Skip to main content

Modulation of myocardial sarcoplasmic reticulum Ca++-ATPase in cardiac hypertrophy by angiotensin converting enzyme?

  • Conference paper
Cardiac Adaptation in Heart Failure

Summary

Myocardial hypertrophy in response to hemodynamic overload is an established risk factor for cardiovascular morbidity and mortality. Partially, this may be due to alterations in cardiac gene expression, resulting in a more fetal-like myocyte phenotype with a fragile Ca++-homeostasis. Depressed expression of the sarcoplasmic reticulum Ca++-ATPase is the hallmark of this overload phenotype, contributing to prolonged cytosolic Ca++-transients, disturbed diastolic relaxation, altered force-frequency relation, and probably, electrophysiologic instability with susceptibility to malignant arrhythmias. Since angiotensin II is a growth-promoting factor in several cellular systems, the local formation of angiotensin II within the myocardium might contribute to the trophic response and the phenotype shift of overloaded myocardium. Several observations are consistent with this hypothesis: the cardiac expression of ACE and angiotensinogen is enhanced in experimental myocardial overload and in human endstage congestive heart failure; prolonged observations of experimental cardiac overload with hypertrophy-induced putative normalisation of myocardial systolic wall stress demonstrated a renormalization of ventricular tissue ACE activity and of ventricular sarcoplasmic Ca++-ATPase expression and activity; normalizing ventricular tissue ACE activity in experimental cardiac overload by chronic nonhypotensive ACE inhibitor therapy caused a parallel partial normalization of hypertrophy and underexpression of sarcoplasmic CA++-ATPase. This partial normalization of myocyte Ca++-homeostasis in overload hypertrophy by nonhypotensive chronic ACE-inhibition is attenuated by concomitant chronic application of bradykinin-2 receptor blockade, indicating an involvement of altered bradykinin metabolism in the phenotype modulation due to chronic ACE inhibition. While these observations are consistent with a direct influence of local ACE activity on the sarcolasmic reticulum, the cell type contributing to the enhanced ACE expression in overload and the specific mechanism of this influence are unknown.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aceto JF, Baker KM (1990) [Sar1]angiotensin II receptor-mediated stimulation of protein synthesis in chick heart cells. Am J Physiol 258:H806–H813

    CAS  PubMed  Google Scholar 

  2. Admiraal PJJ, Derkx FHM, Danser AHJ, Pieterman H, Schalekamp MADH (1990) Metabolism and production of angiotensin I in different vascular beds in subjects with hypertension. Hypertension 15:44–55

    CAS  PubMed  Google Scholar 

  3. Admiraal PJJ, Derkx FHM, Danser AHJ, Pieterman H, Schalekamp MADH (1990) Intrarenal de novo production of angiotensin I in subjects with renal artery stenosis. Hypertension 16:555–563

    CAS  PubMed  Google Scholar 

  4. Anderson PG, Allars MA, Thomas GD, Bishop SP, Digerness SB (1990) Increased ischemic injury but decreased hypoxic injury in hypertrophied rat hearts. Circ Res 67:948–959

    CAS  PubMed  Google Scholar 

  5. Allgeier J, Goetz RM, Studer R, Reiniçke H, Holtz J (1992) Involvement of bradykinin in the cardioreparation by chronic quinapril in rats with hypertensive left ventricular hypertrophy (Abstr). Circulation (in press)

    Google Scholar 

  6. Aronow WS, Epstein S, Koenigsberg M (1990) Usefulness of echocardiographic left ventricular hypertrophy and silent ischemia in predicting new cardiac events in elderly patients with systemic hypertension or coronary artery disease. Angiology 41:189–193

    Article  CAS  PubMed  Google Scholar 

  7. Baker KM, Aceto JF (1990) Angiotensin II stimulation of protein synthesis and cell growth in chick heart cells. Am J Physiol 259:H610–H618

    CAS  PubMed  Google Scholar 

  8. Baker KM, Booz GW, Dostal DE (1992) Cardiac actions of angiotensin II: Role of an intracardiac renin-angiotensin system. Annu Rev Physiol 54:227–241

    Article  CAS  PubMed  Google Scholar 

  9. Baker KM, Chemin MI, Wixson SK, Aceto JF (1990) Renin-angiotensin system involvement in pressure-overload cardiac hypertrophy in rats. Am J Physiol 259:324–332

    Google Scholar 

  10. Baker KM, Dostal DE, Chemin MI, Wealand AL, Conrad KM (1991) Angiotensin II-mediated cardiac hypertrophy in adult rats (Abstr). J Cell Biochem 15C167

    Google Scholar 

  11. Bao G, Gohlke P, Qadri F, Unger T (1992) Chronic kinin receptor blockade attenuates the antihypertensive effect of ramipril. Hypertension 20:74–79

    CAS  PubMed  Google Scholar 

  12. Bao G, Qadri F, Stauss H, Gohlke P, Unger T (1991) Hoe 140, a highly potent and long acting bradykinin antagonist in conscious rats. Eur J Pharmacol 200:179–182

    Article  CAS  PubMed  Google Scholar 

  13. Beuckelmann DJ, Erdmann E (1992) Ca2+-currents and intracellular [Ca2+]i-transients in single ventricular myocytes isolated from terminally failing human myocardium. In: Hasenfuss G, Holubarsch C, Just H, Alpert NR (eds) Cellular and molecular alterations in the failing human heart, Steinkopff Verlag Darmstadt pp. 235–243

    Google Scholar 

  14. Bing O, Brooks WW, Conrad CH, Sen S, Perreault CL, Morgan JP (1991) Intracellular calcium transients in myocardium from spontaneously hypertensive rats during the transition to heart failure. Circ Res 68:1390–1400

    CAS  PubMed  Google Scholar 

  15. Campbell DJ (1985) The site of angiotensin production. J Hypertension 3:199–207

    Article  CAS  Google Scholar 

  16. Campbell DJ (1987) Circulating and tissue angiotensin system. J Clin Invest 79:1–6

    Article  CAS  PubMed  Google Scholar 

  17. Campbell DJ, Kladis A (1990) Simultaneous radioimmunoassay of six angiotensin peptides in arterial and venous plasma of man. J Hypertension 8:165–172

    Article  CAS  Google Scholar 

  18. Casale PN, Devereux RB, Milner M, Zullo G, Hershfield GA, Pickering TG, Laragh JH (1986) Value of echocardiographic measurement of left ventricular mass in predicting cardiovascular morbid events in hypertensive men. Ann Intern Med 105:173–178

    CAS  PubMed  Google Scholar 

  19. Chien KR, Knowlton KU, Zhu H, Chien S (1991) Regulation of cardiac gene expression during myocardial growth and hypertrophy. Molecular studies of an adaptive physiologic response (Review), FASEB J 5:3037–3046

    CAS  PubMed  Google Scholar 

  20. Cooper RS, Simmons BE, Castener A, Santhanam V, Ghali J, Mar M (1990) Left ventricular hypertrophy is associated with worse survival independent of ventricular function and number of coronary arteries severely narrowed. Am J Cardiol 65:441–445

    Article  CAS  PubMed  Google Scholar 

  21. De La Bastie D, Levitski D, Rappaport L, Mecardier JJ, Marotte F, Wisnewsky C, Brovkovich V, Schwartz K, Lompre AM (1990) Function of the sarcoplasmic reticulum and expression of its Ca2+-ATPase gene in pressure overload-induced cardiac hypertrophy in the rat. Circ Res 66:554–564

    PubMed  Google Scholar 

  22. Dzau VJ (1989) Multiple pathways of angiotensin production in the blood vessel wall: evidence, possibilities and hypotheses. J Hypertension 7:933–936

    Article  CAS  Google Scholar 

  23. Eberli FE, Apstein CS, Ngoy S, Lorell BH (1992) Exacerbation of left ventricular ischemic diastolic dysfunction by pressure-overload hypertrophy. Modification by specific inhibition of cardiac angiotensin converting enzyme. Circ Res 70:931–943

    CAS  PubMed  Google Scholar 

  24. El Amrani AIK (1991) Dual effect of angiotensin II and load on intrinsic myocardial contractility. Heart Failure 7:97–103

    Google Scholar 

  25. Finckh M, Hellmann W, Ganten D, Furtwängler A, Allgeier J, Boltz M, Holtz J (1991) Enhanced cardiac angiotensinogen gene expression and angiotensin converting enzyme activity in tachypacing-induced heart failure in rats. Basic Res Cardiol 86:303–316

    Article  CAS  PubMed  Google Scholar 

  26. Fozzard HA, January CT (1988) Delayed afterdepolarizations in heart muscle: mechanisms and relevance. Pharmacol Rev 40:219–227

    PubMed  Google Scholar 

  27. Foult JM, Tavolaro O, Antony I, Nitenberg A (1988) Direct myocardial and coronary effects of enalaprilat in patients with dilated cardiomyopathy: assessment by a bilateral intracoronary infusion technique. Circulation 77:337–344

    Article  CAS  PubMed  Google Scholar 

  28. Gaasch WH, Zile MR, Hoshino PK, Weinberg EO, Rhodes DR, Apstein CS (1990) Tolerance of the hypertrophic heart to ischemia: Studies in compensated and failing dog hearts with pressure overload hypertrophy. Circulation 81:1644–1653

    Article  CAS  PubMed  Google Scholar 

  29. Gwathmey JK, Copelas L, MacKinnon R, Schoen FJ, Feldman MD, Grossman W, Morgan JP (1987) Abnormal intracellular calcium handling in myocardium from patients with end-stage heart failure. Circ Res 61:70–76

    CAS  PubMed  Google Scholar 

  30. Gwathmey JK, Slawsky MT, Hajjar RJ, Briggs GM, Morgan JP (1990) Role of intracellular calcium handling in force interval relationship of human ventricular myocardium. J Clin Invest 85:1599–1613

    Article  CAS  PubMed  Google Scholar 

  31. Hasenfuss G, Mulieri LA, Leavitt BJ, Allen PD, Haeberle JR, Alpert NR (1992) Alteration of contractile function and excitation-contraction coupling in dilated cardiomyopathy. Circ Res 70:1225–1232

    CAS  PubMed  Google Scholar 

  32. Hirsch AT, Talsness CE, Schunkert H, Paul M, Dzau VJ (1991) Tissue-specific activation of cardiac angiotensin converting enzyme in experimental heart failure. Circ Res 69:475–482

    CAS  PubMed  Google Scholar 

  33. Hock FJ, Wirth K, Linz W, Gerhards HJ, Wiemer G, Henke ST, Breipohl KG, König W, Knolle J, Schölkens BA (1991) Hoe 140 a new potent and long acting bradykinin-antagonist: In vitro studies. Br J Pharmacol 102:769–773

    CAS  PubMed  Google Scholar 

  34. Holmberg SRM, Williams AJ (1989) Single channels recordings from human cardiac sarcoplasmic reticulum. Circ Res 65:1445–1449

    CAS  PubMed  Google Scholar 

  35. Ikenouchi H, Kohmoto O, McMillan M, Barry WH (1991) The contribution of [Ca2+]i and pHi to altered diastolic myocyte tone during partial metabolic inhibition. J Clin Invest 88:55–61

    Article  CAS  PubMed  Google Scholar 

  36. Jenne DE, Tschopp J (1991) Angiotensin II-forming heart chymase is a mast-cell specific enzyme. Biochem J 276:567–568

    CAS  PubMed  Google Scholar 

  37. Katz AM (1990) Cardiomyopathy of overload: a major determinant of prognosis in congestive heart failure. N Engl J Med 322:100–110

    Article  CAS  PubMed  Google Scholar 

  38. Kléber AG (1992) The potential role of Ca2+ for electrical cell uncoupling and conduction block on myocardial tissue. In: Holtz J, Drexler H, Just H (eds) Cardiac adaptation in heart failure: risks due to myocardial phenotype changes. Steinkopff, Darmstadt (in press)

    Google Scholar 

  39. Komuro I, Kurabayashi M, Shibazaki Y, Takaku F, Yazaki Y (1989) Molecular cloning and characterization of the Ca2+ + Mg2+-dependent adenosine triphosphatase from rat cardiac sarcoplasmic reticulum. J Clin Invest 83:1102–1108

    Article  CAS  PubMed  Google Scholar 

  40. Koren MJ, Devereux RB, Casale PN, Savage DD, Laragh JH (1991) Relation of left ventricular mass and geometry to morbidity and mortality in uncomplicated essential hypertension. Ann Intern Med 114:345–352

    CAS  PubMed  Google Scholar 

  41. Lakatta EG (1989) Chaotic behaviour of myocardial cells: possible implications regarding the pathophysiology of heart failure. Perspect Biol Med 32:421–433

    CAS  PubMed  Google Scholar 

  42. Lakatta EG, Capogrossi MC, Kort AA, Stern MD (1985) Spontaneous myocardial Ca oscillations: an overview with emphasis on ryanodine and caffeine. Fed Proc 44:2977–2983

    CAS  PubMed  Google Scholar 

  43. Levy D, Garrison RJ, Savage DD, Kannel WB, Castelli WP (1990) Prognostic implications of echocardiographically determined left ventricular mass in the Framingham heart study. N Engl J Med 322:1561–1566

    Article  CAS  PubMed  Google Scholar 

  44. Li K, Chen X (1987) Protective effects of Captopril and enalapril on myocardial ischemia and reperfusion damage of rat. J Mol Cell Cardiol 19:909–915

    Article  CAS  PubMed  Google Scholar 

  45. Limas CJ, Olivari MT, Goldenberg IF, Levine TB, Benditt DG, Simon A (1987) Calcium uptake by cardiac sarcoplasmic reticulum in human dilated cardiomyopathy. Cardiovasc Res 21:601–605

    Article  CAS  PubMed  Google Scholar 

  46. Lindpainter K, Ganten D (1991) The cardiac renin-angiotensin system. An appraisal of present experimental and clinical evidence. Circ Res 68:905–921

    Google Scholar 

  47. Lindpaintner K, Lu W, Niedermaier N, Schieffer B, Just H, Ganten D, Drexler H (1992) Selective activation of cardiac angiotensinogen gene expression in post-infarction ventricular remodeling in the rat. J Mol Cell Cardiol (in press)

    Google Scholar 

  48. Linz W, Schölkens BA, Kaiser J, Just M, Bei-Yin Q, Albus U, Petry P (1989) Cardiac arrhythmias are ameliorated by local inhibition of angiotensin formation and bradykinin degradation with the converting-enzyme inhibitor ramipril. Cardiovasc Drugs and Ther 3:873–882

    Article  CAS  Google Scholar 

  49. Linz W, Schölkens BA, Ganten D (1989) Converting enzyme inhibition specifically prevents the development and induces regression of cardiac hypertrophy in rats. Clin Exp Hypertens A 11:1325–1350

    Article  CAS  PubMed  Google Scholar 

  50. Lorell BH, Weinberg E, Ngoy S, Apstein CS (1986) Angiotensin II directly impairs diastolic function in pressure-overload hypertrophy (Abstr.) Circulation 82:III-12

    Google Scholar 

  51. Lorell BH, Wexler LF, Momomura S, Weinberg EO, Apstein CS (1986) The influence of pressure overload left ventricular hypertrophy on diastolic properties during hypoxia in isovolumically contracting rat hearts. Circ Res 58:653–663

    CAS  PubMed  Google Scholar 

  52. Mercadier JJ, Lompré AM, Due P, Boheler KR, Fraysse JB, Wisnewsky C, Allen P, Komajda M, Schwartz K (1990) Altered sarcoplasmic reticulum Ca2+-ATPase gene expression in the human ventricle during end stage heart failure. J Clin Invest 85:305–309

    Article  CAS  PubMed  Google Scholar 

  53. Morgan JP (1991) Abnormal intracellular modulation of calcium as a major cause of cardiac contractile dysfunction. N Engl J Med 325:625–632

    Article  CAS  PubMed  Google Scholar 

  54. Mulieri LA, Hasenfuss G, Leavitt B, Allen PD, Alpert NR (1992) Altered myocardial force-frequency relation in human heart failure. Circulation 85:1743–1750

    CAS  PubMed  Google Scholar 

  55. Nadal-Ginard B, Mahdavi V (1990) Molecular basis of cardiac performance. J Clin Invest 84:1693–1700

    Article  Google Scholar 

  56. Nagai R, Zarain-Herzberg A, Brandi CJ, Fuji J, Tada M, MacLennan DH, Alpert NR, Periasamy M (1989) Regulation of myocardial Ca2 +-ATPase and phospholamban mRNA expression in response to pressure overload and thyroid hormone. Proc Natl Acad Sei USA 86:2966–2970

    Article  CAS  Google Scholar 

  57. Nagano M, Higaki J, Mikami H, Nakamaru M, Higashimori K, Katahira K, Tabuchi Y, Nakamura F, Ogihara T (1991) converting enzyme inhibitors regressed cardiac hypertrophy and reduced tissue angiotensin II in spontaneously hypertensive rats. J Hypertens 9:595–599

    Article  CAS  PubMed  Google Scholar 

  58. Nagano M, Higaki J, Nakamura F, Higashimori K, Nagano N, Mikami H, Ogihara T (1992) Role of cardiac angiotensin II in isoprotenol-induced left ventricular hypertrophy.

    Google Scholar 

  59. Perondi R, Saino A, Tio RA, Pomidossi G, Gregorini L, Alessio P, Morganti A, Zanchetti A, Mancia G (1992) ACE inhibition attenuates sympathetic coronary vasoconstriction in patients with coronary artery disease. Circulation 85:2004–2013

    CAS  PubMed  Google Scholar 

  60. Pfeffer JM, Pfeffer MA, Mirsky I, Braunwald E (1982) Regression of left ventricular hypertrophy and prevention of left ventricular dysfunction by Captopril in the spontaneously hypertensive rat. Proc Natl Acad Sci 79:3310–3314

    Article  CAS  PubMed  Google Scholar 

  61. Philipson KD (1992) Cardiac sodium-calcium exchange research. Trends Cardiovasc Med 2:12–14

    Article  CAS  PubMed  Google Scholar 

  62. Reinecke H, Bilger J, Hollmann A, Holtz J, Just H, Müller B, Philipson KD, Studer R, Drexler H (1992) Veränderung der Genexpression von SR-Ca2+ -ATPase und Na+/Ca2+ -Exchanger im Restmyokard nach Infarkt bei der Ratte. Z Kardiol 81 (Suppl. 1): 113

    Google Scholar 

  63. Reinecke H, Studer R, Goetz RM, Drexler H, Just H, Holtz J (1992) Die Genexpression der SR-Ca++-ATPase und des Connexin-43 bei kompensierter linksventrikulärer Hypertrophie (LVH) ist nur vorübergehend vermindert. Z Kardiol 81 (Suppl. 1): 120

    Google Scholar 

  64. Reinecke H, Studer R, Philipson KD, Bilger J, Eschenhagen T, Böhm M, Just H, Holtz J, Drexler H (1992) Myocardial gene expression of Na+/Ca++-exchanger and sarcoplasmic reticulum Ca++-ATPase in human heart failure. Circulation (in press)

    Google Scholar 

  65. Schunkert H, Dzau VJ, Tang SS, Hirsch AT, Apstein CS, Lorell BH (1990) Increased rat cardiac angiotensin converting enzyme activity and mRNA expression in pressure overload left ventricular hypertrophy. J Clin Invest 86:1913–1920

    Article  CAS  PubMed  Google Scholar 

  66. Schwartz K, Mercadier JJ, Swynghedauw B, Lompre AM (1988) Modifications of gene expression in cardiac hypertrophy. Heart Failure 4:154–163

    Google Scholar 

  67. Silverberg JS, Barre PE, Prichard SS, Sniderman AD (1989) Impact of left ventricular hypertrophy on survival in end-stage renal disease. Kidney Int 36:286–290

    Article  Google Scholar 

  68. Tan LB, Jalil JE, Pick R, Janicki JS, Weber KT (1991) Cardiac myocyte necrosis induced by angiotensin II. Circ Res 69:1185–1195

    CAS  PubMed  Google Scholar 

  69. Ten Eick RE, Whalley DW, Rasmussen HH (1992) Connections: heart disease, cellular electrophysiology, and ion channels. FASEB J 6:2568–2580

    CAS  PubMed  Google Scholar 

  70. Urata H, Healy B, Stewart RW, Bumpus FM, Husain A (1990) Angiotensin II-forming pathways in normal and failing human hearts. Circ Res 66:883–890

    CAS  PubMed  Google Scholar 

  71. Urata H, Kinoshita A, Misono KS, Bumpus FM, Husain A (1990) Identification of a highly specific chymase as the major angiotensin II-forming enzyme in the human heart. J Biol Chem 265:22348–22357

    CAS  PubMed  Google Scholar 

  72. Urata H, Kinoshita A, Perez DM, Misono KS, Bumpus FM, Graham RM, Husain A (1991) Cloning of the gene and cDNA for human heart chymase. J Biol Chem 266:17173–17179

    CAS  PubMed  Google Scholar 

  73. van Gilst WH, de Graeff PA, Wesseling H, de Langen CDJ (1986) Reduction of reperfusion arrhythmias in the ischemic isolated rat heart by angiotensin converting enzyme inhibitors: a comparison of Captopril, enalapril and Hoe 498. J Cardiovasc Pharmacol 8:722–728

    PubMed  Google Scholar 

  74. Wiemer G, Schölkens BA, Becker RH A, Busse R (1991) Ramipril enhances endothelial autocoid formation by inhibiting breakdown of endothelium-derived bradykinin. Hypertension 18:558–563

    CAS  PubMed  Google Scholar 

  75. Wier WG (1990) Cytoplasmic Ca++ in mammalian ventricle: dynamic control by cellular processes. Ann Rev Physiol 52:467–485

    Article  CAS  Google Scholar 

  76. Wirth K, Hock FJ, Albus U, Linz W, Anagnostopoulos H, Henke ST, Breipohl G, König W, Knolle J, Schölkens BA (1991) Hoe 140 a new potent and long acting bradykinin-antagonist: In vivo studies. Br J Pharmacol 102:774–777

    CAS  PubMed  Google Scholar 

  77. Xiang JZ, Linz W, Becker H, Ganten D, Lang RE, Schölkens B, Unger T (1985) Effects of converting enzyme inhibitors: ramipril and enalapril on peptide action and sympathetic neurotransmission in the isolated heart. Eur J Pharmacol 113:215–223

    Article  CAS  PubMed  Google Scholar 

  78. Yamada H, Fabris B, Allen AM, Jackson B, Johnston CI, Mendelsohn FAO (1991) Localization of angiotensin converting enzyme in rat heart. Circ Res 68:141–149

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Dr. Dietrich Steinkopff Verlag GmbH & Co. KG, Darmstadt

About this paper

Cite this paper

Holtz, J., Studer, R., Reinecke, H., Just, H., Drexler, H. (1992). Modulation of myocardial sarcoplasmic reticulum Ca++-ATPase in cardiac hypertrophy by angiotensin converting enzyme?. In: Holtz, J., Drexler, H., Just, H. (eds) Cardiac Adaptation in Heart Failure. Steinkopff. https://doi.org/10.1007/978-3-642-72477-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-72477-0_17

  • Publisher Name: Steinkopff

  • Print ISBN: 978-3-642-72479-4

  • Online ISBN: 978-3-642-72477-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics