Skip to main content

Application of Tetracycline Regulatable Systems for Gene Therapy

  • Conference paper
  • 201 Accesses

Part of the book series: NATO ASI Series ((ASIH,volume 105))

Abstract

Many diseases candidates for gene therapy require that the therapeutic gene expression level is controlled in order to ensure biological efficacy and to prevent toxic effects. Various systems have been described which allow transcriptional regulation by artificial chimeric transactivators in mammalian cells. This paper describes the tetracycline regulatable systems and discuss their potential application for gene therapy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ackland-Berglund, C. E., and Leib, D. A. (1995). Efficacy of Tetracycline-Controlled Gene Expression is Influenced by Cell Type. BioTechniques 18, 196–200.

    PubMed  CAS  Google Scholar 

  • Agarwal, M. L., Agarwal, A., Taylor, W. R., and Stark, G. R. (1995). p53 controls both the G2/M and the G1 cell cycle checkpoint and mediates reversible growth arrest in human fibroblasts. Proc. Natl. Acad. Sci. USA 92, 8493–8497.

    Article  PubMed  CAS  Google Scholar 

  • Blanchard, K. L., Acquaviva, A. M., Galson, D. L., and Bunn, H. F. (1992). Hypoxic induction of the human erythropoietin gene: cooperation between the promoter and enhancer, each of which contains steroid receptor response elements. Mol. Cell. Biol. 12, 5373–5385.

    PubMed  CAS  Google Scholar 

  • Blau, C. A., Peterson, K. R., Drachman, J. G., and Spencer, D. M. (1997). A proliferation switch for genetically modified cells. Proc. Natl. Acad. Sci. 94, 3076–3081.

    Article  PubMed  CAS  Google Scholar 

  • Bohl, D., and Heard, J. (1997). Modulation of erythropoietin delivery from engineered muscles in mice. Human Gene Ther. 8, 195–204.

    Article  CAS  Google Scholar 

  • Bohl, D., Naffakh, N., and Heard, J. M. (1997). Long term control of erythropoietin secretion levels by tetracycline in mice transplanted with engineered primary myoblasts. Nature Med. 3, 299–312.

    Article  PubMed  CAS  Google Scholar 

  • Cao, J., Park, I., Cooper, A., and Sodroski, J. (1996). Molecular determinants of acute single-cell lysis by human immunodeficiency virus type 1. J. Virol. 70, 1340–1354.

    PubMed  CAS  Google Scholar 

  • Cayrot, C., and Flemington, E. K. (1995). Identification of cellular target genes of the Epstein-Barr virus transactivator Zta activation of transforming growth factor beta igh3 (TGF-beta igh3) and TGF-betal. J. Virol. 69, 206–212.

    Google Scholar 

  • Cox, L. A., and Adrian, G. S. (1993). Posttranscriptional regulation of chimeric human transferrin genes by iron. Biochemistry 32, 4738–4745.

    Article  PubMed  CAS  Google Scholar 

  • Davis, J. L., Gross, P. R., and Danos, O. (1997). Development and characterization of a translationally regulated retroviral vector. Abstract, Keystone Meeting, April 13–19, 21.

    Google Scholar 

  • Degenkolb, J., Takahashi, M., Ellestad, G. A., and Hillen, W. (1991). Structural requirements of tetracycline-tet repressor interaction: determination of equilibrim binding constants for tetracycline analogs with the tet repressor. Antimicrob. Agents Chemother. 35, 1591–1595.

    PubMed  CAS  Google Scholar 

  • Delort, J. P., and Capecchi, M, R. (1996). TAXI/UAS: a molecular switch to control expression of gens m vivo. Hum. Gene Ther. 7, 809–820.

    Article  PubMed  CAS  Google Scholar 

  • Deuschle, U., Meyer, W. K.-H., and Thiesen, H.-J. (1995). Tetracycline-Reversible Silencing of Eukaryotic Promoters. Mol. Cell. Biol. 15, 1907–1914.

    PubMed  CAS  Google Scholar 

  • Dingermann, T., Frank-Stoll, U., Werner, H., Wissman, A., Hillen, W., Jacquet, M., and Marschalek, R. (1992). RNA polymerase III catalysed transcription can be regulated in Saccharomyces cerevisiae by the bacterial tetracycline repressor-operator system. EMBO J. 11, 1487–1492.

    PubMed  CAS  Google Scholar 

  • Dingermann, T., Werner, H., Schütz, A., Zündorf, I., Nerke, K., Knecht, D., and Marschalek, R. (1992). Establishment of a system for conditional gene expression using an inducible tRNA suppressor gene. Mol. Cell. Biol. 12, 4038–4045.

    PubMed  CAS  Google Scholar 

  • Efrat, S., Fusco-DeMane, D., Lemberg, H., Al Emran, O., and Wang, X. (1995). Conditional transformation of a pancreatic b-cell line derived from transgenic mice expressing a tetracycline-regulated oncogene. Proc. Natl. Acad. Sci. USA 92, 3576–3580.

    Article  PubMed  CAS  Google Scholar 

  • Emerman, M., and Temin, H. M. (1984). Genes with promoters in retrovirus vectors can be independently suppressed by an epigenetic mechanism. Cell 39, 459–467.

    Article  CAS  Google Scholar 

  • Feil, R., Brocard, J., Mascrez, B., LeMeur, M., Metzger, D., and Chambon, P. (1996). Ligand-activated site-specific recombinasion in mice. Proc. Natl. Acad. Sci. 93, 10887–10890.

    Article  PubMed  CAS  Google Scholar 

  • Fishman, G. I., Kaplan, M. L., and Buttrick, P. M. (1994). Tetracycline-regulated cardiac gene expression in vivo. J. Clin. Invest. 93, 1864–1868.

    Article  PubMed  CAS  Google Scholar 

  • Freiberg, R. A., Ho, S. N., and Khavari, P. A. (1997). Transcriptional control in keratinocytes and fibroblasts using synthetic ligands. J. Clin. Invest. 99, 2610–2615.

    Article  PubMed  CAS  Google Scholar 

  • Freiberg, R. A., Spencer, D. M., Choate, K. A., Peng, P. D., Schreiber, S. L., Crabtree, G. R., and Khavari, P. A. (1996). Specific triggering of the fas signal transduction pathway in normal human keratinocytes. J. Biol. Chem. 271, 31666–31669.

    Article  PubMed  CAS  Google Scholar 

  • Furth, P. A., St. Onge, L., Böger, H., Grass, P., Gossens, M., Kistner, A., Bujard, H., and Hennighausen, L. (1994). Temporal control of gene expression in transgenic mice by a tetracycline-responsive promoter. Proc. Natl. Acad. Sci. USA 91, 9302–9306.

    Article  PubMed  CAS  Google Scholar 

  • Gatz, C., Kaiser, A., and Wendenburg, R. (1991). Regulation of a modified CaMV 35S promoter by the Tn10- encoded Tet repressor in transgenic tobacco. Mol. Gen. Genet. 227, 229–237.

    Article  PubMed  CAS  Google Scholar 

  • Goossen, B., Wright Caughman, S., Harford, J. B., Klausner, R. D., and Hentze, M. W. (1990). Translational repression by a complex between the iron-responsive element of ferritin mRNA and its specific cytoplasmic binding protein is position dependent in vivo. EMBO J. 9, 4127–4133.

    PubMed  CAS  Google Scholar 

  • Gossen, M., and Bujard, H. (1993). Anhydrotetracyclin, a novel effector for tetracycline controlled gene expression in eukaryotic cells. Nucl. Acid Res. 21, 4411–4412.

    Article  CAS  Google Scholar 

  • Gossen, M., and Bujard, H. (1992). Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc. Natl. Acad. Sci. USA 89, 5547–5551.

    Article  PubMed  CAS  Google Scholar 

  • Gossen, M., Freundlieb, S., Bender, G., Müller, G., Hillen, W., and Bujard, H. (1995). Transcriptional activation by tetracyclines in mammalian cells. Science 268, 1766–1769.

    Article  PubMed  CAS  Google Scholar 

  • Ho, D. Y., McLaughlin, J. R., and Sapolsky, R. M. (1996). Inducible gene expression from defective herpes simplex virus vectors using tetracycline-responsive promoter system. Mol. Brain Res. 41, 200–209.

    Article  PubMed  CAS  Google Scholar 

  • Hoffman, A., Nolan, G., and Blau, H. B. (1996). Rapid retroviral delivery of tetracycline-inducible genes in a single autoregulatory cassette. Proc. Natl. Acad. Sci. USA 93, 5185–5190.

    Article  Google Scholar 

  • Hoshimaru, M., Ray, J., Sah, D. W. Y., and Gage, F. H. (1996). Differentiation of the immortalized adult neuronal progenitor cell line HC2S2 into neurons by regulatable suppression of the v-myc oncogene. Proc. Natl. Acad. Sci. USA 93, 1518–1523.

    Article  PubMed  CAS  Google Scholar 

  • Howe, J. R., Skryabin, B. V., Belcher, S. M., Zerillo, C. A., and Sclimauss, C. (1995). The responsiveness of a tetracycline-sensitive expression system differs in different cell lines. J. Biol. Chem. 270, 14168–14178.

    Article  PubMed  CAS  Google Scholar 

  • Hu, M. C. T., and Davidson, N. (1990). A combination of derepression of the lac operator-repressor system with positive induction by glucocorticoid and metal ions provides a high-level-inducible gene expression system based on the human metallothionein-IIA promoter. Mol. Cell. Biol. 10, 6141–6451.

    PubMed  CAS  Google Scholar 

  • Hwang, J. J., Scuric, Z., and Anderson, W. F. (1996). Novel retroviral vector transferring a suicide gene and a selectable marker gene with enhanced gene expression by using a tetracyclineresponsive expression system. J. Virol. 70, 8138–8141.

    PubMed  CAS  Google Scholar 

  • Iida, A., Chen, S. T., Friedmann, T., and Yee, J. K. (1996). Inducible gene expression by retrovirus-mediated transfer of a modified tetracycline-regulated system. J. Virol. 70, 6054–6059.

    PubMed  CAS  Google Scholar 

  • Ingles, C. J., Shales, M., Cress, W. D., Triezenberg, S. J., and Greenblatt, J. (1991). Reduced Binding of TFID to Transcriptionally compromised Mutants of VP16. Nature 351, 588–590.

    Article  PubMed  CAS  Google Scholar 

  • Israel, D., and Kaufman, R. J. (1989). Highly Inducible Expression From Vectors Containing Multiple GRE’s in CHO Cells Overexpressing the Glucocorticoid Receptor. Nucleic. Acids. Res. 17, 4589–4604.

    Article  PubMed  CAS  Google Scholar 

  • Jiang, B., Rue, E., Wang, G. L., Roe, R., and Semenza, G. L. (1996). Dimerization, DNA binding and transactivation properties of hypoxia-inducible factor 1. J. Bio. Chem. 271, 17771–17778.

    Article  CAS  Google Scholar 

  • Kenan, D. J., Tasi, D. E., and Keene, J. D. (1994). Exploring molecular diversity with combinatorial shape libraries. TIBS 19, 57–64.

    PubMed  CAS  Google Scholar 

  • Kim, H. J., Gatz, C., Hillen, W., and Jones, T. R. (1995). Tetracycline repressor-regulated gene repression in recombinant human cytomegalovirus. J. Virol. 69, 2565–2573.

    PubMed  CAS  Google Scholar 

  • Lin, Y.-S., Ha, I., Maldonado, E., Reinberg, D., and Green, M. R. (1991). Binding of General Transcription Factors TFIIB to an Acidic Activating Region. Nature 353, 569–571.

    Article  PubMed  CAS  Google Scholar 

  • Madan, A., and Curtin, P. T. (1993). A 24-base-pair sequence 3′ to the human erythropoietin gene contains a hypoxia-responsive transcriptional enhancer. Proc. Natl. Acad. Sci. USA 90, 3928–3932.

    Article  PubMed  CAS  Google Scholar 

  • Mader, S., and White, J. S. (1993). A Steroid-Inducible Promoter for the Controlled Overexpression of Cloned Genes in Eukaryotic Cells. Proc. Natl. Acad. Sci. USA 90, 5603–5607.

    Article  PubMed  CAS  Google Scholar 

  • Mahfoudi, A., Roulet, E., Dauvois, S., Parker, M. G., and Whali, W. (1995). Specific mutations in the estrogen receptor change the properties of antiestrogens to full agonists. Proc. Natl. Acad. Sci. 92, 4206–4210.

    Article  PubMed  CAS  Google Scholar 

  • Mayo, K. E., Warren, R., and Palmiter, R. D. (1982). The Mouse Metallothionein-I Gene Is Transcriptionally Regulated by Cadmium Following Transfaction into Human or Mouse Cells. Cell 29, 99–108.

    Article  PubMed  CAS  Google Scholar 

  • No, D., Yao, T., and Evans, R. M. (1996). Ecdysone-inducible gene expression in mammalian cells and transgenic mice. Proc. Natl. Acad. Sci. 93, 3346–3351.

    Article  PubMed  CAS  Google Scholar 

  • Passman, R. S., and Fishman, G. I. (1994). Regulated expression of foreign genes in vivo after germline transfer. J. Clin. Invest. 94, 2421–2425.

    Article  PubMed  CAS  Google Scholar 

  • Paulus, W., Baur, I., Boyce, F. M., Breakefield, X. O., and Reeves, S. A. (1996). Self-contained, tetracyclineregulated retroviral system for gene delivery to mammalian cells. J. Virol. 70, 62–67.

    PubMed  CAS  Google Scholar 

  • Resnitzky, D., Hengst, L., and Reed. S. I. (1995). Cyclin A-associated kinase activity is rate limiting for entrance into S phase and is negatively regulated in G1 by p27Kipl. Mol. Cell. Biol. 15, 4347–4352.

    PubMed  CAS  Google Scholar 

  • Rivera, V. M., Clackson, T., Natesan, S., Pollock, R., Amara, J. F., Keenan, T., Magari, S. R., Phillips, T., Courage, N. L., Cerasoli, F., Dennis, A. H., and Gilman, M. (1996). A humanized system for pharmacologic control of gene expression. Nat. Med. 2, 1028–1032.

    Article  PubMed  CAS  Google Scholar 

  • Rizzino, A., and Miller, K. (1995). The function of inducible promoter systems in F9 embryonal carcinoma cells. Exp. Cell Res. 218, 144–150.

    Article  PubMed  Google Scholar 

  • Röder, F. T., Schmülling, T., and Gatz, C. (1994). Efficiency of the tetracycline-dependent gene expression system: complete suppression and efficient induction of the rolB phenotype in transgenic plants. Mol. Gen. Genet. 243, 32–38.

    Article  PubMed  Google Scholar 

  • Schaack, J., Guo, X., Ho, Y., Karlok, M., Chen, C., and Oemelles, D. (1995). Adenovirus type 5 precursor terminal protein-expressing 293 and HeLa cell lines. J. Virol. 69, 4079–4085.

    PubMed  CAS  Google Scholar 

  • Schultze, N., Burki, Y., Lang, Y., Certa, U., and Bluethmann, H. (1996). Efficient control of gene expression by single step integration of the tetracycline system in transgenic mice. Nature Biotech. 14, 499–505.

    Article  CAS  Google Scholar 

  • Schweinfest, C. W., Jorcyk, C. L., Fujiwara, S., and Papas, T. S. (1988). A heat-shock inductible eukaryotic expression vector. Gene 71, 207–210.

    Article  PubMed  CAS  Google Scholar 

  • Searl, P. F., Stuart, G. W., and Palmiter, R. D. (1985). Building a Metal-Responsive Promoter With Synthetic Regulatory Elements. Mol. Cell. Biol. 5, 1480–1489.

    Google Scholar 

  • Shan, B., and Lee, W. (1994). Deregulated expression of E2F-1 induces S-phase entry and leads to apoptosis. Mol. Cell Biol. 14, 8166–8173.

    PubMed  CAS  Google Scholar 

  • Shockett, P., Difilippantonio, M., Heilman, N., and Schatz, D. (1995). A modified tetracycline-regulated system provides autoregulatory, inducible gene expression in cultured cells and transgenic mice. Proc. Natl. Acad. Sci. USA 92, 6522–6526.

    Article  PubMed  CAS  Google Scholar 

  • Spencer, D. M., Beishaw, P. J., Chen, L., Ho, S. N., Randazzo, F., Crabtree, G. R., and Schreiber, S. L. (1996). Functional analysis of fas signaling in vivo using synthetic inducers of dimerization. Current Biol. 6, 839–847.

    Article  CAS  Google Scholar 

  • Staeheli, P., Danielson, P., Haller, O., and Sutcliffe, J. G. (1986). Transcriptional activation of the mouse Mx gene by type 1 interferon. Mol. Cel. Biol. 6, 4770–4774.

    CAS  Google Scholar 

  • Totzke, F., Marmé, D., and Hug, R. (1992). Inducible expression of human phospholipase C-g2 and its activation by platelet-derived growth factor B-chain homodimer and platelet-derived growth factor A-chain homodimer in transfected NIH 3T3. Eur. J. Biochem. 203, 633–639.

    Article  PubMed  CAS  Google Scholar 

  • Triezenberg, S. J., Kingsbury, R. C., and McKnight, S. L. (1988). Functional Dissection of VP16, the Trans- Activator of Herpes Simplex Virus Immediate Early Gene Expression. Genes and development 2, 718–729.

    Article  PubMed  CAS  Google Scholar 

  • Wang, G. L., and Semenza, G. L. (1993). General involvment of hypoxia-inducible factor 1 in transcriptional response to hypoxia. Proc. Natl. Acad. Sci. USA 90, 4304–4308.

    Article  PubMed  CAS  Google Scholar 

  • Wang, Y., O’Malley Jr., B. W., Tasai, S. Y., and O’Malley, B. W. (1994). A regulatory system for use in gene transfer. Proc Natl. Acad. Sci. USA 91, 8180–8184.

    Article  PubMed  CAS  Google Scholar 

  • Watsuji, T., Okamoto, Y., Emi, N., Katsuoka, Y., and Hagiwara, M. (1997). Controlled gene expression with a reverse tetracycline-regulated retroviral vector system. Bioche. Biophys. Res. Comm. 234, 769–773.

    Article  CAS  Google Scholar 

  • Wimmel, A., Lucibello, F. C., Sewing, A., Adolph, S., and Muller, R. (1994). Inducible acceleration of G1 progression through tetracycline-regulated expression of human cyclin E. Oncogene 9, 995–997.

    PubMed  CAS  Google Scholar 

  • Wirtz, E., and Clayton, C. (1995). Inducible gene expression in trypanosomes mediated by a prokaryotic repressor. Science 268, 1179–1183.

    Article  PubMed  CAS  Google Scholar 

  • Wurm, F. M., Gwinn, K. A., and Kingston, R. E. (1986). Inducible overexpression of a mouse c-myc protein in mammalian cells. Proc. Natl. Sci. 83, 5414–5418.

    Article  CAS  Google Scholar 

  • Xu, L., Yee, J. K., Wolff, J. A., and Friedmann, T. (1989). Factors influencing long-term stability of Moloney leukemia virus-based vectors. Virology 171, 331–341.

    Article  PubMed  CAS  Google Scholar 

  • Yarranton, G. T. (1992). Inducible vectors for expression in mammalian cells. Cur. Op. in Biotech. 3, 506–511.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bohl, D., Heard, JM. (1998). Application of Tetracycline Regulatable Systems for Gene Therapy. In: Xanthopoulos, K.G. (eds) Gene Therapy. NATO ASI Series, vol 105. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-72160-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-72160-1_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-72162-5

  • Online ISBN: 978-3-642-72160-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics