Skip to main content

Part of the book series: Advances in Comparative and Environmental Physiology ((COMPARATIVE,volume 3))

Abstract

Rhythmicity is a characteristic property of most cells and multicellular systems (Aschoff 1981a; Bünning 1958) including neuroendocrine systems (Bäckström et al. 1982; Gunnet and Freeman 1983; Jansson et al. 1985; Kalra and Kaira 1983; Knobil and Plant 1978; Lincoln and Short 1980; Plant 1986) and animal (Rusak and Zucker 1975) and human (Aschoff and Wever 1981) behavior. Most work on the neurohormonal control mechanisms of behavioral rhythms in vertebrates has used rhythms which are easily monitored, such as the activity rhythms of hamsters (Rusak and Zucker 1979) and sparrows (Menaker and Binkley 1981). Work on neuroendocrine rhythms has similarly been concentrated on rhythms, which are easily accessible by experimental procedures or coupled to overt behavioral rhythms, which can be easily studied, such as the ovulatory and behavioral estrous cycle of the hamster (Alleva et al. 1971). There are few, if any, examples of cases in which a neuroendocrine rhythm has been demonstrated to be causally related to a behavioral rhythm. This would appear particularly true for rhythms in vertebrate social behaviors. Instances in which the possibility exists that a neuroendocrine rhythm is related, perhaps causally related, to a rhythm in a social behavior are perhaps most easily found among behaviors related to reproduction. This chapter will provide a brief outline of the characteristics of the various types of rhythms which have been described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albers HE (1981) Gonadal hormones organize and modulate the circadian system of the rat. Am J Physiol 241: R62–66

    PubMed  CAS  Google Scholar 

  • Albers HE, Gerall AA, Axelson JF (1981) Effect of reproductive state on circadian periodicity in the rat. Physiol Behav 26:21–25

    PubMed  CAS  Google Scholar 

  • Albers HE, Ferris CF, Leeman SE, Goldman BD (1984 a) Avian pancreatic polypeptide phase-shifts hamster activity rhythms when microinjected into the suprachiasmatic region. Science 223: 833–835

    PubMed  CAS  Google Scholar 

  • Albers HE, Moline ML, Moore-Ede MC (1984b) Sex differences in circadian control of LH secretion. J Endocrinol 100:101–105

    PubMed  CAS  Google Scholar 

  • Alleva JJ, Waleski MV, Alleva FR (1971) A biological clock controlling the estrous cycle of the hamster. Endocrinology 88:1368–1379

    PubMed  CAS  Google Scholar 

  • Aschoff J (1960) Exogenous and endogenous components in circadian rhythms. Cold Spring Harbor Symp Quant Biol 25:11–28

    PubMed  CAS  Google Scholar 

  • Aschoff J (ed) (1981a) Biological rhythms. Handbook of behavioral neurobiology, vol 4. Plenum, New York London, pp 563

    Google Scholar 

  • Aschoff J (1981b) A survey on biological rhythms. In: Aschoff J (ed) Handbook of behavioral neuro biology, vol 4. Biological rhythms. Plenum, New York London, pp 3–10

    Google Scholar 

  • Aschoff J, Wever R (1976) Human circadian rhythms: a multioscillatory system. Fed Proc 35:2326–2332

    CAS  Google Scholar 

  • Aschoff J, Wever R (1981) The circadian system in man. In: Aschoff J (ed) Handbook of behavioral neurobiology, vol 4. Biological rhythms. Plenum, New York London, pp 311–331

    Google Scholar 

  • Bäckström CT, McNeilly AS, Leask RM, Baird DT (1982) Pulsatile secretion of LH, FSH, prolactin, oestradiol and progesterone during the human menstrual cycle. Clin Endocrinol 17:29–42

    Google Scholar 

  • Barry J, Hoffman GE, Wray S (1985) LHRH-containing systems. In: Björklund A, Hökfelt T (eds) Handbook of chemical neuroanatomy, vol 4. GABA and neuropeptides in the CNS. Elsevier, Amsterdam, pp 167–215

    Google Scholar 

  • Baum MJ, Schretlen PJM (1978) Oestrogenic induction of sexual behaviour in ovariectomized ferrets housed under short or long photoperiods. J Endocrinol 78:295–296

    PubMed  CAS  Google Scholar 

  • Beach FA, Levinson G (1949) Diurnal variation in the mating behavior of male rats. Proc Soc Exp Med Biol 72:78–80

    CAS  Google Scholar 

  • Biggio G, Costa E (eds) (1985) GABAergic transmission and anxiety. Raven Press, New York

    Google Scholar 

  • Bittman EL (1978 a) Photoperiodic influences on testicular regression in the golden hamster. Biol Reprod 17:871–877

    Google Scholar 

  • Bittman EL (1978 b) Hamster refractoriness: the role of insensitivity of pineal target tissues. Science 202:648–650

    PubMed  CAS  Google Scholar 

  • Boling JL, Blandau RJ (1939) The estrogen-progesterone induction of mating responses in the spayed female rat. Endocrinology 25:359–364

    CAS  Google Scholar 

  • Brown-Grant K, Raisman G (1977) Abnormalities in reproductive function associated with the destruction of the suprachiasmatic nuclei in female rats. Proc R Soc London Ser B 198: 279–296

    CAS  Google Scholar 

  • Bruce VG, Pittendrigh CS (1958) Endogenous rhythms in insects and microorganisms. Am Nat 91:179–195

    Google Scholar 

  • Buijs RM, Pēvet P, Masson-Pēvet M, Pool CW, De Vries GJ, Canguilhem B, Vivien-Roels B (1986) Seasonal variation in vasopressin innervation in the brain of the European hamster (Cricetus cricetus). Brain Res 371:193–196

    PubMed  CAS  Google Scholar 

  • Bünning E (1936) Die endonome tagesrhythmic als grundlage der photoperiodischen reaktion. Ber Dtsch Bot Ges 54:590–607

    Google Scholar 

  • Bünning E (1958) Die Physiologische Uhr. Springer, Berlin

    Google Scholar 

  • Cattabeni F, Maggi A, Monduzzi M, De Angelis L, Racagni G (1978) GABA: circadian fluctuations in rat hypothalamus. J Neurochem 31:565–567

    PubMed  CAS  Google Scholar 

  • Chovnic A (ed) (1960) Biological clocks. Cold Spring Harbor Symp Quant biol 25:pp 524

    Google Scholar 

  • Daan S, Damassa D, Pittendrigh CS, Smith ER (1975) An effect of castration and testosterone replacement on a circadian pacemaker in mice (Mus musculus). Proc Natl Acad Sci USA 72:3744–3747

    PubMed  CAS  Google Scholar 

  • Davis DE (1976) Hibernation and circannual rhythms of food consumption in marmosets and ground squirrels. Q Rev Biol 51:477–514

    PubMed  CAS  Google Scholar 

  • De Vries GJ, Buijs RM, Van Leeuwen FE, Caffe AR, Swaab DF (1985) The vasopressinergic innervation of the brain in normal and castrated rats. J Comp Neurol 233:236–254

    Google Scholar 

  • Dewsbury DA (1968) Copulatory behavior of rats — variations within the dark phase of the diurnal cycle. Comm Behav Biol A1:373–377

    Google Scholar 

  • Dierschke DJ, Bhattacharya AN, Atkinson LE, Knobil E (1970) Circhoral oscillations of plasma LH in the ovariectomized rhesus monkey. Endocrinology 87:850–853

    PubMed  CAS  Google Scholar 

  • Dluzen DE, Ramirez VD (1985) In-vivo activity of the LH-releasing hormone pulse generator in castrated and intact male rats. J Endocrinol 107:331–340

    PubMed  CAS  Google Scholar 

  • Earnest DJ, Sladek CD (1986) Circadian rhythms of vasopressin release from rat suprachiasmatic expiants in vitro. Brain Res 382:129–133

    PubMed  CAS  Google Scholar 

  • Ebling FJP, Lincoln GA (1985) Endogenous opioids and the control of seasonal LH secretion in Soay rams. J Endocrinol 107:341–353

    PubMed  CAS  Google Scholar 

  • Elliott JA, Stetson MH, Menaker M (1972) Regulation of testis function in golden hamsters: a circadian clock measures photoperiodic time. Science 178:771–773

    PubMed  CAS  Google Scholar 

  • Ellis GB, Desjardins C (1982) Male rats secrete luteinizing hormone and testosterone episodically. Endocrinology 110:1618–1627

    CAS  Google Scholar 

  • Ellis GB, Desjardins C (1984a) Orchidectomy unleashes pulsatile luteinizing hormone secretion in the rat. Biol Reprod 30:619–627

    PubMed  CAS  Google Scholar 

  • Ellis GB, Desjardins C (1984b) Mapping episodic fluctuations in plasma LH in orchidectomized rats. Am J Physiol 247:E139–E135

    Google Scholar 

  • Ellis GB, Desjardins C, Fraser HM (1983) Control of pulsatile LH release in male rats. Neuroendo-crinology 37:177–183

    CAS  Google Scholar 

  • Erskine MS, Marcus JI, Baum MJ (1980) Absence of a diurnal rhythm in lordosis behaviour induced by oestrogen in gonadectomized rats. J Endocrinol 86:127–134

    PubMed  CAS  Google Scholar 

  • Eskes GA (1984) Neural control of the daily rhythm of sexual behavior in the male golden hamster. Brain Res 293:127–141

    PubMed  CAS  Google Scholar 

  • Eskes GA, Rusak B (1985) Horizontal knife cuts in the suprachiasmatic area prevent hamster gonadal responses to photoperiod. Neurosci Lett 61:261–266

    PubMed  CAS  Google Scholar 

  • Everett LW, Sawyer CH (1950) A 24-hour periodicity in the “LH-release apparatus” of female rats, disclosed by barbiturate sedation. Endocrinology 47:198–218

    PubMed  CAS  Google Scholar 

  • Farner DS (1985) Annual rhythms. Annu Rev Physiol 47:65–82

    PubMed  CAS  Google Scholar 

  • Fletcher IC, Lindsay DR (1971) Effects of oestrogen on oestrous behaviour and its variation with season in the ewe. J Endocrinol 50:685–696

    PubMed  CAS  Google Scholar 

  • Folkard S, Wever RA, Wildgruber CM (1983) Multi-oscillatory control of circadian rhythms in human performance. Nature (London) 305:223–226

    CAS  Google Scholar 

  • Folkard S, Minors DS, Waterhouse JM (1984) Is there more than one circadian clock in humans? J Physiol (London) 357:341–356

    CAS  Google Scholar 

  • Forsberg G, Bednar I, Eneroth P, Södersten P (1987) Naloxone reverses postejaculatory inhibition of sexual behaviour in female rats. J Endocrinol 113:429–434

    PubMed  CAS  Google Scholar 

  • Gay VL, Sheth NA (1972) Evidence for a periodic release of LH in castrated male and female rats. Endocrinology 90:158–162

    PubMed  CAS  Google Scholar 

  • Gillette MU (1986) The suprachiasmatic nuclei: circadian phase-shifts induced at the time of hypothalamic slice preparation are preserved in vitro. Brain Res 379:176–181

    PubMed  CAS  Google Scholar 

  • Goldman BD, Darrow JM (1983) The pineal gland and mammalian photoperiodism. Neuroendocrinology 37:386–396

    PubMed  CAS  Google Scholar 

  • Goodman RL (1978 a) A quantitative analysis of the physiological role of estradiol and progesterone in the control of tonic and surge secretion of luteinizing hormone in the rat. Endocrinology 102:142–150

    PubMed  CAS  Google Scholar 

  • Goodman RL (1978 b) The site of the positive feedback action of estradiol in the rat. Endocrinology 102:151–159

    PubMed  CAS  Google Scholar 

  • Grillner S (1981) Control of locomotion in bipeds, tetrapods, and fish. In: Brooks VB (ed) Handbook of physiology, sect 1. The nervous system, vol 2. Motor control. Williams & Wilkins, Baltimore, pp 1179–1236

    Google Scholar 

  • Gunnet JW, Freeman ME (1983) The mating-induced release of prolactin: a unique neuroendocrine response. Endocrinol Rev 4:44–61

    CAS  Google Scholar 

  • Gwinner E (1974) Testosterone induces “splitting” of circadian locomotor activity rhythms in birds. Science 185:72–74

    PubMed  CAS  Google Scholar 

  • Gwinner E (1986) Internal rhythms in bird migration. Sci Am 254:76–84

    Google Scholar 

  • Halberg F (1959) Physiologic 24-hour periodicity in human beings and mice, the lighting regimen and daily routine. In: Withrow RB (ed) Photoperiodism and related phenomena in plants and animals. Am Assoc Adv Sei, Washington, pp 803–878

    Google Scholar 

  • Hansen S, Södersten P (1978) Effects of subcutaneous implants of progesterone on the induction and duration of sexual receptivity in ovariectomized rats. J Endocrinol 77:373–379

    PubMed  CAS  Google Scholar 

  • Hansen S, Södersten P, Srebro B (1978) A daily rhythm in the behavioural sensitivity of the female rat to oestradiol. J Endocrinol 77:373–379

    PubMed  CAS  Google Scholar 

  • Hansen S, Södersten P, Eneroth P, Srebro B, Hole K (1979) A sexually dimorphic rhythm in oestradiol-activated lordosis behaviour in the rat. J Endocrinol 83:267–274

    PubMed  CAS  Google Scholar 

  • Harlan RE, Shivers BD, Moss RL, Shryne JE, Gorski RA (1980) Sexual performance as a function of time of day in male and female rats. Biol Reprod 23:64–71

    PubMed  CAS  Google Scholar 

  • Harris GW (1955) Neural control of the pituitary gland. Arnold, London

    Google Scholar 

  • Herbert J, Stacey PM, Thorpe DH (1979) Recurrent breeding seasons in pinealectomized or optic-nerve-sectioned ferrets. J Endocrinol 78:389–397

    Google Scholar 

  • Hoffman JC (1967) Effects of light deprivation on the rat estrous cycle. Neuroendocrinology 2:1–10

    Google Scholar 

  • Inouye ST, Kawamura H (1979) Persistence of circadian rhythmicity in a mammalian hypothalamic “island” containing the suprachiasmatic nucleus. Proc Natl Acad Sci USA 76:5962–5966

    PubMed  CAS  Google Scholar 

  • Iversen LL, Cotman CW (eds) (1987) Excitatory amino acids in the brain — focus on the NMDA receptors. Trends NeuroSci 10:256–290

    Google Scholar 

  • Jaffe RB, Monroe SE (1980) Hormone interaction and regulation during the menstrual cycle. In: Martini L, Ganong WF (eds) Frontiers in neuroendocrinology, vol 6. Raven, New York, pp 219–247

    Google Scholar 

  • Jansson J-O, Edēn S, Isaksson O (1985) Sexual dimorphism in the control of growth hormone secretion. Endocrinol Rev 6:128–150

    CAS  Google Scholar 

  • Johnson MS (1926) Activity and distribution of certain wild mice in relation to biotic communities. J Mammal 7:245–277

    Google Scholar 

  • Johnson MS (1939) Effect of continuous light on periodic spontaneous activity of white-footed mice (Peromyscus). J Exp Zool 82:315–328

    Google Scholar 

  • Kalra SP, Kaira PS (1983) Neural regulation of luteinizing hormone secretion in the rat. Endocrinol Rev 4:311–351

    CAS  Google Scholar 

  • Karsch FJ, Weick RF, Butler WR, Dierschke DJ, Krey LC, Weiss G, Hotchkiss J, Yamaji T, Knobil E (1973) Induced LH surges in the rhesus monkey: strength-duration characteristic of the estrogen stimulus. Endocrinology 92:1740–1747

    PubMed  CAS  Google Scholar 

  • Karsch FJ, Goodman RL, Legan SJ (1980) Feedback basis of seasonal breeding: test of an hypothesis. J Reprod Fertil 58:521–535

    PubMed  CAS  Google Scholar 

  • Karsch FJ, Foster DL, Bittman EL, Goodman RL (1983) A role for estradiol in enhancing luteinizing hormone pulse frequency during the follicular phase of the estrous cycle of sheep. Endocrinology 113:1333–13339

    PubMed  CAS  Google Scholar 

  • Katongole CB, Naftolin F, Short RV (1971) Relationship between blood levels of luteinizing hormone and testosterone in bulls and the effect of sexual stimulation. J Endocrinol 50: 457–466

    PubMed  CAS  Google Scholar 

  • Kishimoto M, Tamada H, Mori J (1988) Effects of p-chlorophenyl alanine, p-chloroamphetamine and 5-hydroxytryptophan on a circadian rhythm in lordosis quotient of ovariectomized estrogen-primed rats. Horm Behav (in press)

    Google Scholar 

  • Klein R, Armitage R (1979) Rhythms in human performance: 1 1/2-hour oscillations in cognitive style. Science 204:1326–1328

    PubMed  CAS  Google Scholar 

  • Knobil E (1980) The neuroendocrine control of the menstrual cycle. Recent Prog Horm Res 36:53–89

    PubMed  CAS  Google Scholar 

  • Knobil E, Plant TM (1978) Neuroendocrine control of gonadotropin secretion in the female rhesus monkey. In: Ganong WF, Martini L (eds) Frontiers in neuroendocrinology, vol 5. Raven, New York, pp 249–264

    Google Scholar 

  • Kow L-M, Pfaff DW (1984) Suprachiasmatic neurons in tissue slices from ovariectomized rats: electrophysiological and neuropharmacological characterization and the effects of estrogen treatment. Brain Res 297:275–286

    PubMed  CAS  Google Scholar 

  • Kucera P, Favrod P (1979) Suprachiasmatic nucleus projection to mesencephalic central grey in the woodmouse (Apodemus sylvaticus L.). Neuroscience 4:1705–1715

    PubMed  CAS  Google Scholar 

  • Larsson K (1958) Age differences in the diurnal periodicity of male sexual behavior. Gerontologia 2:64–72

    PubMed  CAS  Google Scholar 

  • Larsson K (1979) Features of the neuroendocrine regulation of masculine sexual behavior. In: Beyer C (ed) Endocrine control of sexual behavior. Raven, New York, pp 77–163

    Google Scholar 

  • Legan SJ, Karsch FJ (1975) A daily signal for the LH surge in the rat. Endocrinology 96:57–62

    PubMed  CAS  Google Scholar 

  • Legan SJ, Coon GA, Karsch FJ (1975) Role of estrogen as initiator of the daily LH surges in the ovariectomized rat. Endocrinology 96:50–56

    PubMed  CAS  Google Scholar 

  • Legan SJ, Karsch FJ, Foster DL (1977) The endocrine control of seasonal reproductive function in the ewe: a marked change in the response to the negative feedback action of estradiol on luteinizing hormone secretion. Endocrinology 101:818–824

    PubMed  CAS  Google Scholar 

  • Levine JE, Pau K-YF, Ramirez VD, Jackson GL (1982) Simultaneous measurement of luteinizing hormone-releasing hormone and luteinizing hormone release in unanesthetized, ovariectomized sheep. Endocrinology 111:1449–1455

    PubMed  CAS  Google Scholar 

  • Lincoln GA (1979) Use of a pulsed infusion of luteinizing hormone releasing hormone to mimic seasonally induced endocrine changes in the ram. J Endocrinol 83:251–260

    PubMed  CAS  Google Scholar 

  • Lincoln GA, Short RV (1980) Seasonal breeding: nature’s contraceptive. Recent Prog Horm Res 36:1–52

    PubMed  CAS  Google Scholar 

  • Lincoln GA, Guiness F, Short FV (1972) The way in which testosterone controls the social and sexual behaviour of the red deer stag (Cervus elaphus). Horm Behav 3:375–396

    CAS  Google Scholar 

  • Menaker M, Binkley S (1981) Neural and endocrine control of circadian rhythms in the vertebrates. In: Aschoff J (ed) Handbook of behavioral neurobiology, vol 4. Biological rhythms. Plenum, New York, pp 243–255

    Google Scholar 

  • Mendoza SP, Lowe EL, Resko JA, Levine S (1978) Seasonal variations in gonadal hormones and social behavior in squirrel monkeys. Physiol Behav 20:515–522

    PubMed  CAS  Google Scholar 

  • Mock EJ, Kamel F, Wright WW, Frankel AI (1975) Seasonal rhythm in plasma testosterone and luteinizing hormone of the male laboratory rat. Nature (London) 256:61–63

    CAS  Google Scholar 

  • Moline ML, Albers HE, Moore-Ede MC (1986) Estrogen modifies the circadian timing and amplitude of the luteinizing hormone surge in female hamsters exposed to short photoperiods. Biol Reprod 35:516–523

    PubMed  CAS  Google Scholar 

  • Moore RY (1978) Central neural control of circadian rhythms. In: Ganong WF, Martini L (eds) Frontiers in neuroendocrinology, vol 5. Raven, New York, pp 185–206

    Google Scholar 

  • Moore RY, Eichler VB (1972) Loss of a circadian adrenal corticosterone rhythm following supra-chiasmatic lesions in the rat. Brain Res 42:201–206

    PubMed  CAS  Google Scholar 

  • Morin LP, Zucker I (1978) Photoperiodic regulation of copulatory behaviour in the male hamster. J Endocrinol 77:249–258

    PubMed  CAS  Google Scholar 

  • Morin LP, Fitzgerald KM, Rusak B, Zucker I (1977 a) Circadian organization and neural mediation of hamster reproductive rhythms. Psychoneuroendocrinol 2:73–98

    CAS  Google Scholar 

  • Morin LP, Fitzgerald KM, Zucker I (1977b) Estradiol shortens the period of hamster circadian rhythms. Science 196:305–307

    PubMed  CAS  Google Scholar 

  • Mugnaini E, Oertel WH (1985) An atlas of the distribution of GABAergic neurons and terminals in the rat CNS as revealed by GAD immunohistochemistry. In: Björklund A, Hökfelt T (eds) Handbook of chemical neuroanatomy, vol 4. GABA and neuropeptides in the CNS. Elsevier, Amsterdam, pp 436–622

    Google Scholar 

  • Nelson RJ, Bamat MK, Zucker I (1982) Photoperiodic regulation of testis function in rats: mediation by a circadian mechanism. Biol Reprod 26:329–335

    PubMed  CAS  Google Scholar 

  • Newman GC, Hospod FE (1986) Rhythm of suprachiasmatic nucleus 2-deoxyglucose uptake in vitro. Brain Res 381:345–350

    PubMed  CAS  Google Scholar 

  • Norman RL, Spies HG (1986) Cyclic ovarian function in a male macaque: additional evidence for a lack of sexual differentiation in the physiological mechanisms that regulate the cyclic release of gonadotropins in primates. Endocrinology 118:2608–2610

    PubMed  CAS  Google Scholar 

  • Olsen RW (1981) GABA-benzodiazopine-barbiturate interactions. J Neurochem 37:1–13

    PubMed  CAS  Google Scholar 

  • Pengelley ET (ed) (1974) Circannual clocks. Academic Press, London New York, pp 523

    Google Scholar 

  • Pengelley ET, Asmundson SJ (1974) Circannual rhythmicity in hibernating mammals. In: Pengelley ET (ed) Circannual clocks. Academic Press, London New York, pp 95–160

    Google Scholar 

  • Pfaff DW (1980) Estrogens and brain function. Springer, Berlin Heidelberg New York, pp 281

    Google Scholar 

  • Pittendrigh CS (1958) Perspectives in the study of biological clocks. Symp Perspect Mar Biol. Univ Calif Press, Berkeley, pp 239–268

    Google Scholar 

  • Pittendrigh CS (1981) Circadian organization and the photoperiodic phenomena. In: Follett BK, Follett DE (eds) Biological clocks in seasonal reproductive cycles. Wright, Bristol, pp 1–35

    Google Scholar 

  • Pittendrigh CS, Minis (1964) The entrainment of circadian oscillations by light and their role as photoperiodic clocks. Am Nat 68:261–294

    Google Scholar 

  • Plant TM (1981) Time courses of concentrations of circulating gonadotropin, prolactin, testosterone and Cortisol in adult male rhesus monkeys (Macaca mulatto) throughout the 24 hour light-dark cycle. Biol Reprod 25:244–252

    PubMed  CAS  Google Scholar 

  • Plant TM (1982) Effects of orchidectomy and testosterone replacement treatment on pulsatile luteinizing hormone secretion in the adult rhesus monkey (Macaca mulatto). Endocrinology 110:1905–1913

    PubMed  CAS  Google Scholar 

  • Plant TM (1986) Gonadal regulation of hypothalamic gonadotropin-releasing hormone release in primates. Endocrinol Rev 7:75–88

    CAS  Google Scholar 

  • Plant TM, Dubey AK (1984) Evidence from the rhesus monkey (Macaca mulatto) for the view that negative feedback control of luteinizing hormone secretion by the testis is mediated by a deceleration of hypothalamic gonadotropin-releasing hormone pulse frequency. Endocrinology 115: 2145–2153

    PubMed  CAS  Google Scholar 

  • Plant TM, Moossy J, Hess DJ, Nakai Y, McComack JT, Knobil E (1979) Further studies on the effects of lesions in the rostral hypothalamus on gonadotropin secretion in the female rhesus monkey (Macaca mulatto). Endocrinology 105:465–473

    PubMed  CAS  Google Scholar 

  • Raeside JI, McDonald MF (1959) Seasonal changes in the oestrous response by the ovariectomized ewe to progesterone and oestrogen. Nature (London) 184:458–459

    CAS  Google Scholar 

  • Raisman G, Brown-Grant K (1977) The ‘suprachiasmatic syndrom’: endocrine and behavioural abnormalities following lesions of the suprachiasmatic nuclei on the female rat. Proc R Soc London Ser B 198:297–314

    CAS  Google Scholar 

  • Reardon TF, Robinson TJ (1961) Seasonal variation in the reactivity to oestrogen of the ovariectomized ewe. Aust J Agric Res 12:320–326

    Google Scholar 

  • Reiter RJ (1980) The pineal, vol 5. Eden Press, St Albans, p 105

    Google Scholar 

  • Reppert SM, Artman HG, Swaminathan S, Fisher DA (1981) Vasopressin exhibits a rhythmic daily pattern in cerebrospinal fluid but not blood. Science 213:1256–1257

    PubMed  CAS  Google Scholar 

  • Reppert SM, Schwartz WJ, Uhl GR (1987) Arginine vasopressin: a novel peptide rhythm in cerebrospinal fluid. Trends Neurosci 10:76–80

    CAS  Google Scholar 

  • Reynolds RL, Van Horn RN (1977) Induction of estrus in intact Lemur Catta under photoinhibition of ovarian cycles. Physiol Behav 18:693–700

    PubMed  CAS  Google Scholar 

  • Richter CP A (1922) A behavioristic study of the activity of the rat. Comp Psychol Monogr 1:55–76

    Google Scholar 

  • Richter CP A (1965) Biological clocks in medicine and psychiatry. Thomas, Springfield

    Google Scholar 

  • Richter CPA (1967) Sleep and activity: their relation to the 24 hour clock. Proc Assoc Res Nerv Ment Dis 45:8–27

    CAS  Google Scholar 

  • Richter CPA (1970) Dependence of successful mating in rats on functioning of 24 hour clocks of the male and female. Comm Behav Biol A5:l -5

    Google Scholar 

  • Roberts AC, Martensz ND, Hastings MH, Herbert J (1985) Changes in photoperiod alter the daily rhythms of pineal melatonin content and hypothalamic β-endorphin content and the luteinizing hormone response to naloxone in the male Syrian hamster. Endocrinology 117:141–148

    PubMed  CAS  Google Scholar 

  • Rusak B (1981) Vertebrate behavioral rhythms. In: Aschoff J (ed) Handbook of behavioral neurobiology, vol 4. Biological rhythms. Plenum, New York London, pp 183–213

    Google Scholar 

  • Rusak B, Morion LP (1976) Testicular responses to photoperiod are blocked by lesions of the suprachiasmatic nuclei in golden hamsters. Biol Reprod 15:366–374

    PubMed  CAS  Google Scholar 

  • Rusak B, Zucker I (1975) Biological rhythms and animal behavior. Annu Rev Psychol 26:137–171

    PubMed  CAS  Google Scholar 

  • Rusak B, Zucker I (1979) Neural regulation of circadian rhythms. Physiol Rev 59:449–526

    PubMed  CAS  Google Scholar 

  • Sadleir RMFS (1969) The ecology of reproduction in wild and domestic mammals. Methuen, London

    Google Scholar 

  • Sarkar DK, Chiappa SA, Fink G, Sherwood NM (1976) Gonadotropin-releasing hormone surge in pro-oestrous rats. Nature (London) 264:461–463

    CAS  Google Scholar 

  • Schwartz WJ, Reppert SM (1985) Neural regulation of the circadian vasopressin rhythm in cerebrospinal fluid: a pre-eminent role for the suprachiasmatic nuclei. J Neurosci 5:2771–2778

    PubMed  CAS  Google Scholar 

  • Schwartz WJ, Davidsen LC, Smith CB (1980) In vivo metabolic activity of a putative circadian oscillator, the rat suprachiasmatic nucleus. J Comp Neurol 188:157–167

    Google Scholar 

  • Seidl WF, Roth T, Roehrs T, Zorick F, Dement WC (1984) Treatment of a 12-hour shift of sleep schedule with benzodiazepines. Science 224:1262–1264

    Google Scholar 

  • Smals AGH, Kloppenborg PWC, Benraad ThJ (1976) Circannual cycle in plasma testosterone levels in man. J Clin Endocrinol Metab 42:979–982

    PubMed  CAS  Google Scholar 

  • Södersten P (1984) Sexual differentiation: do males differ from females in behavioral sensitivity to gonadal hormones? Sex differences in brain function. Prog Brain Res 61:257–270

    PubMed  Google Scholar 

  • Södersten P (1985) Estradiol-progesterone interactions in the reproductive behavior of female rats. In: Ganten D, Pfaff DW (eds) Current topics in neuroendocrinology, vol 5. Actions of progesterone on the brain. Springer, Berlin Heidelberg New York Tokyo, pp 141–174

    Google Scholar 

  • Södersten P, Eneroth P (1980) Neonatal treatment with antioestrogen increases the diurnal rhythmi-city in the sexual behaviour of adult male rats. J Endocrinol 85:331–339

    PubMed  Google Scholar 

  • Södersten P, Eneroth P (1981) Serum levels of oestradiol-17β and progesterone in relation to sexual behaviour in intact and ovariectomized rats. J Endocrinol 89:45–54

    PubMed  Google Scholar 

  • Södersten P, Eneroth P (1983) Reproductive neuroendocrine rhythms. In: Balthazart J, Pröve E, Gilles R (eds) Hormones and behaviour in higher vertebrates. Springer, Berlin Heidelberg New York, pp 170–193

    Google Scholar 

  • Södersten P, Eneroth P (1987) Dissociation between the ovarian factors controlling sexual receptivity and preovulatory secretion of LH in cyclic rats. J Endocrinol 112:133–138

    PubMed  Google Scholar 

  • Södersten P, Hansen S (1977) Effects of oestradiol and progesterone on the induction and duration of sexual receptivity in cyclic female rats. J Endocrinol 74:477–485

    PubMed  Google Scholar 

  • Södersten P, Eneroth P, Ekberg P-H (1980) Episodic fluctuations in concentrations of androgen in serum of male rats: possible relationship to sexual behaviour. J Endocrinol 87:463–471

    PubMed  Google Scholar 

  • Södersten P, Eneroth P, Hansen S (1981 a) Neuroendocrine control of daily rhythms in rat reproductive behavior. In: Fuxe K, Wetterberg L, Gustafsson J — Å (eds) Steroid hormone regulation of the brain. Pergamon, New York, ppp 301–315

    Google Scholar 

  • Södersten P, Hansen S, Srebro B (1981b) Suprachiasmatic lesions disrupt the daily rhythmicity in the sexual behaviour of normal male rats and of male rats treated neonatally with antioestrogen. J Endocrinol 88:125–130

    PubMed  Google Scholar 

  • Södersten P, Eneroth P, Pettersson A (1983 a) Episodic secretion of luteinizing hormone and androgen in male rats. J Endocrinol 97:145–153

    Google Scholar 

  • Södersten P, Henning M, Melin P, Lundin S (1983 b) Vasopressin alters female sexual behaviour by acting on the brain independent of alterations in blood pressure. Nature (London) 301:608–610

    Google Scholar 

  • Södersten P, De Vries GJ, Buijs RM, Melin P (1985 b) A daily rhythm in behavioral vasopressin sensitivity and in brain vasopressin concentrations. Neurosci Lett 58:37–41

    PubMed  Google Scholar 

  • Södersten P, Eneroth P, Mode A, Gustafsson J-Á (1985 b) Mechanisms of androgen-activated sexual behaviour in rats. In: Gilles R, Balthazart (eds) Neurobiology. Springer, Berlin Heidelberg New York Tokyo, pp 48–59

    Google Scholar 

  • Sofroniew MV (1985) Vasopressin, oxytocin and their related neurophysins. In: Björklund A, Hökfelt T (eds) Handbook of chemical neuroanatomy, vol 4. GABA and neuropeptides in the CNS. Elsevier, Amsterdam, pp 93–165

    Google Scholar 

  • Sofroniew MV, Weindl A (1978) Projections from the parvocellular vasopressin- and neurophysin-containing neurons of the suprachiasmatic nucleus. J Comp Neurol 153:391–4429

    CAS  Google Scholar 

  • Steiner RA, Bremner WJ, Clifton DK (1982) Regulation of luteinizing hormone pulse frequency and amplitude by testosterone in the adult male rat. Endocrinology 111:2055–2061

    PubMed  CAS  Google Scholar 

  • Stephan FK (1983) Circadian rhythm dissociation induced by periodic feeding in rats with suprachiasmatic lesions. Behav Brain Res 7:81–98

    PubMed  CAS  Google Scholar 

  • Stephan FK, Zucker I (1972) Circadian rhythms in drinking behavior and locomotor activity of rats are eliminated by hypothalamic lesions. Proc Natl Acad Sci USA 69:1583–1586

    PubMed  CAS  Google Scholar 

  • Stephan FK, Berkeley KJ, Moss RL (1981) Efferent connections of the rat suprachiasmatic nucleus. Neuroscience 12:2625–2641

    Google Scholar 

  • Stetson MH, Watson-Whitmyre M (1976) Nucleus suprachiasmaticus — the biological clock in the hamster? Science 191:197–199

    PubMed  CAS  Google Scholar 

  • Stetson MH, Watson-Whitmyre M (1977) The neural clock regulating estrous cyclicity in hamsters: gonadotropin release following barbiturate blockade. Biol Reprod 16:536–542

    PubMed  CAS  Google Scholar 

  • Stetson MH, Matt KS, Watson-Whitmyre M (1976) Photoperiodism and reproduction in golden hamsters: circadian organisation and the termination of photorefractoriness. Biol Reprod 14:531–537

    PubMed  CAS  Google Scholar 

  • Swann JM, Turek FW (1985) Multiple circadian oscillators regulate the timing of behavioral and endocrine rhythms in female golden hamsters. Science 228:898–890

    PubMed  CAS  Google Scholar 

  • Turek FW (1985) Circadian neural rhythms in mammals. Annu Rev Physiol 47:49–64

    PubMed  CAS  Google Scholar 

  • Turek FW, Losee SH (1979) Photoperiodic inhibition of the reproductive system: a prerequisite for the induction of the refractory period in hamsters. Biol Reprod 20:611–616

    PubMed  CAS  Google Scholar 

  • Turek FW, Losee-Olson S (1986) A benzodiazepine used in the treatment of insomnia phase-shifts the mammalian circadian clock. Nature (London) 321:167–168

    CAS  Google Scholar 

  • Van den Pool AN, Tsujimoto KL (1985) Neurotransmitters of the hypothalamic suprachiasmatic nucleus: immunocytochemical analysis of 25 neuronal antigens. Neuroscience 15:1049–1086

    Google Scholar 

  • Van Vugt DA, Diefenbach WD, Alston E, Ferin M (1985) Gonadotropin-releasing hormone pulses in third ventricular cerebrospinal fluid of ovariectomized rhesus monkeys: correlation with luteinizing hormone pulses. Endocrinology 117:1550–1558

    PubMed  Google Scholar 

  • Wallen EP, Turek FW (1981) Photoperiodicity in the male albino laboratory rat. Nature (London) 289:402–404

    CAS  Google Scholar 

  • Webb WB, Dube MG (1981) Temporal characteristics of sleep. In: Aschoff J (ed) Handbook of behavioral neurobiology, vol 4. Biological rhythms. Plenum, New York London, pp 499–522

    Google Scholar 

  • Wilson MW, Clark AS, Clyde V, Roy EJ (1983) Characterization of a pineal-independent diurnal rhythm in neural estrogen receptors and its possible behavioral consequences. Neuroendocrinology 37:14–22

    PubMed  CAS  Google Scholar 

  • Winfree AT (1982) Human body clocks and the timing of sleep. Nature (London) 297:23–227

    CAS  Google Scholar 

  • Yates CA, Herbert J (1976) Differential circadian rhythms in pineal and hypothalamic 5-HT induced by artificial photoperiods or melatonin. Nature (London) 262:219–221

    CAS  Google Scholar 

  • Yates CA, Herbert J (1979) The effects of different photoperiods on circadian 5-HT rhythms in regional brain areas and their modulation by pinealectomy, melatonin and oestradiol. Brain Res 176:311–326

    PubMed  CAS  Google Scholar 

  • Zatz M, Brownstein MJ (1979) Intraventricular carbachol mimics the effect of light on the circadian rhythm in the rat pineal gland. Science 203:358–361

    PubMed  CAS  Google Scholar 

  • Zatz M, Herkenham MA (1981) Intraventricular carbachol mimics the phase-shifting effect of light on the circadian rhythm of wheel-running activity. Brain Res 212:234–238

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Södersten, P. (1989). Hormonal and Behavioral Rhythms Related to Reproduction. In: Balthazart, J. (eds) Molecular and Cellular Basis of Social Behavior in Vertebrates. Advances in Comparative and Environmental Physiology, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73827-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73827-2_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-73829-6

  • Online ISBN: 978-3-642-73827-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics