Skip to main content

Phosphorus Magnetic Resonance Spectroscopy (31P NMR) as a Tool for in Vivo Monitoring of Mitochrondrial Muscle Disorders

  • Conference paper
Molecular Basis of Membrane-Associated Diseases

Abstract

Magnetic resonance spectroscopy is a relatively new technique for the study of in vivo biochemistry. It offers a look into several biochemical reactions in normally functioning intact tissues. This chapter will not describe the basic NMR experiment and the various atoms that can be studied by it. For an introduction to the NMR field the reader is referred to monographs on the subject (e.g. Gadian [1]). The chapter will also only briefly describe the basics of phosphorus nuclear magnetic resonance spectroscopy (31P NMR). I will concentrate on the use of 31P NMR in muscle mitochondrial disorders and related conditions. Findings in other disorders of energy metabolism (e.g. glycolytic defects) will not be described. Data on normal functioning muscle will be presented only if they are relevant to mitochondrial diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gadian DG (1982) Nuclear magnetic resonance and its applications to living systems. Clarendon, Oxford

    Google Scholar 

  2. Taylor DJ, Bore PJ, Styles P, Gadian DG, Radda GK (1983) Bioenergetics of intact human muscle: a 31P NMR study. Mol Biol Med1:77–94

    PubMed  CAS  Google Scholar 

  3. Radda GK, Taylor DJ (1985) Application of nuclear magnetic resonance spectroscopy in pathology. Int Rev Exp Pathol 2:1–58

    Google Scholar 

  4. Chance B, Eleff S, Leigh JS, Jr., Sokolow D, Sapega A (1981) Mitochondrial regulation of phosphocreatine/inorganic phosphate ratios in exercising human muscle: a gated31 P NMR study. Proc Natl Acad Sci USA 78:6714–6718

    Google Scholar 

  5. Gyulai L, Roth Z, Leigh JS, Jr., Chance B (1985) Bioenergetic studies of mitochondrial oxidative phosphorylation using31 P NMR. J Biol Chem 260:3947–3954

    Google Scholar 

  6. Chance B, Leigh JS, Jr., Clark BJ, Maris J, Kent J, Nioka S, Smith D (1985) Control of oxidative metabolism and oxygen delivery in human skeletal muscle: a steady state analysis of the work/energy cost transfer function. Proc Natl Acad Sci USA 82:8384–8388

    Google Scholar 

  7. Chance B, Clark BJ, Nioka S, Subramanian H, Maris JM, Argov Z, Bode H (1985) Phosphorus nuclear magnetic resonance spectroscopy in vivo. Circulation 72 (Suppl 4): 103–110

    Google Scholar 

  8. Gibbs C (1985) The cytoplasmic phosphorylation potential. J Mol Cardiol 17:727–731

    Article  CAS  Google Scholar 

  9. Meyer RA, Brown TR, Kushmerick J (1985) Phosphorus nuclear magnetic resonance of fast and slow twitch muscle. Am J Physiol 248:C279–C287

    PubMed  CAS  Google Scholar 

  10. Radda GK, Bore PJ, Gadian DG, Ross BD, Styles P, Taylor DJ, Morgan-Hughes J (1982) 31 P NMR examination of two patients with NADH-CoQ reductase deficiency. Nature (London) 295:608–609

    Article  PubMed  CAS  Google Scholar 

  11. Gadian DG, Radda GK, Ross BD, Hockaday J, Bore P, Taylor D, Styles P (1981) Examination of a myopathy by phosphorus nuclear magnetic resonance. Lancet ii:774–775

    Article  Google Scholar 

  12. EleffS, Kennaway NG, Buist NRM, Darley-Usmar VM, Capaldi RA, Bank WJ, Chance B (1984) 31P NMR study of improvement in oxidative phosphorylation by vitamins K3 and C in a patient with a defect in electron transport at complex 3 in skeletal muscle. Proc Natl Acad Sci USA81:3529–3533

    Article  Google Scholar 

  13. Arnold DL, Taylor DJ, Radda GK (1985) Investigation of human mitochondrial myopathies by phosphorus magnetic resonance spectroscopy. Ann Neurol 18:189–196

    Article  PubMed  CAS  Google Scholar 

  14. Arnold DL, Matthews PM, Radda GK (1984) Metabolic recovery after exercise and the assessment of mitochondrial function in human skeletal muscle in vivo by means of 31P NMR. Magn Resonance Med 1:307–315

    Article  CAS  Google Scholar 

  15. Argov Z, Bank WJ, Maris J, Peterson P, Chance B (1987) Bioenergetic heterogeneity of human mitochondrial myopathies: phosphorus magnetic resonance spectroscopy study. Neurology 37:257–262

    PubMed  CAS  Google Scholar 

  16. Argov Z, Maris J, Fishbeck K, Bank W, Chance B (1985) In vivo study of human lipid myopathies by 31P NMR spectroscopy. Ann Neurol 18:119 (Abstr)

    Google Scholar 

  17. Argov Z, Bank WJ, Maris J, Chance B (1987) Muscle energy metabolism in McArdle’s syndrome by in vivo phosphorus magnetic resonance spectroseopy (31P NMR). Neurology 37:1720–1724

    PubMed  CAS  Google Scholar 

  18. Argov Z, Renshaw P, Boden B, Winokur A, Bank WJ (1988) The effects of thyroid hormones on skeletal muscle bioenergeties: an in vivo 31P NMR study of humans and rats. J Clin Invest 81 (in press)

    Google Scholar 

  19. Younkin DP, Berman P, Sladky J, Bank WJ, Chance B (1987) 31P NMR studies in Duchenne muscular dystrophy: age related metabolic changes. Neurology 37:257–262

    Google Scholar 

  20. McCully KK, Argov Z, Boden B, Brown R, Bank WJ, Chance B (1988) Detection of muscle injury in humans with 31P NMR magnetic resonance spectroscopy. Muscle Nerve 11:212–216

    Article  PubMed  CAS  Google Scholar 

  21. Bank WJ, Argov Z (1987) The value of 31P NMR in the diagnosis and monitoring the course of human myopathies. Ann NY Acad Sci508:448–450

    Article  Google Scholar 

  22. Olgin J, Argov Z, Rosenberg H, Chance B (1988) Non-invasive evaluation of malignant hyperthermia susceptibility with phosphorus nuclear magnetic resonance spectroscopy. An-esthesiology 68:507–513

    CAS  Google Scholar 

  23. Argov Z, Maris J, Damico L, Chance B (1988) Mitochondrial malfunction of dystrophic hamster muscle: in vivo 31P NMR study. J Neurol Sci 86:185–193

    Article  PubMed  CAS  Google Scholar 

  24. Kenaway NG, Buist NRM, Darley-Usmar VM, Papadimitriou A, DiMauro S, Kelley RI, Capaldi RA, Blank NK, D’Agostino A (1984) Lactic acidosis and mitochondrial myopathy associated with deficiency of several components of complex 3 of the respiratory chain. Pediatr Res18:991–999

    Google Scholar 

  25. Argov Z, Chance B, Maris J, Eleff S, Kennaway NG, Chance B, Olson R (1986) Treatment of mitochondrial myopathy due to complex 3 deficiency with vitamins K3 and C: a follow-up study. Ann Neurol 19:598–602

    Article  PubMed  CAS  Google Scholar 

  26. Heiman-Patterson TP, Argov Z, DiMauro S, Bonilla E, Tahmoush AJ, Bank W (1989) 31P NMR studies during methylprednisolone treatment of a familial steroid-responsive mitochondrial disorder. Neurology 39 (Suppl 1): 337 (Abstr)

    Google Scholar 

  27. Hayes DJ, Byrne E, Snoubridge EA, Morgan-Hughes JA, Clark JB (1985) Experimentally induced defects of mitochondrial metabolism in rat skeletal muscle. Biochem J 229:109–117

    PubMed  CAS  Google Scholar 

  28. Hayes DJ, Hilton-Jones D, Arnold DL, Galloway G, Styles P, Duncan J, Radda GK (1985) A mitochondrial encephalomyopathy: a combined 31P NMR magnetic resonance and biochemical investigation. J Neurol Sci 71:105–118

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Argov, Z. (1989). Phosphorus Magnetic Resonance Spectroscopy (31P NMR) as a Tool for in Vivo Monitoring of Mitochrondrial Muscle Disorders. In: Azzi, A., Drahota, Z., Papa, S. (eds) Molecular Basis of Membrane-Associated Diseases. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74415-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74415-0_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74417-4

  • Online ISBN: 978-3-642-74415-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics