Skip to main content

Biodegradation and Elimination of Neuromuscular Blocking Agents

  • Chapter
New Neuromuscular Blocking Agents

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 79))

Abstract

All neuromuscular blocking agents are characterised by the presence of quaternary ammonium groups. Such groups are essentially stable chemical functions. Thus, although quaternary ammonium compounds can be degraded to tertiary amines, in general this requires treatment with caustic alkali, i.e. approximately pH 14, at temperatures of around 100 °C (Hofmann 1851). It is not surprising, therefore, that the tetraalkylammonium group is not normally subject to biotransformation by the usual metabolic pathways of oxidation, reduction, hydrolysis, and conjugation in mammalian species. Consequently simple quaternary ammonium salts are excreted unchanged.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agoston S, Vermeer GA, Kersten UW, Meijer DKF (1973) The fate of pancuronium in man. Acta Anaesthesiol Scand 17:267–275

    Article  PubMed  CAS  Google Scholar 

  • Agoston S, Salt P, Newton D, Bencini A, Boomsma P, Erdman W (1980) The neuromuscular blocking action of Org NC45, a new pancuronium derivative, in anaesthetized patients. Br J Anaesth 52:53S–59S

    Article  PubMed  Google Scholar 

  • Bolgar L, Brittain RT, Jack D, Jackson MR, Martin LE, Mills J, Pointer D, Tyers MB (1972) Short-lasting, competitive neuromuscular blocking activity in a series of azobisarylimidazo[1,2,α]-pyridinium dihalides. Nature 238:354–355

    Article  Google Scholar 

  • Booij LHDJ, Vree TB, Hurkmans F, Reekers-Ketting JJ, Crul FF (1981) The pharmacokinetics and pharmacodynamics of the muscle relaxant drug Org NC45 and each of its hydroxy-metabolites in dogs. Anaesthesist 3077:329–333

    Google Scholar 

  • Bovet-Nitti F (1949) Degradation of curare-like substances by the action of cholinesterases. Rend ist super sanita 12:138–157

    CAS  Google Scholar 

  • Bowen RA (1960) Anaesthesia in operations for the relief of portal hypertension. Anaesthesia 15:3–10

    Article  PubMed  CAS  Google Scholar 

  • Chappie DJ, Clark JS (1983) Pharmacological actions of breakdown products of atracurium and related substances. Br J Anaesth 55:11s–22s

    Google Scholar 

  • Coker GG, Dewar GH, Hughes R, Hunt TM, Payne JP, Stenlake JB, Waigh RD (1981) A preliminary assessment of atracurium, a new competitive neuromuscular blocking agent. Acta Anaesthesiol Scand 25:67–69

    Article  PubMed  CAS  Google Scholar 

  • Cronelly R, Gencorelli P, Miller RD, Fisher DM, Nguyen L (1982) Pharmacokinetics of pancuronium and Org NC45 (Norcuron). Anesth Analg (Cleve) 61:176–177

    Google Scholar 

  • Dal Santo G (1972) Kinetics of distribution of radioactive labelled muscle relaxants. IV. Urinary elimination of a single dose of 14C-gallamine. Br J Anaesth 44:321–329

    Article  Google Scholar 

  • D’Hollander A, Massaux F, Nevelsteen M, Agoston S (1982) Age-dependent dose-response relationship of Org NC45 in anaesthetised patients. Br J Anaesth 54:653–657

    Article  PubMed  Google Scholar 

  • Durant NN, Marshall IG, Savage DS, Nelson DJ, Sleigh T, Carlyle IC (1979 a) The neuromuscular and autonomic blocking activities of pancuronium, Org NC45 and other pancuronium analogues, in the cat. J Pharm Pharmacol 32:831–836

    Article  Google Scholar 

  • Durant NN, Houwertjes MC, Agoston S (1979 b) Renal elimination of Org NC45 and pancuronium. Anesthesiology 51:S266

    Article  Google Scholar 

  • Duvaldestin P, Agoston S, Henzel D, Kersten UW, Desmonts JM (1978 a) Pancuronium pharmacokinetics in patients with liver cirrhosis. Br J Anaesth 50:1131–1136

    Article  PubMed  CAS  Google Scholar 

  • Duvaldestin P, Henzel D, Demetrious M, Desmonts JM (1978 b) Pharmacokinetics of fazadinium in man. Br J Anaesth 50:773–777

    Article  PubMed  CAS  Google Scholar 

  • Duvaldestin P, Bertrand JC, Concina D, Henzel D, Lareng L, Desmonts JM (1979) Pharmacokinetics of fazadinium in patients with renal failure. Br J Anaesth 51:943–947

    Article  PubMed  CAS  Google Scholar 

  • Duvaldestin P, Saada J, Henzel D, Saumon G (1980) Fazidinium pharmacokinetics in patients with liver disease. Br J Anaesth 52:789–794

    Article  PubMed  CAS  Google Scholar 

  • Evans FT, Gray PWS, Lehman H, Silk E (1953) Effect of pseudoCholinesterase level on action of succinylcholine in man. Br Med J 1:136

    Article  PubMed  CAS  Google Scholar 

  • Evans RT, Wroe JM (1980) Plasma Cholinesterase changes during pregnancy. Anaesthesia 35:651–654

    Article  PubMed  CAS  Google Scholar 

  • Fahey MR, Morris RB, Miller RD, Nguyen T-L, Upton RA (1981) Pharmacokinetics of Org NC45 (Norcuron) in patients with and without renal failure. Br J Anaesth 53:1049–1053

    Article  PubMed  CAS  Google Scholar 

  • Frank M, Flynn PJ, Hughes R (1983) Atracurium in obstetric anaesthesia. Br J Anaesth 55:113s–114s

    Article  PubMed  Google Scholar 

  • Funk DI, Crul JF, van der Pol FM (1980) Effects of changes in acid-base balance on neuromuscular blockade produced by Org NC45. Acta Anaesthesiol Scand 24:119–124

    Article  PubMed  CAS  Google Scholar 

  • Gutsche BB, Scott EM, Wright RC (1967) Hereditary deficiency of pseudoCholinesterase in Eskimos. Nature 215:322–323

    Article  PubMed  CAS  Google Scholar 

  • Hart SM, Mitchell JV (1962) Suxamethonium in the absence of pseudoCholinesterase. Br J Anaesth 34:207–209

    Article  PubMed  CAS  Google Scholar 

  • Hofmann AW (1851) Beiträge zur Kenntnis der flüchtigen organischen Basen. Ann Chemie 78:253–286

    Article  Google Scholar 

  • Hughes R, Chapple DJ (1981) The pharmacology of atracurium: a new competitive neuromuscular blocking agent. Br J Anaesth 53:31–44

    Article  PubMed  CAS  Google Scholar 

  • Hughes R, Payne JP, Sugai N (1976) Studies on fazadinium bromide (DH 8165): a new non-depolarizing neuromuscular blocking agent. Canad Anaesth Soc J 23:36–47

    Article  PubMed  CAS  Google Scholar 

  • Ingold CK (1962) The mechanism of olefin elimination. Proc Chem Soc 265–274

    Google Scholar 

  • Kalow W (1953) Urinary excretion of d-tubocurarine in man. J Pharmacol Exp Ther 109:74–82

    PubMed  CAS  Google Scholar 

  • Kalow W, Genest K (1957) A method for the detection of atypical forms of human serum Cholinesterase: determination of dibucaine numbers. Can J Biochem Physiol 35:339–346

    Article  PubMed  CAS  Google Scholar 

  • Kalow W, Gunn DR (1959) Some statistical data on atypical Cholinesterase of human serum. Ann Hum Genet 23:239–250

    Article  PubMed  CAS  Google Scholar 

  • Kalow W, Staron N (1957) On distribution and inheritance of atypical forms of human serum Cholinesterase as indicated by dibucaine numbers. Can J Biochem Physiol 35:1305–1320

    Article  PubMed  CAS  Google Scholar 

  • Kaniaris P, Fassoulaki A, Liarmakopoulou K, Dermitzakis E (1979) Serum Cholinesterase levels in patients with cancer. Anesth Analg 58:82–84

    Article  PubMed  CAS  Google Scholar 

  • Kerten VW, Meijer DFK, Agoston S (1973) Fluorimetric and chromatographic determination of pancuronium bromide and its metabolites in biological materials. Clin Chim Acta 44:59–66

    Article  Google Scholar 

  • Liddell J, Lehman H, Silk E (1962) A ‘silent’ pseudoCholinesterase gene. Nature 193:561–562

    Article  PubMed  CAS  Google Scholar 

  • McLeod K, Watson MJ, Rawlins MD (1976) Pharmacokinetics of pancuronium in patients with normal and impaired renal function. Br J Anaesth 48:341–345

    Article  PubMed  CAS  Google Scholar 

  • McLeod K, Hull CJ, Watson MS (1979) Effects of aging on the pharmacokinetics of pancuronium. Br J Anaesth 51:435–438

    Article  PubMed  CAS  Google Scholar 

  • Merrett RA, Thompson CW, Webb FW (1983) In vitro degradation of atracurium in human plasma. Br J Anaesth 55:61

    Article  PubMed  CAS  Google Scholar 

  • Miller RD, Agoston S, Booij LHD, Kersten UW, Crul JF, Ham J (1978) The comparative potency and pharmacokinetics of pancuronium and its metabolites in anaesthetized man. J Pharmacol 207:539–543

    CAS  Google Scholar 

  • Neill EAM, Chappie DJ (1982) Metabolic studies in the cat with atracurium: a neuromuscular blocking agent designed for non-enzymtic inactivation at physiological pH. Xenobiotica 12:203–210

    Article  PubMed  CAS  Google Scholar 

  • Neill EAM, Chappie DJ, Thompson CW (1983) The metabolism and kinetics of atracurium: a overview. Br J Anaesth 55:23s–26s

    PubMed  Google Scholar 

  • Pannall PR, Potgeiter GM, Raubenheimer MM (1976) Plasma Cholinesterase variants — an unexpectedly high incidence of the silent allele. S Afr Med J 50:304–306

    PubMed  CAS  Google Scholar 

  • Payne JP, Hughes R (1981) Evaluation of atracurium in anaesthetised man. Br J Anaesth 53:45–54

    Article  PubMed  CAS  Google Scholar 

  • Savage DS, Sleigh T, Carlyle I (1980) The emergence of Org NC45, 1-[(2β,3α,5α,16β)-3, 17-bis(acetyloxy-2-(1-piperidinyl)-androstan-16-yl]-1-methylpiperidinium bromide, from the pancuronium series. Br J Anaesth 52:3S–9S

    PubMed  CAS  Google Scholar 

  • Skarpa M, Dayan AD, Follenfant M, James DA, Thomson PM, Lucke JN, Morgan M, Lovell R, Medd R (1983) Toxicity testing of atracurium. Br J Anaesth 55:27s–30s

    Article  PubMed  Google Scholar 

  • Sohn YJ, Scaf AHJ, Bencini A, Gregoretti S, Agoston S (1982) Comparative pharmacokinetics of vecuronium (Org NC45) and pancuronium in man. Fed Proc 41:6229

    Google Scholar 

  • Somogyi AA, Shanks CA, Triggs EJ (1977) Disposition kinetics of pancuronium bromide in patients with total biliary obstruction. Br J Anaesth 49:1103–1108

    Article  PubMed  CAS  Google Scholar 

  • Stenlake JB (1978) Biodegradable neuromuscular blocking agents. In: Stoclet FC (ed) Advances in pharmacology and therapeutics, vol 3. Ions — cyclic nucleotides — cholinergy. Pergamon, Oxford, pp 303–312

    Google Scholar 

  • Stenlake JB, Waigh RD, Dewar GH, Hughes R, Chappie DJ, Coker GG (1981) Biodegradable neuromuscular blocking agents. Part 4. Atracurium Besylate and related polyalkylene di-esters. Eur J Med Chem 16:515–524

    CAS  Google Scholar 

  • Stenlake JB, Weigh RD, Urwin J, Dewar GH, Coker GG (1983) Atracurium. Conception and inception. Br J Anaesth 55:3S–10S

    Article  PubMed  Google Scholar 

  • Stojanov E (1969) Possibilities for clinical use of the new steroid neuromuscular blocker pancuronium bromide in anaesthesiological practice. Arzneimittelforsch 19:1723–1725

    Google Scholar 

  • Upton RA, Nguyen TL, Miller RD, Castagnoli N (1982) Renal and biliary elimination of vecuronium (Org NC45) Anesth Analg (Cleve) 61:313–316

    CAS  Google Scholar 

  • Van der Veen F, Bencini A (1980) Pharmacokinetics and pharmacodynamics of Org NC45. Br J Anaesth 52:37S–41S

    PubMed  Google Scholar 

  • Waser PG, Lüthi U (1966) Verteilung, Metabolismus und Elimination von 3H-Diallyl-nor-Toxiferin (Alloferin) bei Katzen. Helv Physiol Pharmacol Acta 24:259–273

    CAS  Google Scholar 

  • Weatherley BC, Williams SG, Neill EAM (1983) The metabolism and kinetics of atracurium: an overview. Br J Anaesth 55:47S–52S

    Google Scholar 

  • Westra P, Keulemans GTP, Houwertjes MC, Hardonk MJ, Meijer DKF (1981) Mechanisms underlying the prolonged duration of action of muscle relaxants caused by extrahepatic cholestasis. Br J Anaesth 53:217–227

    Article  PubMed  CAS  Google Scholar 

  • Whittaker M (1980) Plasma Cholinesterase variants and the anaesthetist. Anaesthesia 35:174–179

    Article  PubMed  CAS  Google Scholar 

  • Whittaker VP, Wijesundera S (1952) Hydrolysis of succinyl-dicholine by Cholinesterase. Biochem J 52:475–479

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Stenlake, J.B. (1986). Biodegradation and Elimination of Neuromuscular Blocking Agents. In: Kharkevich, D.A. (eds) New Neuromuscular Blocking Agents. Handbook of Experimental Pharmacology, vol 79. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-70682-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-70682-0_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-70684-4

  • Online ISBN: 978-3-642-70682-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics