Skip to main content

Growth factors, growth factor response elements, and the cardiac phenotype

  • Conference paper
Book cover Cardiac Adaptation in Heart Failure

Summary

Fibroblast growth factors (FGF) and type β-1 transforming growth factor (TGFβ1) are pleiotropic regulatory peptides which are expressed in myocardium in a precise developmental and spatial program and are up-regulated, in the adult heart, by ischemia or a hemodynamic burden. The accumulation of trophic factors after aortic banding supports the hypothesis that autocrine or paracrine pathways might function to mediate, in part, the consequences of mechanical load. Our laboratory has demonstrated that cardiac muscle cells are targets for the action of peptide growth factors and, more specifically, that modulation of the cardiac phenotype by basic FGF (bFGF) and TGFβ 1 strongly resembles the induction of fetal cardiac genes — including skeletal α-actin (SkA), β-myosin heavy chain, and atrial natriuretic factor — which are characteristic of pressure-overload hypertrophy. Unexpectedly, and despite effects like those of bFGF on five other cardiac genes, acidic FGF (aFGF) was found to repress, rather than stimulate, SkA transcription in neonatal cardiac muscle cells. The proximal 200 nucleotides of a heterologous SkA promoter were sufficient for basal tissue-specific transcription, for induction by bFGF, and for inhibition by aFGF. Thus, both positive and negative regulation by peptide growth factors can be localized to the proximal SkA promoter. Full promoter activity required each of three CC[A/T]6GG motifs similar to the serum response element (SRE) for activation of the c-fos proto-oncogene, as previously shown for SkA transcription in a skeletal muscle background. The most proximal SRE, SRE1, was sufficient in the absence of other SkA promoter sequences for efficient tissue-specific expression in cardiac myocytes (versus cardiac fibroblasts), and was stimulated by bFGF to the same extent as the full-length promoter and endogeneous gene. Despite its ability to repress the SkA promoter, aFGF had no significant effect on SRE1. Both FGFs up-regulated the canonical fos SRE, to a comparable degree. Thus, SRE1 can discriminate between signals generated in cardiac myocytes by bFGF and aFGF. In cardiac myocyte extracts, two predominant proteins contact SRE1: serum response factor (SRF) and a second protein, F-ACT-1. Thus, serum response factor and F-ACT-1 are candidate trans-acting factors for basal transcription of the SkA gene in cardiac muscle cells and for induction of SkA by bFGF and, potentially, other trophic signals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bergsma DJ, Grichnik JM, Gossett LM, Schwartz RJ (1986) Delimitation and characterization of cis-acting DNA sequences required for the regulated expression and transcriptional control of the chicken skeletal alpha-actin gene. Mol Cell Biol 6:2462–2475

    PubMed  CAS  Google Scholar 

  2. Black FB, Packer SE, Parker TG, Michael LH, Roberts R, Schwartz RJ, Schneider MD (1991) The vascular smooth muscle α-actin gene is reactivated during cardiac hypertrophy produced by load. J Clin Invest 88:1581–1588

    Article  PubMed  CAS  Google Scholar 

  3. Boxer LM, Prywes R, Roeder RG, Kedes L (1989) The sarcomeric actin CArG-binding factor is indistinguishable from the c-fos serum response factor. Mol Cell Biol 9:515–522

    PubMed  CAS  Google Scholar 

  4. Brennan TJ, Edmondson DG, Li L, Olson EN (1991) Transforming growth factor-beta represses the actions of myogenin through a mechanism independent of DNA binding. Proc Natl Acad Sci USA 88:3822–3826

    Article  PubMed  CAS  Google Scholar 

  5. Caffrey JM, Brown AM, Schneider MD (1987) Mitogens and transfected oncogenes can selectively block the expression of voltage-gated ion channels. Science 236:570–574

    Article  PubMed  CAS  Google Scholar 

  6. Chow KL, Hogan ME, Schwartz RJ (1991) Phased cis-acting promoter elements interact short distances to direct avian skeletal alpha-actin gene transcription. Proc Natl Acad Sci USA 88:1301–1305

    Article  PubMed  CAS  Google Scholar 

  7. Chow KL, Schwartz RJ (1990) A combination of closely associated positive and negative cis-acting promoter elements regulates transcription of the skeletal alpha-actin gene. Mol Cell Biol 10:528–538

    PubMed  CAS  Google Scholar 

  8. Clegg CH, Linkhart TA, Olwin BB, Hauschka SD (1987) Growth factor control of skeletal muscle differentiation: commitment to terminal differentiation occurs in G1 phase and is repressed by fibroblast growth factor. J Cell Biol 105:949–956

    Article  PubMed  CAS  Google Scholar 

  9. Englemann GL, Dionne CA, Jaye MC (1991) Acidic fibroblast growth factor heart development and capillary angiogenesis. In: Baird A, Klagsbrun M (eds) The Fibroblast Growth Factor Family. Ann NY Acad Sci 638:

    Google Scholar 

  10. Farnsworth CL, Marshall MS, Gibbs JB, Stacey DW, Feig LA (1991) Preferential inhibition of the oncogenic form of RasH by mutations in the GAP binding/“effector” domain. Cell 64:625–633

    Article  PubMed  CAS  Google Scholar 

  11. Gilman MZ, Wilson RN, Weinberg RA (1986) Multiple protein-binding sites in the 5’-flanking region regulate c-fos expression. Mol Cell Biol 6:4305–4316

    PubMed  CAS  Google Scholar 

  12. Gius D, Cao XM, Rauscher FJ, Cohen DR, Curran T, Sukhatme VP (1990) Transcriptional activation and repression by fos are independent functions — The C-terminus represses immediate-early gene expression via CArG elements. Mol Cell Biol 10:4243–4255

    PubMed  CAS  Google Scholar 

  13. Herrera RE, Shaw PE, Nordheim A (1989) Occupation of the c-fos serum response element in vivo by a multi-protein complex is unaltered by growth factor induction. Nature 340:68–70

    Article  PubMed  CAS  Google Scholar 

  14. Imamura T, Engleka K, Zhan X, Tokita Y, Forough R, Roeder D, Jackson A, Maier JAM, Hla T, Maciag T (1990) Recovery of mitogenic activity of a growth factor mutant with a nuclear translocation sequence. Science 249:1567–1570

    Article  PubMed  CAS  Google Scholar 

  15. Izumo S, Lompre AM, Matsuoka R, Koren G, Schwartz K, Nadal-Ginard B, Mahdavi V (1987) Myosin heavy chain messenger RNA and protein isoform during cardiac hypertrophy: Interaction between hemodynamic and thyroid hormone-induced signals. J Clin Invest 79:970–977

    Article  PubMed  CAS  Google Scholar 

  16. Izumo S, Nadal-Ginard B, Mahdavi V (1988) Proto-oncogene induction and repro-gramming of cardiac gene expression produced by pressure overload. Proc Natl Acad Sci USA 85:339–343

    Article  PubMed  CAS  Google Scholar 

  17. Jamal S, Ziff E (1990) Transactivation of c-fos and β-actin genes by raf as a step in early response to transmembrane signals. Nature 344:463–466

    Article  PubMed  CAS  Google Scholar 

  18. Johnson DE, Lee PE, Lu J, Williams LT (1990) Diverse forms of a receptor for acidic and basic fibroblast growth factors. Mol Cell Biol 10:4728–4736

    PubMed  CAS  Google Scholar 

  19. Kardami E, Fandrich RR (1989) Heparin-binding mitogen(s) in the heart; in search of origin and function. In: Kedes LH, Stockdale FE (eds) Cellular and Molecular Biology of Muscle Development. Alan R Liss Inc, New York, pp 315–325

    Google Scholar 

  20. Komuro I, Kaida T, Shibazaki Y, Kurabayashi M, Katoh Y, Hoh E, Takaku F, Yazaki Y (1990) Stretching cardiac myocytes stimulates protooncogene expression. J Biol Chem 265:3595–3598

    PubMed  CAS  Google Scholar 

  21. Komuro I, Katoh Y, Kaida T, Shibazaki Y, Kurabayashi M, Hoh E, Takaku F, Yazaki Y (1991) Mechanical loading stimulates cell hypertrophy and specific gene expression in cultured rat cardiac myocytes. Possible role of protein kinase C activation. J Biol Chem 266:1265–1268

    PubMed  CAS  Google Scholar 

  22. Komuro I, Kurabayashi M, Shibazaki Y, Takak F, Yazaki Y (1989) Molecular cloning and characterization of Ca2+ + Mg2+-dependent adenosine triphosphatase from rat cardiac sarcoplasmic reticulum. J Clin Invest 83:1102–1108

    Article  PubMed  CAS  Google Scholar 

  23. Komuro M, Kurabayashi M, Takaku F, Yazaki Y (1988) Expression of cellular oncogenes in the myocardium during the developmental stage and pressure-overload hypertrophy of the rat heart. Circ Res 62:1075–1079

    PubMed  CAS  Google Scholar 

  24. Konieczny SF, Drobes BL, Menke SL, Taparowsky EJ (1989) Inhibition of myogenic differentiation by the H-ras oncogene is associated with the down-regulation of the MyoD1 gene. Oncogene 4:473–481

    PubMed  CAS  Google Scholar 

  25. Lamb NIC, Fernandez A, Toukine N, Jeantuer P, Blanchard J-M (1990) Demonstration in living cells of an intragenic negative regulatory element within the rodent c-fos gene. Cell 61:485–496

    Article  PubMed  CAS  Google Scholar 

  26. Lassar AB, Thayer JM, Overell RW, Weintraub H (1989) Transformation by activated ras or fos prevents myogenesis by inhibiting expression of MyoD1. Cell 58:659–667

    Article  PubMed  CAS  Google Scholar 

  27. Lee T-C, Chow K-L, Fang P, Schwartz RJ (1991) Activation of skeletal α-actin gene transcription: The cooperative formation of serum response factor binding complexes over positive cis-acting promoter SREs displaces a negative acting nuclear factor enriched in replicating myoblasts and nonmyogenic cells. Mol Cell Biol 11:5090–5100

    PubMed  CAS  Google Scholar 

  28. Lucibello FC, Lowag C, Neuberg M, Müller R (1989) Trans-repression of the mouse c-fos promoter: A novel mechanism of fos-mediated trans-regulation. Cell 59:999–1007

    Article  PubMed  CAS  Google Scholar 

  29. Manak JR, Prywes R (1991) Mutation of serum response factor phosphorylation sites and the mechanism by which its DNA-binding activity is increased by casein kinase-II. Mol Cell Biol 11:3652–3659

    PubMed  CAS  Google Scholar 

  30. Metz R, Ziff E (1991) cAMP stimulates the C/EBP-related transcription factor rNFIL-6 to trans-locate to the nucleus and induce c-fos transcription. Genes & Dev 5:1754–1766

    Article  CAS  Google Scholar 

  31. Miki T, Fleming TP, Bottaro DP, Rubin JS, Ron D, Aaronson SA (1991) Expression cDNA cloning of the KGF receptor by creation of a transforming autocrine loop. Science 251:72–75

    Article  PubMed  CAS  Google Scholar 

  32. Miwa T, Kedes L (1987) Duplicated CArG box domains have positive and mutually regulatory roles in expression of the human alpha-cardiac actin. Mol Cell Biol 7:2803–2813

    PubMed  CAS  Google Scholar 

  33. Mulvagh SL, Michael LH, Perryman MB, Roberts R, Schneider MD (1987) A hemodynamic load in vivo induces cardiac expression of the cellular oncogene, c-myc. Biochem Biophys Res Commun 147:627–636

    Article  PubMed  CAS  Google Scholar 

  34. Nadal-Ginard B, Mahdavi V (1989) Molecular basis of cardiac performance: Plasticity of the myocardium generated through protein isoform switches. J Clin Invest 84:1693–1700

    Article  PubMed  CAS  Google Scholar 

  35. Olson EN (1990) MyoD family: a paradigm for development? Genes Dev 4:1454–1461

    Article  PubMed  CAS  Google Scholar 

  36. Olson EN, Spizz G, Tainsky MA (1987) The oncogeneic forms of N-ras or H-ras prevent skeletal myoblast differentiation. Mol Cell Biol 7:2104–2111

    PubMed  CAS  Google Scholar 

  37. Olson EN, Sternberg E, Hu JS, Spizz G, Wilcox C (1986) Regulation of myogenic differentiation by type beta transforming growth factor. J Cell Biol 103:1799–1805

    Article  PubMed  CAS  Google Scholar 

  38. Olwin BB, Hauschka SD (1990) Fibroblast growth factor receptor levels decrease during chick embryogenesis. J Cell Biol 110:503–509

    Article  PubMed  CAS  Google Scholar 

  39. Pari G. Jardine K, Mcburney MW (1991) Multiple CarG boxes in the human cardiac actin gene promoter required for expression in embryonic cardiac muscle cells developing in vitro from embryonal carcinoma cells. Mol Cell Biol 11:4796–4803

    PubMed  CAS  Google Scholar 

  40. Parker TG, Chow K-L, Schwartz RJ, Schneider MD (1990) Differential regulation of skeletal α-actin transcription in cardiac muscle by two fibroblast growth factors. Proc Natl Acad Sci USA 87:7066–7070

    Article  PubMed  CAS  Google Scholar 

  41. Parker TG, Chow K-L, Schwartz RJ, Schneider MD (1992) Positive and negative control of the skeletal α-actin promoter in cardiac muscle: A proximal serum response element is sufficient for induction by basic FGF but not for inhibition by acidic FGF. J Biol Chem 267:3343–3350

    PubMed  CAS  Google Scholar 

  42. Parker TG, Packer SE, Schneider MD (1990) Peptide growth factors can provoke “fetal” contractile protein gene expression in rat cardiac myocytes. J Clin Invest 85:507–514

    Article  PubMed  CAS  Google Scholar 

  43. Parker TG, Schneider MD (1991) Growth factors, proto-oncogenes, and plasticity of the cardiac phenotype. Ann Rev Physiol 53:179–200

    Article  CAS  Google Scholar 

  44. Parlow MH, Bolender DL, Kokan-Moore NP, Lough J (1991) Localization of bFGF-like proteins as punctate inclusions in the pre-septation myocardium of the chicken embryo. Dev Biol 146:139–147

    Article  PubMed  CAS  Google Scholar 

  45. Partanen J, Makela TP, Eerola E, Korhonen J, Hirvonen H, Claessonwelsh L, Alitalo K (1991) FGFR-4, a novel acidic fibroblast growth factor receptor with a distinct expression pattern. EMBO J 10:1347–1354

    PubMed  CAS  Google Scholar 

  46. Payne PA, Olson EN, Hsiau P, Roberts R, Perryman MB, Schneider MD (1987) An activated c-Ha-ras allele blocks the induction of muscle-specific genes whose expression is contingent on mitogen withdrawal. Proc Natl Acad Sci USA 84:8956–8960

    Article  PubMed  CAS  Google Scholar 

  47. Ransone LJ, Visvader J, Wamsley P, Verma IM (1990) Trans-dominant negative mutants of Fos and Jun Proc Natl Acad Sci USA 87:3806–3810

    Article  PubMed  CAS  Google Scholar 

  48. Riggs KJ, Merrell KT, Wilson G, Calame K (1991) Common factor 1 is a transcriptional activator which binds in the c-myc promoter, the skeletal α-actin promoter, and the immunoglobulin heavy-chain enhancer. Mol Cell Biol 11:1765–1769

    PubMed  CAS  Google Scholar 

  49. Rockman HA, Ross RS, Harris AN, Knowlton KU, Steinhelper ME, Field LJ, Ross J, Chein KR (1991) Segregation of atrial-specific and inducible expression of an atrial natriuretic factor transgene in an invivo murine model of cardiac hypertrophy. Proc Natl Acad Sci USA 88:8277–8281

    Article  PubMed  CAS  Google Scholar 

  50. Ruzicka DL, Schwartz RJ (1988) Sequential activation of α-actin genes during avian cardiogenesis: vascular smooth muscle α-actin gene transcripts mark the onset of car-diomyocyte differentiation. J Cell Biol 107:2575–2586

    Article  PubMed  CAS  Google Scholar 

  51. Ryan WA Jr., Franza BR Jr., Gilman MZ (1989) Two distinct cellular phosphoproteins bind to the c-fos serum response element. EMBO J 8:1785–1792

    PubMed  CAS  Google Scholar 

  52. Santoro IM, Walsh K (1991) Natural and synthetic DNA elements with the CArG motif differ in expression and protein-binding properties. Mol Cell Biol 11:6296–6305

    PubMed  CAS  Google Scholar 

  53. Sartorelli V, Kedes L (1991) A MyoD binding site regulates the human cardiac alpha-actin gene promoter in primary cardiac cells. Circulation 84:11–531

    Google Scholar 

  54. Sartorelli V, Webster KA, Kedes L (1990) Muscle-specific expression of the cardiac alpha-actin gene requires MyoD1, CArG-box binding factor, and Spl. Genes & Dev 4:1811–1822

    Article  CAS  Google Scholar 

  55. Schneider MD, Parker TG (1990) Cardiac myocytes as targets for peptide growth factors. Circulation 81:1443–1456

    Article  PubMed  CAS  Google Scholar 

  56. Schneider MD, Parker TG (1991) Cardiac growth factors. Prog Growth Factor Res 3:1–26

    Article  PubMed  CAS  Google Scholar 

  57. Schwartz K, de la Bastie D, Bouveret P, Oliviero P, Alonso S, Buckingham M (1986) α-Skeletal muscle actin mRNAs accumulate in hypertrophied adult rat hearts. Circ Res 59:551–555

    PubMed  CAS  Google Scholar 

  58. Shaw PE, Schroter H, Nordheim A (1989) The ability of a ternary complex to form over the serum response element correlates with serum inducibility of the human c-fos promoter. Cell 56:563–572

    Article  PubMed  CAS  Google Scholar 

  59. Sheng M, Dougan ST, McFadden G, Greenberg ME (1988) Calcium and growth factor pathways of c-fos transcriptional activation require distinct upstream regulatory sequences. Mol Cell Biol 8:2787–2796

    PubMed  CAS  Google Scholar 

  60. Shih HT, Wathen MS, Bigo-Marshall H, Caffrey JM, Schneider MD (1990) Dihydropyri-dine receptor gene expression is regulated by inhibitors of myogenic differentiation and is relatively insensitive to denervation. J Clin Invest 85:781–789

    Article  PubMed  CAS  Google Scholar 

  61. Stacey DW, Feig LA, B GJ (1991) Dominant inhibitory Ras mutants selectively inhibit the activity of either cellular or oncogenic Ras Mol Cell Biol 11:4053–4064

    CAS  Google Scholar 

  62. Swynghedauw B (1990) Cardiac Hypertrophy and Failure. John Libbey & Co. Ltd., London

    Google Scholar 

  63. Taylor M, Treisman R, Garrett N, Mohun T (1989) Muscle-specific (CArG) and serum-responsive (SRE) promoter elements are functionally interchangeable in Xenopus embryos and mouse fibroblasts. Development 106:67–78

    PubMed  CAS  Google Scholar 

  64. Taylor MV (1991) A family of muscle gene promoter element (CArG) binding activities in Xenopus embryos: CArG/SRE discrimination and distribution during myogenesis. Nucleic Acids Res 19:2669–2675

    Article  PubMed  CAS  Google Scholar 

  65. Treisman R (1986) Identification of a protein-binding site that mediates transcriptional response of the c-fos gene to serum factors. Cell 46:567–574

    Article  PubMed  CAS  Google Scholar 

  66. Tuil D, Clergue N, Montarras D, Pinset C, Kahn A, Phan-Dinh-Tuy F (1990) CC Ar GG boxes, cis-acting elements with a dual specificity: Muscle-specific transcriptional activation and serum responsiveness. J Mol Biol 213:677–686

    Article  PubMed  CAS  Google Scholar 

  67. Walsh K (1989) Cross-binding of factors to functionally different promoter elements in c-fos and skeletal actin genes. Mol Cell Biol 9:2191–2201

    PubMed  CAS  Google Scholar 

  68. Weintraub H, Davis R, Tapscott S, Thayer M, Krause M, Benezra R, Blackwell TK, Turner D, Rupp R, Hollenberg S, Zhuang Y, Lassar A (1991) The myoD gene family: nodal point during specification of the muscle cell lineage. Science 251:761–766

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Dr. Dietrich Steinkopff Verlag GmbH & Co. KG, Darmstadt

About this paper

Cite this paper

Schneider, M.D., McLellan, W.R., Black, F.M., Parker, T.G. (1992). Growth factors, growth factor response elements, and the cardiac phenotype. In: Holtz, J., Drexler, H., Just, H. (eds) Cardiac Adaptation in Heart Failure. Steinkopff. https://doi.org/10.1007/978-3-642-72477-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-72477-0_4

  • Publisher Name: Steinkopff

  • Print ISBN: 978-3-642-72479-4

  • Online ISBN: 978-3-642-72477-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics