Skip to main content

Yeast mRNA Structure and Translational Efficiency

  • Conference paper
Post-Transcriptional Control of Gene Expression

Part of the book series: NATO ASI Series ((ASIH,volume 49))

Abstract

The ultimate level of a protein in a living cell is determined by a complex set of regulatory processes that exert their influence at all levels of gene expression, from transcription through RNA processing to translation and even the modification and turn-over of the final protein product. Knowledge of these manifold regulatory circuits and their mutual interaction, therefore, is of prime importance to understand how the numerous cellular proteins are produced in the correct relative amounts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baim SB, Pietras DF, Eustice DC, Sherman F, (1985) A mutation allowing an mRNA secondary structure diminishes translation of Saccharomyces cerevisiae iso-1-cytochrome c. Mol Cell Biol 5: 1839–1846

    PubMed  CAS  Google Scholar 

  • Baim SB, Sherman F, (1988) mRNA structures influencing translation in the yeast Saccharomyces cerevisiae. Mol Cell Biol 8: 1591–1601

    Google Scholar 

  • Becerra, SP, Rose JA, Hardy, M, Baroudy BM, Anderson C, (1985) Direct mapping of adeno-associated virus capsid proteins B and C: a possible ACG initiation codon. Proc Natl Acad Sci USA 82: 7919–7923

    Article  PubMed  CAS  Google Scholar 

  • Bennetzen JL, Hall BD, (1982) Codon selection in yeast. J Biol Chem 257: 3026–3031

    PubMed  CAS  Google Scholar 

  • Bettany AJE, Moore PA, Cafferkey R, Bell LD, Goodey AR, Carter BLA, Brown AJP, (1989) 5’-Secondary structure formation, in contrast to a short string of non-preferred codons, inhibits the translation of the pyruvate kinase mRNA in yeast. Yeast 5: 187–198

    Google Scholar 

  • Cigan AM, Donahue TF, (1987) Sequence and structural features associated with translational initiator regions in yeast - A review. Gene 59: 1–18

    Article  PubMed  CAS  Google Scholar 

  • Cigan AM, Pabich EK, Donahue TF, (1988a) Mutational analysis of the HIS4 translational initiator region in Saccharomyces cerevisiae. Mol Cell Biol 8: 2964–2975

    PubMed  CAS  Google Scholar 

  • Cigan AM, Feng L, Donahue TF, (1988b) tRNAimet functions in directing the scanning ribosome to the start site of translation. Science 242: 93–97

    Google Scholar 

  • Clements JM, Laz TM, Sherman F, (1988) Efficiency of translation by non-AUG codons in Saccharomyces cerevisiae. Mol Cell Biol 8: 4533–4536

    PubMed  CAS  Google Scholar 

  • Curran J, Kolakofsky D, (1988) Ribosomal initiation from an ACG codon in the Sendai virus P/C mRNA. Embo J 7: 245–251

    PubMed  CAS  Google Scholar 

  • Curran J, Kolakofsky D, (1989) Scanning independent ribosomal initiation of the Sendai virus Y proteins in vitro and in vivo. Embo J 8: 521–526

    PubMed  CAS  Google Scholar 

  • Donahue TF, Cigan AM, Pabich EK, Valavicius BC, (1988) Mutations at the Zn(II) finger motif in the yeast eIF-2B gene alter ribosomal start-site selection during the scanning process. Cell 54: 621–632

    Article  PubMed  CAS  Google Scholar 

  • Ernst JF, (1988) Codon usage and gene expression. Tibtech 6: 196–199

    CAS  Google Scholar 

  • Galili G, Kawata EE, Cuellar RE, Smith LD, Larkins BA, (1986) Synthetic oligonucleotide tails inhibit in vitro and in vivo translation of SP6 transcripts of maize zein cDNA clones. Nucl Acids Res 14: 1511–1524

    Article  PubMed  CAS  Google Scholar 

  • Gough NM, Metcalf D, Gough J, Grail D, Dunn AR, (1985) Structure and expression of the mRNA for murine granulocyte-macrophage colony stimulating factor. Embo J 4: 645–653

    PubMed  CAS  Google Scholar 

  • Grossi de Sa MF, Standart N, Martins de Sa C, Akhayat O, Huesca M, Scherrer K, (1988) The poly(A)-binding protein facilitates in vitro translation of poly(A)-rich mRNA. Eur J Biochem 176: 521–526

    Google Scholar 

  • Guan KL, Weiner H, (1989) Influence of the 5’-end region of aldehyde dehydrogenase messenger RNA on translational efficiency - potential secondary structure inhibition of translation in vitro. J Biol Chem 264: 17764–17769

    PubMed  CAS  Google Scholar 

  • Hahn SR, King MW, Bentley DL, Anderson CW, Eisenman RN, (1988) A non-Aug translational initiation in c-myc exon 1 generates an N-terminally distinct protein whose synthesis is disrupted by Burkitt’s lymphomas. Cell 52: 185–195

    Article  Google Scholar 

  • Herman AC (1989) Alternatives for the initiation of translation. Trends Biochem Sci 14: 219–222

    Article  PubMed  CAS  Google Scholar 

  • Hinnebush AG, (1988a) Mechanisms of gene regulation in the general control of amino acid biosynthesis in Saccharomyces cerevisiae. Microbiol Rev 52: 248–273

    Google Scholar 

  • Hinnebush AG, (1988b) Novel mechanisms of translational control in Saccharomyces cerevisiae. Trends Genet 4: 169–174

    Article  Google Scholar 

  • Hoekema A, Kastelein RA, Vasser M, De Boer HA, (1987) Codon replacement in the PGK1 gene of Saccharomyces cerevisiae: experimental approach to study the role of biased codon usage in gene expression. Mol Cell Biol 7: 2914–2924

    PubMed  CAS  Google Scholar 

  • Jacobsen A, Favreau M, (1983) Possible involvement of poly ( A) in protein synthesis. Nucl Acids Res 11: 6353–6368

    Article  Google Scholar 

  • Johansen H, Schiimperli D, Rosenberg M, (1984) Affecting gene expression by altering the length and sequence of the 5’ leader. Proc Nad Acad Sci USA 81: 7698–7702

    Article  CAS  Google Scholar 

  • Jones M, Koski R, Egan K, Bitter GA, (1985) The effects of codon bias on IFN-gamma expression in yeast Saccharomyces cerevisiae. J Cell Biochem Suppl O: 217

    Google Scholar 

  • Kingsman AJ, Kingsman SM, (1988) Ty: a retro-element moving forward. Cell 53: 333–335

    Article  PubMed  CAS  Google Scholar 

  • Kingsman SM, Kingsman AJ, Dobson MJ, Mellor J, Roberts NA, (1985) Heterologous gene expression in Saccharomyces cerevisiae. Biotechnol Gen Eng Rev 3: 377–416

    CAS  Google Scholar 

  • Kozak M, (1984) Selection of initiation sites by eucaryotic ribosomes: effect of inserting AUG triplets upstream from the coding sequence for preproinsulin. Nucl Acids Res 12: 3873–3893

    Article  PubMed  CAS  Google Scholar 

  • Kozak M, (1986a) Influences of mRNA secondary structure on initiation by eukaryotic ribosomes. Proc Nad Acad Sci USA 83: 2850–2854

    Article  CAS  Google Scholar 

  • Kozak M, (1986b) Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes. Cell 44: 283–292

    Article  PubMed  CAS  Google Scholar 

  • Kozak M (1987) An analysis of the 5’-noncoding sequences from 699 vertebrate messenger RNAs. Nucl Acids Res 15: 8125–8148

    Google Scholar 

  • Kozak M, (1988) Leader length and secondary structure modulate mRNA function under conditions of stress. Mol Cell Biol 8: 2737–2744

    PubMed  CAS  Google Scholar 

  • Kozak M, (1989a) The scanning model for translation: an update. J Cell Biol 108: 229–241

    Article  PubMed  CAS  Google Scholar 

  • Kozak M, (1989b) Context effects and inefficient initiation at non-AUG codons in eucaryotic cell-free translation systems. Mol Cell Biol 9: 5073–5080

    PubMed  CAS  Google Scholar 

  • Kozak M, (1989c) Circumstances and mechanisms of inhibition of translation by secondary structure in eucaryotic mRNAs. Mol Cell Biol 9: 5134–5142

    PubMed  CAS  Google Scholar 

  • Lawson TG, Ray BK, Dodds JT, Grifo JA, Abramson RD, Merrick WC, Betsch DF, Weith HL, Thach RE, (1986) Influence of 5’ proximal secondary structure on the translational efficiency of eukaryotic mRNAs and on their interaction with initiation factors. J Biol Chem 261: 13979–13989

    PubMed  CAS  Google Scholar 

  • Lee KAW, Guertin D, Sonenberg N, (1983) mRNA secondary structure as a determinant in cap recognition and initiation complex formation. J Biol Chem 258: 707–710

    Google Scholar 

  • Lodish H, (1976) Translational control of protein synthesis. Annu Rev Biochem 45: 39–72

    Article  PubMed  CAS  Google Scholar 

  • Melton DA, (1985) Injected anti-sense RNAs specifically block messenger RNA translation in vivo. Proc Natl Acad Sci USA 82: 144–148

    Article  PubMed  CAS  Google Scholar 

  • Peabody DS, (1989) Translation initiation at non-Aug triplets in mammalian cells. J Biol Chem 264: 5031–5035

    PubMed  CAS  Google Scholar 

  • Peabody DS, Berg P, (1986) Termination-reinitiation occurs in the translation of mammalian cell mRNAs. Mol Cell Biol 6: 2695–2703

    PubMed  CAS  Google Scholar 

  • Proud CG, (1986) Guanine nucleotides, protein phosphorylation and the control of translation. Trends Biochem Sci 11: 73–77

    Article  CAS  Google Scholar 

  • Purvis IJ, Loughlin L, Bettany AJE, Brown AP, (1987a) Translation and stability of an Escherichia coli Ăź- galactosidase mRNA expressed under the control of pyruvate kinase sequences in Saccharomyces cerevisiae. Nucl Acids Res 15: 7963–7974

    Article  PubMed  CAS  Google Scholar 

  • Purvis J, Bettany AJE, Loughlin L, Brown AJP, (1987b) The effects of alterations within the 3’ untranslated region of the pyruvate kinase messenger RNA upon its stability and translation in Saccharomyces cerevisiae. Nucl Acids Res 15: 7951–7962

    Article  PubMed  CAS  Google Scholar 

  • Rao CD, Pech M, Robbins KC, Aaronson SA, (1988) The 5’ untranslated sequence of the c-sis/platelet-derived growth factor 2 transcript is a potent translational inhibitor. Mol Cell Biol 8: 284–292

    PubMed  CAS  Google Scholar 

  • Rhoads RE, (1988) Cap recognition and the entry of mRNA into the protein synthesis initiation cycle. Trends Biochem Sci 13: 52–56

    Article  PubMed  CAS  Google Scholar 

  • Sachs AB, Davis RW, (1989) The poly(A) binding protein is required for poly(A) shortening and 60S ribosomal subunit-dependent translation initiation. Cell 58: 857–867

    Article  PubMed  CAS  Google Scholar 

  • Sharp PM, Tuohy TMF, Mosurski KR, (1986) Codon usage in yeast: cluster analysis clearly differentiates highly and lowly expressed genes. Nucl Acids Res 14: 5125–5143

    Article  PubMed  CAS  Google Scholar 

  • Shakin SH, Liebhaber SA, (1986) Destabilization of messenger RNA/complementary DNA duplexes by the elongating 80S ribosome. J Biol Chem 261: 16018–16025

    PubMed  CAS  Google Scholar 

  • Sherman F, Baim SB, Hampsey DM, Goodhue CT, Friedman LR, Stiles JI, (1986) Properties of protein translation determined with altered forms of the yeast CYC1 gene. In: Matthews MB, (ed) Translational control. CSH Laboratories, Cold Spring Harbor NY, p 42

    Google Scholar 

  • Sherman F, Stewart JW, (1982) Mutations altering initiation of translation of yeast iso-1-cytochrome c; Contrast between the eukaryotic and prokaryotic initiation process. In: Strathern JN, Jones EW, Broach JR, (eds) Molecular Biology of the Yeast Saccharomyces: Metabolism and Gene Expression. CSH Laboratories, Cold Spring Harbor NY, p 301

    Google Scholar 

  • Sonenberg N, Pelletier J, (1989) Poliovirus translation: A paradigm for a novel initiation mechanism. BioEssays 11: 128–132

    CAS  Google Scholar 

  • Spena A, Krause E, Dobberstein B, (1985) Translation efficiency of zein mRNA is reduced by hybrid formation between the 5’- and 3’-untranslated region. Embo J 4: 2153–2158

    PubMed  CAS  Google Scholar 

  • Valle RPC, Morch M-D, (1988) Stop making sense or: Regulation at the level of termination in eukaryotic protein synthesis. FEBS Lett 235: 1–15

    Article  PubMed  CAS  Google Scholar 

  • Van Den Heuvel JJ, Bergkamp RJM, Planta RJ, Raue HA, (1989) Effect of deletions in the 5’-noncoding region on the translational efficiency of phosphoglycerate kinase mRNA in yeast. Gene 79: 83–95

    Article  PubMed  Google Scholar 

  • Van Den Heuvel JJ, Planta RJ, Raue HA, (1990) Effect of leader primary structure on the translational efficiency of phosphoglycerate kinase mRNA in yeast. Yeast: in press

    Google Scholar 

  • Werner M, Feller, A, Messenguy, F, Pierard, A, (1987) The leader peptide of yeast gene CPA1 is essential for the translational repression of its expression. Cell 49: 805–813

    Article  PubMed  CAS  Google Scholar 

  • Wolin SL, Walter P, (1988) Ribosome pausing and stacking during translation of a eukaryotic mRNA. Embo J 11: 3559–3569

    Google Scholar 

  • Zaret KS, Sherman F, (1984) Mutationally altered 3’ ends of yeast CYC1 mRNA affect transcript stability and translational efficiency. J Mol Biol 176: 107–135

    Article  Google Scholar 

  • Zimmerman SB, Cohen GH, Davies DR, (1975) X-ray fiber diffraction and model building study of polyguanylic acid and polyinosinic acid. J Mol Biol 92: 181–192

    Article  PubMed  CAS  Google Scholar 

  • Zitomer RS, Walthall DA, Rymond BC, Hollenberg CP, (1984) Saccharomyces cerevisiae ribosomes recognize non-AUG initiation codons. Mol Cell Biol 4: 1191–1197

    Google Scholar 

  • Zuker M, Stiegler P, (1981) Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucl Acids Res 9: 133–148

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Raué, H.A., van den Heuvel, J.J., Planta, R.J. (1990). Yeast mRNA Structure and Translational Efficiency. In: McCarthy, J.E.G., Tuite, M.F. (eds) Post-Transcriptional Control of Gene Expression. NATO ASI Series, vol 49. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-75139-4_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-75139-4_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-75141-7

  • Online ISBN: 978-3-642-75139-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics