) Plant Cell Environ 8:105–110.

    Google Scholar 

  • Deane-Drummond CE (1986) Plant Cell Environ 9:41–48.

    Google Scholar 

  • Deane-Drummond CE, (1987) Plant Sci 50:27–35.

    Google Scholar 

  • Dhugga KS, Waines JG, Leonard RT (1988) Plant Physiol 87:120–125.

    Google Scholar 

  • Doddema H, Otten H (1979) Physiol Plant 45:339–346.

    Google Scholar 

  • Drew MC, Saker, LR, Barber SA, Jenkins W (1984) Planta 160:490–499.

    Google Scholar 

  • Duff SMG, Moorhead GBG, Lefebvre DD, Plaxton WC (1989) Plant Physiol 90:1275–1278.

    Google Scholar 

  • Dunn-Coleman NS, Smarrelli J Jr, Garrett RH (1984) Int Rev Cytol 92:1–50.

    Google Scholar 

  • Ericson MC, Alfmito SH (1984) Plant Physiol 74:506–509.

    Google Scholar 

  • Florencio FJ, Vega JM (1983) Planta 158:288–293.

    Google Scholar 

  • Furner U, Sung ZR (1982) Proc Natl Acad Sci USA 79:1149–1153.

    Google Scholar 

  • Garbarino J, DuPont FM (1988) Plant Physiol 86:231–236.

    Google Scholar 

  • Garbarino J, DuPont FM (1989) Plant Physiol 89:1–4.

    Google Scholar 

  • Gerloff GC, Gabelman WH (1983) Genetic basis of inorganic plant nutrition. In: Uuchli A, Bieleski RL (eds) Inorganic plant nutrition. Encyclopedia of plant physiology new series, Vol 15B. Springer, Berlin Heidelberg, New York Tokyo, pp 453–480.

    Google Scholar 

  • Glass ADM (1983) Annu Rev Plant Physiol 34:311–26.

    Google Scholar 

  • Goldstein AH, Baertlin DA, McDaniel RG (1987a) Plant Physiol 87:711–715.

    Google Scholar 

  • Goldstein AH, AH, Danon A, Baertlin DA, McDaniel RG (1987b) Plant Physiol 87:716–720.

    Google Scholar 

  • Goldstein AH, Mayfield SP, Danon A, Tibbot BK (1989) Plant Physiol 91:175–182.

    Google Scholar 

  • Gorham J, Hardy C, Wyn Jones RG, Joppa LR, Law CN (1987) Theor Appl Genet 74:584–588.

    Google Scholar 

  • Gorham J, Wyn Jones RG, Bristol A (1990) Planta 180:590–597.

    Google Scholar 

  • Goyal SS, Huf- faker RC (1986) Plant Physiol 82:1051–1056.

    Google Scholar 

  • Graf P, Weiler EW (1989) Physiol Plant 75:469–478.

    Google Scholar 

  • Green DG, Ferguson WS, Warder FG (1973) Can J Plant Sci 53:241–246.

    Google Scholar 

  • Grove G, Marzluf GA (1981) J Biol Chem 256:463–470.

    Google Scholar 

  • Haschke H-P, Bremberger C, Liittge U (1989) Transport proteins in plants with crassulacean acid metabolism: immunological characterization of ATPase subunits. In: Dainty J, DeMichelis MI, Mane E, Rasi-Caldogno F (eds) Plant membrane transport: the current position. Elsevier, Amsterdam, pp 149–154.

    Google Scholar 

  • Healey FP (1977) Can J Bot 55:61–69.

    Google Scholar 

  • Hurkman WJ, Tanaka CK, DuPont FM (1988) Plant Physiol 88:1263–1273.

    Google Scholar 

  • Ibarlucea JM, Llama MJ, Serra JL, Macarulla JM (1983) Plant Sci Lett 29:339–347.

    Google Scholar 

  • Ingemarsson B, Oscarson P, Afugglas M, Larsson C-M (1987a) Plant Physiol 85:868–867.

    Google Scholar 

  • Ingemarsson B, Oscarson P, Afugglas M, Larsson C-M (1987b) Plant Physiol 85:860–364.

    Google Scholar 

  • Jackson WA, Volk RJ, Tucker TC (1972) Agron J 64:518–521.

    Google Scholar 

  • Jackson WA, Johnson RE, Volk RJ (1974a) Physiol Plant 32:37–42.

    Google Scholar 

  • Jackson WA, Johnson RE, Volk RJ (1974b) Physiol Plant 32:108–114.

    Google Scholar 

  • Jackson WA, Pan WL, Moll RH, Kamprath EJ (1986) Uptake, translocation and reduction of nitrate. In: Neyra CA (ed) Biochemical basis of plant breeding, Vol 2. CRC Press, Boca Raton, pp 73–108.

    Google Scholar 

  • Jarvis SC, MacDuff JH, Webb J, Mosquera A (1990) J Exp Bot 41:1–10.

    Google Scholar 

  • Jeanjean R, Founder N (1979) FEBS Lett 105:163–166.

    Google Scholar 

  • Jeanjean R, Bedu S, Attia A El F, Rocca-Sena J (1982) Biochimie 64:75–78.

    Google Scholar 

  • Jensen P, Konig T (1982) Physiol Plant 55:459–64.

    Google Scholar 

  • Jensen P, Erdei L, M0ller, IM (1987) Physiol Plant 70:743–748.

    Google Scholar 

  • Johansson L, Larsson C-M (1986) J Exp Bot 37:221–229.

    Google Scholar 

  • Jones GJ, Morel FMM (1988) Plant Physiol 87:143–147.

    Google Scholar 

  • Katz DB, Gerloff GC, Gabelman WH (1986) Physiol Plant 67:23–28.

    Google Scholar 

  • Klobus G, Ward MR, Huffaker RC (1988) Plant Physiol 87:878–882.

    Google Scholar 

  • Koch GW, Schulze E-D, Percival F, Mooney HA, Chuc C (1988) Plant Cell Environ 11:755–767.

    Google Scholar 

  • Kochian LV, Shaff JE, Lucas WJ (1989) Plant Physiol 91:1201–11.

    Google Scholar 

  • Ladror UK, Zielinski RE (1989) Plant Physiol 89:151–158.

    Google Scholar 

  • Lara C, Romero JM, Coronil T, Guenero MG (1987) Interactions between photosynthetic nitrate assimilation and C02-fixation in cyanobacteria. In: Ullrich WR, Aparicio JP, Syrett JP, Castillo F (eds) Inorganic nitrogen metabolism. Springer, Berlin Heidelberg New York Tokyo, pp 45–52.

    Google Scholar 

  • Larsson C-M, Ingemarsson B (1989) Molecular aspects of nitrate uptake in higher plants. In: Wray JL, Kinghorn JR (eds) Molecular and genetic aspects of nitrate assimilation. Oxford Univ Press, Oxford, pp 3–14.

    Google Scholar 

  • Lass B, Ullrich-Eberius CI (1984) Planta 161:53–60.

    Google Scholar 

  • Lee RB (1982) Ann Bot 50:429–449.

    Google Scholar 

  • Lee RB (1988) New Phytol 109:141–148.

    Google Scholar 

  • Lee RB (1988) New Phytol 109:141–148.

    Google Scholar 

  • Lee RB, Clarkson DT (1986) J Exp Bot 37:1753–1767.

    Google Scholar 

  • Lee RB, Drew MC (1986) J Exp Bot 37:1768–1779.

    Google Scholar 

  • Lee RB, Drew MC (1989) J Exp Bot 40:741–752.

    Google Scholar 

  • Lee RB, Ratcliffe RG (1983) J Exp Bot 34:1222–1244.

    Google Scholar 

  • Lee RB, Rudge KA (1986) Ann Bot 57:471–186.

    Google Scholar 

  • Lee RB, Ratcliffe RG, Southon TE (1990) J Exp Bot 41:1063–1078.

    Google Scholar 

  • Lefebvre DD, Clarkson DT (1984) Can J Bot 62:1076–1080.

    Google Scholar 

  • Lefebvre DD, Clarkson DT (1987) Can J Bot 65:1504–1508.

    Google Scholar 

  • Lefebvre DD, Glass ADM (1982) Physiol Plant 54:199–206.

    Google Scholar 

  • Lefebvre DD, Duff SMG, Fife CA, Julien-Inalsingh C, Plaxton WC (1990) Plant Physiol 93:504–511.

    Google Scholar 

  • Lew RR (1989) Plant Physiol 91:213–216.

    Google Scholar 

  • Lowendorf HS, Slayman CW (1975) Biochim Biophys Acta 413:95–103.

    Google Scholar 

  • Lowendorf H, Slayman CL, Slayman CW (1974) Biochim Biophys Acta 373:369–382.

    Google Scholar 

  • Liittge U, Clarkson DT (1985) Progr Bot 47:73–86.

    Google Scholar 

  • Luttge U, Clarkson DT (1989) Progr Bot 50:51–73.

    Google Scholar 

  • Maas EV, Ogata G, Finkel MH (1979) Plant Physiol 64:139–143.

    Google Scholar 

  • Mann KH, Chapman ARO, Gagne JA (1980) Productivity of seaweeds: The potential and the reality. In: Falkowski PG (ed) Primary productivity in the sea. Brookhaven Symp Biol pp 31:363–380.

    Google Scholar 

  • Manolson MF, Ouellette BFF, Filion M, Poole RJ (1988) J Biol Chem 263:17987–17994.

    Google Scholar 

  • Matoh T, Ishikawa T, Takahashi E (1989) Plant Physiol 89:180–183.

    Google Scholar 

  • McCarthy JJ, Goldman JC (1979) Science 203:670–672.

    Google Scholar 

  • McClure PR, Omholt TE, Pace GM (1986) Physiol Plant 68:107–112.

    Google Scholar 

  • McClure PR, Omholt TE, Pace GM, Bouthyette PY (1987) Plant Physiol 84:52–57.

    Google Scholar 

  • McLachlan KD (1977) Sulphur in Australasian agriculture. Sydney Univ Press, Sydney, pp 261.

    Google Scholar 

  • McPharlin IR, Bieleski RL (1987) Aust J Plant Physiol 14:561–572.

    Google Scholar 

  • McPharlin IR, Bieleski RL (1989) Aust J Plant Physiol 16:391–399.

    Google Scholar 

  • Mills D, Hodges TK (1988) J Plant Physiol 132:513–519.

    Google Scholar 

  • Mimura T, Dietz K-J, Kaiser W, Schramm MJ, Kaiser G, Heber U (1990) Planta 180:139–146.

    Google Scholar 

  • Monselise EBI, Kost D, Porath D, Tal M (1987) New Phytol 107:341–345.

    Google Scholar 

  • Morgan MA, Jackson WA (1988) J Exp Bot 39:179–191.

    Google Scholar 

  • Morse MJ, Satter RL, Crain RC, Cot6 GG (1989) Physiol Plant 76:118–121.

    Google Scholar 

  • Morse MJ, Satter R L, Crain R C, Cote G G (1989) Physiol Plant 76:118–121.

    Google Scholar 

  • Nelson H, Nelson N (1989) FEBS Lett 247:147–153.

    Google Scholar 

  • Nelson H, Mandiyau S, Nelson N (1989) J Biol Chem 264:1775–1778.

    Google Scholar 

  • Neyra CA, Hageman RH (1975) Plant Physiol 56:692–695.

    Google Scholar 

  • Nissen P (1974) Annu Rev Plant Physiol 25:53–79.

    Google Scholar 

  • Nye PH, Tinker PB (1977) Solute Movement in the Soil-Root system. Blackwell, Oxford.

    Google Scholar 

  • Oelmuller R, Schuster C, Mohr H (1988) Planta 174:75–83.

    Google Scholar 

  • Ohta D, Match J, Takahashi E (1987) Plant Physiol 84:112–117.

    Google Scholar 

  • Ohta D, Match T, Takahashi E (1988) Plant Physiol 87:223–225.

    Google Scholar 

  • Omata T, Ogawa T (1986) Plant Physiol 80:525–530.

    Google Scholar 

  • Omata T, Ogawa T (1987) Induction by nitrate of a membrane protein in Synechococcus PCC 7942. In: Biggins J (ed) Progress in photosynthesis, Vol 6. Nijhoff, Dordrecht, p. 309–312.

    Google Scholar 

  • Omata T, Ohmori M, Arai N, Ogawa T (1989) Proc Natl Acad Sci USA 86:6612–16.

    Google Scholar 

  • Owen JH (1988) Physiol Plant 72:637–641.

    Google Scholar 

  • Pelley JL, Bannister TT (1979) J Physiol 15:294–300.

    Google Scholar 

  • Pfaffmann H, Hartmann E, Brightman AO, Morre JD (1987) Plant Physiol 85:1151–1155.

    Google Scholar 

  • Poovaiah BW, Reddy ASN, McFadden JJ (1987) Physiol Plant 69:569–573.

    Google Scholar 

  • Ramagopal S (1988a) Plant Cell Environ 11:501–515.

    Google Scholar 

  • Ramagopal S (1988b) J Plant Physiol 132:235–249.

    Google Scholar 

  • Ramos J, Rodriguez-Navarro A (1985) Biochim Biophys Acta 640:97–101.

    Google Scholar 

  • Ramos J, Rodriguez-Navarro A (1986) Eur J Biochem 154:307–311.

    Google Scholar 

  • Rees TAV (1984) J Exp Bot 35:332–337.

    Google Scholar 

  • Rennenberg H (1984) Annu Rev Plant Physiol 35:121–135.

    Google Scholar 

  • Rennenberg H, Bergmann L (1979) Z Pflanzenphysiol 92:133–142.

    Google Scholar 

  • Rennenberg H, Polle A, Martini N, Thoene B (1988) Planta 176:68–74.

    Google Scholar 

  • Rennenberg H, Kemper D, Thoene B (1989) Physiol Plant 76:271–276.

    Google Scholar 

  • Reuveny Z, Dougall DK, Trinity PM (1980) Proc Natl Acad Sci USA 77:6670–6672.

    Google Scholar 

  • Revilla E, Llobell, A, Paneque A (1985) J Plant Physiol 118:165–176.

    Google Scholar 

  • Robinson C, Larsson C, Buckhout TJ (1988) Physiol Plant 72:177–184.

    Google Scholar 

  • Rodriguez-Navarro A, Ramos J (1984) J Bacteriol 159: 940–945.

    Google Scholar 

  • Romheld V (1987) Physiol Plant 70:231–234.

    Google Scholar 

  • Rom he Id V, Marschner H (1986) Plant Physiol 80:175–180.

    Google Scholar 

  • Roomans GM, Kuypers GAJ, Theuvenet APR, Borst-Pauwels GWFH (1979) Biochim Biophys Acta 551:197–206.

    Google Scholar 

  • Rorison IH, (1987) Mineral nutrition in time and space. In: Rorison IH, Grime JP, Hunt R, Hendry GAF, Lewis DH (eds). In: Frontiers of comparative plant ecology. New Phytol (suppl) 106:79–92.

    Google Scholar 

  • Saccomani M, Ferrari G (1989) Maydica 34:171–177.

    Google Scholar 

  • Salimath BP, Marme D (1983) Planta 158:560–568.

    Google Scholar 

  • Schaller GE, Sussman MR (1987) Kinasemediatea phosphorylation of the oat plasma membrane H+-ATPase. In: Leaver C, Sze H (eds) Plant membranes: structures, function, biogenesis. Alan R Liss Inc, New York, pp 419–429.

    Google Scholar 

  • Schaller GE, Sussman MR (1988) Planta 173:509–518.

    Google Scholar 

  • Scherer GFE, Stoffel B (1987) Planta 172:127–130.

    Google Scholar 

  • Scherer GFE, Martiny-Baron G, Stoffel B (1988) Planta 175:241–253.

    Google Scholar 

  • Scherer HW, Mackown CT, Leggett JE (1984) J Exp Bot 35:1060–70.

    Google Scholar 

  • Schj0rring JK, Jensen P (1987) Physiol Plant 70:58–64.

    Google Scholar 

  • Schmidt A (1986) Prog Bot 48:133–150.

    Google Scholar 

  • Schuster C, Mohr H (1990) Planta 181:327–334.

    Google Scholar 

  • Schuster C, Oelmtiller R, Mohr H (1987) Planta 171:136–143.

    Google Scholar 

  • Serrano R (1989) Annu Rev Plant Physiol Plant Mol Biol 40:61–94.

    Google Scholar 

  • Serrano R (1990) Bot Acta 103:230–234.

    Google Scholar 

  • Shah SH, Gorham J, Forster BP, Wyn Jones RG (1987) J Exp Bot 38:254–269.

    Google Scholar 

  • Shinigawa K, Amemura M, Nakata A (1987) Structure and function of regulatory genes for the phosphate regulon in E. coli. In: Torriani-Gorini A et al. (eds) Phosphate metabolism and cellular regulation in microorganisms. ASM Washington, pp 20–25.

    Google Scholar 

  • Singh NK, Handa AK, Hasegawa PM, Bressan RA (1985) Plant Physiol 79:126–137.

    Google Scholar 

  • Sivak MN, Lara C, Romero JM, Rodriguez R, Guerrero G (1989) Biochem Biophys Res Commun 158:257–262.

    Google Scholar 

  • Smith IK, (1980) Plant Physiol 66:877–883.

    Google Scholar 

  • Smith IK, Cheema HK (1985) Ann Bot 56:219–224.

    Google Scholar 

  • Straker CJ, Mitchell DT (1987) New Phytol 106:129–137.

    Google Scholar 

  • Sussman MR, Harper JF (1989) Plant Cell 1:953–960.

    Google Scholar 

  • Syrett PJ (1981) Can Bull Fish Aquat Sci 210:182–210.

    Google Scholar 

  • Syrett PJ (1987) Nitrogen assimilation by eukaryotic algae. In: Ullrich WR, Aparicio PJ, Syrett PJ, Castillo F (eds) Inorganic nitrogen metabolism. Springer, Berlin pp 25–31.

    Google Scholar 

  • Syrett PJ, Peplinska AM (1988) New Phytol 109:289–296.

    Google Scholar 

  • Syrett PJ, Flyrrn KJ, Molloy CJ, Dixon GK Peplinska AM, Cresswell RC (1986) New Phytol 102:39–44.

    Google Scholar 

  • Tal M(1984) Physiological genetics of salt resistance in higher plants: Studies on the level of the whole plant and isolated organs, tissues and cells. In: Staples RC, Toenniessen GH (eds) Salinity tolerance in plants: strategies for crop improvement Wiley-Intersci, New York, pp 301–320.

    Google Scholar 

  • Thoiron A, Thoiron B, Demarty M, Thellier M (1981) Biochim Biophys Acta 644:24–35.

    Google Scholar 

  • Thomson BD, Clarkson DT, Brain P (in press) New Phytol.

    Google Scholar 

  • Tischner R, Ward MR, Huffaker RC (1989) Planta 178:19–24.

    Google Scholar 

  • Topa MA, Jackson WA (1988) New Phytol 110:135–141.

    Google Scholar 

  • Ullrich WR (1987) Nitrate and ammonium uptake in green algae and higher plants: mechanism and relationship with nitrate metabolism. In: Ullrich WR, Aparicio PJ, Syrett PJ, Castillo F (eds) Inorganic nitrogen metabolism. Springer, Berlin Heidelberg New York Tokyo, pp. 32–38.

    Google Scholar 

  • Ullrich WR, Glaser E (1982) Plant Sci Lett 27:155–161.

    Google Scholar 

  • Ullrich WR, Larsson M, Larsson CM, Lesch S, Novacky N (1984) Physiol Plant 61: 369–376.

    Google Scholar 

  • Yeluthambi K, Poovaiah BW (1984) Plant Physiol 76:359–365.

    Google Scholar 

  • Ward MR, Tischner R, Huffaker RC (1988) Plant Physiol 88:1141–1145.

    Google Scholar 

  • Warner RL, Huffaker RC (1989) Plant Physiol 91:947–953.

    Google Scholar 

  • Weber M, Schmidt S, Schuster C, Mohr H (1990) Planta 180:429–434.

    Google Scholar 

  • Werner A, Stelzer R (1990) Plant Cell Environ 13:243–235.

    Google Scholar 

  • Wheeler JJ, Boss WF (1987) Plant Physiol 85: 389–392.

    Article  PubMed  CAS  Google Scholar 

  • Wiame J-M, Grenson M, Arst HN (1985) Adv Microb Physiol 26: 1–88.

    Article  PubMed  CAS  Google Scholar 

  • Woodhouse PJ, Wild A, Clement CR (1978) J Exp Bot 29: 885–894.

    Article  CAS  Google Scholar 

  • Wray JL (1988) Plant Cell Environ 11: 369–382.

    Article  CAS  Google Scholar 

  • Zimniak L, Dittrich P, Gogarten JP, Kibak H, Taiz L (1988) J Biol Chem 263: 9102–9112.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Clarkson, D.T., Lüttge, U. (1991). Mineral Nutrition: Inducible and Repressible Nutrient Transport Systems. In: Behnke, HD., Esser, K., Kubitzki, K., Runge, M., Ziegler, H. (eds) Progress in Botany. Progress in Botany/Fortschritte der Botanik, vol 52. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-76293-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-76293-2_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-76295-6

  • Online ISBN: 978-3-642-76293-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics