Skip to main content

Translocation Along Microtubules in Insect Ovaries

  • Chapter

Part of the book series: Progress in Molecular and Subcellular Biology ((PMSB,volume 10))

Abstract

The study of microtubule-associated intracellular translocation is, at present, one of the most exciting areas in cell biology. Most of the research has focussed on the translocation which occurs along nerve axons, but other asymmetric cells, such as chromatophores and various protozoa, have also been studied extensively, and the phenomenon probably occurs to some extent in all cells. It is particularly emphasized too in the ovaries of certain insects, and this is the subject of the present chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams TS, Eide PE (1972) A method for the in vitro stimulation of house fly egg development with a juvenile analog. Gen Comp Endocrinol 18:12–21

    Article  PubMed  CAS  Google Scholar 

  • Allen RD, Allen NS (1983) Video-enhanced microscopy with a computer frame memory. J Microsc 129:3–17

    Article  PubMed  CAS  Google Scholar 

  • Allen RD, Allen NS, Travis JL (1981) Video-enhanced contrast, differential interference contrast (AVEC-DIC) microscopy: a new method capable of analyzing microtubule-related motility in the reticulopodial network of Allogromia laticollaris. Cell Motil 1:291–302

    Article  PubMed  CAS  Google Scholar 

  • Allen RD, Weiss DG, Hayden JH, Brown DT, Fujiwake H, Simpson M (1985) Gliding movement of and bidirectional transport along single native microtubules from squid axoplasm: evidence for an active role of microtubules in cytoplasmic transport. J Cell Biol 100:1736–1752

    Article  PubMed  CAS  Google Scholar 

  • Amos LA (1979) Structure of microtubules. In: Roberts K, Hyams JS (eds) Microtubules. Academic Press, London

    Google Scholar 

  • Brady ST (1985) A novel brain ATPase with properties expected for the fast axonal transport motor. Nature 317:73–75

    Article  PubMed  CAS  Google Scholar 

  • Brunt AM (1970) Extensive system of microtubules in the ovariole of Dysdercus fasciatus Signoret (Heteroptera: Pyrrhocoridae). Nature 228:80–81

    Article  PubMed  CAS  Google Scholar 

  • Büning J (1979) The telotrophic nature of ovarioles of polyphage Coleoptera. Zoomorphologie 93:51–57

    Article  Google Scholar 

  • Cohn SA, Ingold AL, Scholey JM (1987) Correlation between the ATPase and microtubule translocating activities of sea urchin egg kinesin. Nature 328:160–163

    Article  PubMed  CAS  Google Scholar 

  • Collins CA, Vallee RB (1986) Characterization of the sea-urchin egg microtubule-activated ATPase. J Cell Sci Supp 5:197–204

    CAS  Google Scholar 

  • Davenport R (1976) Transport of ribosomal RNA into the oocytes of the milkweed bug, On-copeltus fasciatus. J Insect Physiol 22:925–926

    Article  PubMed  CAS  Google Scholar 

  • Dittmann F, Ehni R, Engels W (1981) Bioelectric aspects of the hemipteran telotrophic ovariole (Dysdercus intermedius). Roux’s Arch Dev Biol 190:221–225

    Google Scholar 

  • Dittmann F, Weiss DG, Münz A (1987) Movement of mitochondria in the ovarian trophic cord of Dysdercus intermedius(Heteroptera) resembles nerve axonal transport. Roux’s Arch Dev Biol 196:401–413

    Article  Google Scholar 

  • Gilbert SP, Allen RD, Sloboda RD (1985) Translocation of vesicles from squid axoplasm on flagellar microtubules. Nature 315:245–248

    Article  PubMed  CAS  Google Scholar 

  • Gilbert SP, Sloboda RD (1986) Identification of a MAP 2-like ATP-binding protein associated with axoplasmic vesicles that translocate on isolated microtubules. J Cell Biol 103:947–956

    Article  PubMed  CAS  Google Scholar 

  • Gutzeit HO (1986) Transport of molecules and organelles in meroistic ovarioles of insects. Differentiation 31:155–165

    Article  CAS  Google Scholar 

  • Hayden JH, Allen RD, Goldman RD (1983) Cytoplasmic transport in keratocytes: direct visualization of particle translocation along microtubules. Cell Motil 3:1–19

    Article  PubMed  CAS  Google Scholar 

  • Hollenbeck PJ, Chapman K (1986) A novel microtubule-associated protein from mammalian nerve shows ATP-sensitive binding to microtubules. J Cell Biol 103:1539–1545

    Article  PubMed  CAS  Google Scholar 

  • Huebner E, Anderson E (1970) The effects of vinblastine sulfate on the microtubular organization of the ovary of Rhodnius prolixus. J Cell Biol 46:191–198

    Article  PubMed  CAS  Google Scholar 

  • Huebner E, Gutzeit H (1986) Nurse cell-oocyte interaction: a new F-actin mesh associated with the microtubule-rich core of an insect ovariole. Tissue Cell 18:753–764

    Article  PubMed  CAS  Google Scholar 

  • Hyams JS, Stebbings H (1977) The distribution and function of microtubules in nutritive tubes. Tissue Cell 9:537–545

    Article  PubMed  CAS  Google Scholar 

  • Hyams JS, Stebbings H (1979a) The formation and breakdown of nutritive tubes - massive microtubular organelles associated with cytoplasmic transport. J Ultrastruct Res 68:46–57

    Article  PubMed  CAS  Google Scholar 

  • Hyams JS, Stebbings H (1979b) The mechanism of microtubule associated cytoplasmic transport. Isolation and preliminary characterisation of a microtubule transport system. Cell Tissue Res 196:103–116

    Article  PubMed  CAS  Google Scholar 

  • Inoue S (1986) Video microscopy. Plenum, New York

    Google Scholar 

  • Inoue S, Tilney LG (1982) Acrosomal reaction of Thy one sperm. I. Changes in the sperm head visualized by high resolution video microscopy. J Cell Biol 93:812–819

    Article  PubMed  CAS  Google Scholar 

  • King RC, Blining J (1984) The origin and functioning of insect oocytes and nurse cells. Comp Insect Physiol Biochem Pharmacol 1:37–82

    Google Scholar 

  • Koonce MP, Euteneuer U, Schliwa M (1986) Reticulomyxa: a new model system of intracellular transport. J Cell Sci Suppl 5:145–159

    PubMed  CAS  Google Scholar 

  • Koszka C, Foisner R, Seyfert HM, Wiche G (1987) Isolation of a Ca2+-protease resistant high Mr microtubule binding protein from mammalian brain: characterization of properties partially expected for a dynein-like molecule. Protoplasma 138:54–61

    Article  CAS  Google Scholar 

  • Kuznetsov SA, Gelfand VI (1986) Bovine brain kinesin is a microtubule-activated ATPase. Proc Natl Acad Sci USA 83:8530–8534

    Article  PubMed  CAS  Google Scholar 

  • Lasek RJ, Brady ST (1985) Attachment of transported vesicles to microtubules in axoplasm is facilitated by AMP-PNP. Nature 316:645–647

    Article  PubMed  CAS  Google Scholar 

  • Lubbock J (1859) On the ova and pseudova of insects. Philos Trans R Soc Lond 149:341–369

    Article  Google Scholar 

  • Macgregor HC, Stebbings H (1970) A massive system of microtubules associated with cytoplasmic movement in telotrophic ovarioles. J Cell Sci 6:431–449

    PubMed  CAS  Google Scholar 

  • Mays U (1972) Stofftransport im Ovar von Pyrrhocoris apterus L. Z Zellforsch 123:395–410

    Article  PubMed  CAS  Google Scholar 

  • Schnapp BJ, Vale RD, Sheetz MP, Reese TS (1985) Single microtubules from squid axoplasm support bidirectional movement of organelles. Cell 40:455–462

    Article  PubMed  CAS  Google Scholar 

  • Sharma KK, Stebbings H (1985) Electrophoretic characterization of an extensive microtubule-associated transport system linking nutritive cells and oocytes in the telotrophic ovarioles of Notonecta glauca. Cell Tissue Res 242:383–389

    Article  CAS  Google Scholar 

  • Stebbings H (1981) Observations on cytoplasmic transport along ovarian nutritive tubes of polyphagous coleopterans. Cell Tissue Res 220:153–161

    Article  PubMed  CAS  Google Scholar 

  • Stebbings H (1986) Cytoplasmic transport and microtubules in telotrophic ovarioles of hemipteran insects. Int Rev Cytol 101:101–123

    Article  Google Scholar 

  • Stebbings H, Hunt C (1982) The nature of the clear zone around microtubules. Cell Tissue Res 227:609–617

    Article  PubMed  CAS  Google Scholar 

  • Stebbings H, Hunt C (1983) Microtubule polarity in the nutritive tubes of insect ovarioles. Cell Tissue Res 233:133–141

    Article  PubMed  CAS  Google Scholar 

  • Stebbings H, Hunt C (1987) The translocation of mitochondria along insect ovarian microtubules from isolated nutritive tubes: a simple reactivated model. J Cell Sci 88:641–648

    PubMed  Google Scholar 

  • Stebbings H, Sharma K, Hunt C (1985) Protein turnover in the cytoplasmic transport system within an insect ovary — a clue to the mechanism of microtubule-associated transport. FEBS Lett 193:22–26

    Article  PubMed  CAS  Google Scholar 

  • Stebbings H, Sharma KK, Hunt C (1986) Microtubule-associated proteins in the ovaries of hemipteran insects and their association with the microtubule transport system linking nutritive cells and oocytes. Eur J Cell Biol 42:135–139

    CAS  Google Scholar 

  • Vale RD, Reese TS, Sheetz MP (1985a) Identification of a novel force-generating protein, kinesin, involved in microtubule-based motility. Cell 42:39–50

    Article  PubMed  CAS  Google Scholar 

  • Vale RD, Schnapp BJ, Mitchison T, Steuer E, Reese TS, Sheetz MP (1985b) Different axop-lasmic proteins generate movement in opposite directions along microtubules in vitro. Cell 43:623–632

    Article  PubMed  CAS  Google Scholar 

  • Vale RD, Schnapp BJ, Reese TS, Sheetz MP (1985 c) Movement of organelles along filaments dissociated from the axoplasm of the squid giant axon. Cell 40:449–454

    Article  PubMed  CAS  Google Scholar 

  • Weiss DG (1986) Visualization of the living cytoskeleton by video-enhanced microscopy and digital image processing. J Cell Sci Suppl 5:1–15

    PubMed  CAS  Google Scholar 

  • Woodruff RI, Anderson KL (1984) Nutritive cord connection and dye-coupling of the follicular epithelium to the growing oocytes in the telotrophic ovarioles in Oncopeltus fasciatus, the milkweed bug. Roux’s Arch Dev Biol 193:158–163

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Stebbings, H. (1988). Translocation Along Microtubules in Insect Ovaries. In: Jeanteur, J., Kuchino, Y., MÜller, W.E.G., Paine, P.L. (eds) Progress in Molecular and Subcellular Biology. Progress in Molecular and Subcellular Biology, vol 10. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73599-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73599-8_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-73601-8

  • Online ISBN: 978-3-642-73599-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics