Skip to main content

Oxazolidinediones

  • Chapter
Book cover Antiepileptic Drugs

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 74))

Abstract

Until the introduction of succinimides for therapeutic use in 1960, oxazolidinediones were the drugs of choice in the treatment of petit mal epilepsy. They had been used since 1946. Now the oxazolidinediones are merely of historical interest since their clinical tolerance is unequivocally inferior to that of the succinimides. Nevertheless, their pharmacology deserves detailed consideration since they were the first relatively selective petit mal antiepileptics on which intensive experimental investigations of the type and mechanisms of action were carried out. Several reviews have dealt with oxazolidinediones (Woodbury et al. 1972, 1982; Withrow 1980). For structure-activity relationship see Chap. 9, this volume.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adamska-Dyniewska H, Czernek Z, Goch JH, Rosiek S (1970) Anticonvulsants in treatment of ouabain-induced ectopic heart activity in cats. Pol Tyg Lek 25: 1205–1207

    PubMed  CAS  Google Scholar 

  • Ahmad A, Dhawan BN (1969) Metrazol test for rapid screening of anticonvulsants. Jpn J Pharmacol 19: 472–474

    Article  PubMed  CAS  Google Scholar 

  • Albertson TE, Peterson SL, Stark LG (1980) Anticonvulsant drugs and their antagonism of kindled amygdaloid seizures in rats. Neuropharmacology 19: 643–652

    Article  PubMed  CAS  Google Scholar 

  • Ashton D, Wauquier A (1979) Behavioral analysis of the effects of 15 anticonvulsants in the amygdaloid kindled rat. Psychopharmacology 65: 7–13

    Article  PubMed  CAS  Google Scholar 

  • Bastian JW (1961) Classification of CNS drugs by a mouse screening battery. Arch Int Pharmacodyn Ther 133: 347–364

    PubMed  CAS  Google Scholar 

  • Baxter MG, Miller A A, Webster RA (1973) Some studies on the convulsant action of folic acid. Br J Pharmacol 48: 350–351

    Google Scholar 

  • Bianchi C., Beani L, Bertelli A (1975) Effects of some anti-epileptic drugs on brain acetylcholine. Neuropharmacology 14: 327–332

    Article  PubMed  CAS  Google Scholar 

  • Bircher R, Kanai T, Wang SC (1963) Action of anticonvulsants (pentobarbital, trimethadione and 3-methyl-5,5-phenylethyl hydantoin) on the EEG, ECG and blood pressure changes induced by pentylenetetrazol, picrotoxin and deslanoside in dogs. Arch Int Pharmacodyn Ther 141: 357–376

    Google Scholar 

  • Bonnevaux De SC, Diez Altares MC, Carrillo L (1968) Autonomic response to pentamethylenetetrazol following trimethadione and benzodiazepines administration. Arch Int Pharmacodyn Ther 173: 34–43

    PubMed  Google Scholar 

  • Bonnycastle DD, Giarman NJ, Paasonen MK (1957) Anticonvulsant compounds and 5-hydroxy-tryptamine in rat brain. Br J Pharmacol 12: 228–231

    CAS  Google Scholar 

  • Booker HE (1982) Trimethadione, toxicity. In: Woodbury DM, Penry JU, Pippenger CE (eds) Antiepileptic drugs. Raven, New York, pp 701–703

    Google Scholar 

  • Brauer RW, Mansfield WM, Beaver RW, Gillen HW (1979) Stages in development of high-pressure neurological syndrome in the mouse. J Appl Physiol 46: 756–765

    PubMed  CAS  Google Scholar 

  • Brown NA, Shull G, Fabro S (1979) Assessment of the teratogenic potential of trimethadione in the CD-I mouse. Toxicol Appl Pharmacol 51: 59–71

    Article  PubMed  CAS  Google Scholar 

  • Brown NA, Kao J, Fabro S (1980) Teratogenic potential of valproic acid. Lancet 1: 660–661

    Article  PubMed  CAS  Google Scholar 

  • Brown WC, Schiffman DO, Swinyard EA, Goodman LS (1953) Comparative assay of antiepileptic drugs by “psychomotor” seizure test and minimal electroshock threshold test. J Pharmacol Exp Ther 107: 273–283

    PubMed  CAS  Google Scholar 

  • Bulger WH, Wells PR, Roche EB (1976) Pharmacological assessment of 3-tert-butylsyd-none. J Pharm Sci 65: 109–111

    Article  PubMed  CAS  Google Scholar 

  • Butler TC (1953) Quantitative studies of the demethylation of trimethadione (tridione). J Pharmacol Exp Ther 108: 11–17

    PubMed  CAS  Google Scholar 

  • Butler TC (1955 a) Metabolic demethylation of 3,5-dimethyl-5-ethyl 2,4-oxazolidinedione (paramethadione, paradione). J Pharmacol Exp Ther 113:178–185

    Google Scholar 

  • Butler TC (1956 b) The effects of N-methylation in 5,5-disubstituted derivatives of barbituric acid, hydantoin, and 2,4-oxazolidinedione. J Am Pharm Assoc Sci Ed 44:367–370

    Google Scholar 

  • Butler TC, Waddell WJ (1954) The role of the liver in the demethylation on N-methyl derivatives of hydantoin and of 2,4-oxazolidinedione. J Pharmacol Exp Ther 110: 241–243

    PubMed  CAS  Google Scholar 

  • Butler TC, Walddell WJ (1955) A pharmacological comparison of the optical isomers of 5-ethyl-5-methyl-2,4-oxazolidinedione and of 3,5-dimethyl-5-ethyl-2,4-oxazolidinedione (paramethadione, paradione). J Pharmacol Exp Ther 113: 238–240

    PubMed  CAS  Google Scholar 

  • Butler TC, Waddell WJ (1957) Metabolic deethylation of 5,5-dimethyl-3-ethyl-2,4 oxazolidinedione ( Dimedion ). Arch int Pharmacodyn Ther 111: 308–313

    Google Scholar 

  • Butler TC, Waddell WJ (1958) N–Methylated derivatives of barbituric acid, hydantoin and oxazolidinedione used in the treatment of epilepsy. Neurology (Minneap.) 8: 106–112

    CAS  Google Scholar 

  • Butler TC, Mahaffee D, Mahaffee C (1952) Metabolic demethylation of 3,5,5-trimethyl-2,4-oxazolidinedione (trimethadione, Tridione ). Proc Soc Exp Biol Med 81: 450–452

    Google Scholar 

  • Butler TC, Waddell WJ, Poole DT (1965) Demethylation of trimethadione and metharbital by rat liver microsomal enzymes: substrate concentration-yield relationships and competition between substrates. Biochem Pharmacol 14: 937–942

    Article  PubMed  CAS  Google Scholar 

  • Buttar HD, Dupuis I, Khera KS (1976) Fetotoxicity of trimethadione and paramethadione in rats Toxicol Appl Pharmacol 37: 126

    Google Scholar 

  • Buttar HS, Dupuis I, Khera KS (1978) Dimethadione-induced fetotoxicity in rats Toxicology 9: 155–164

    CAS  Google Scholar 

  • Cahen R, Boucard M, Faurre L, Vedel Y (1971) Effet de la 5,5-dimethyl 2-4 oxazolidinedione sur le comportement d’anxiété et d’aggression chez l’animal de laboratoire. C R Soc Biol (Paris) 165: 1035–1040

    CAS  Google Scholar 

  • Chamberlin HR, Waddell WJ, Butler TC (1965) A study of the product of demethylation of trimethadione in the control of petit mal epilepsy. Neurology 15: 449–454

    PubMed  CAS  Google Scholar 

  • Chen G, Ensor CR (1950) Evaluation of antiepileptic drugs. Arch Neurol Psychiatry 63: 56–60

    PubMed  CAS  Google Scholar 

  • Chen G, Portman R (1952) Titration of central-nervous-system depression. AM A Arch Neurol Psychiatry 68: 498–505

    CAS  Google Scholar 

  • Chen G, Ensor CH R, Clarke IG (1951) Central nervous action of hydantoins, oxazolidinediones and thiazolidones. AMA Arch Neurol Psychiatry 66: 329–337

    PubMed  CAS  Google Scholar 

  • Chiu P, Olsen DM, Borys HK, Karler R, Turkanis SA (1979) The influence of cannabidiol and Δ9-tetrahydrocannabinol on cobalt epilepsy in rats. Epilepsia 20: 365–375

    Article  PubMed  CAS  Google Scholar 

  • Clincke G, Wauquier A (1979) Metrazol-produced impairment of passive avoidance retention specifically antagonized by anti-petit mal drugs. Psychopharmacology 66: 243–246

    Article  PubMed  CAS  Google Scholar 

  • Conney AH (1967) Pharmacological implications of microsomal enzyme induction. Pharmacol Rev. 19: 317–366

    PubMed  CAS  Google Scholar 

  • Consroe P, Wolkin A (1977) Cannabidiol-antiepileptic drug comparisons and interactions in experimentally induced seizures in rats. J Pharmacol Exp Ther 201: 26–32

    PubMed  CAS  Google Scholar 

  • Consroe P, Picchioni A, Chin L (1979) Audiogenic seizure susceptible rats. Fed Proc 38: 2411–2416

    PubMed  CAS  Google Scholar 

  • Craig CR, Chiu P, Colasanti BK (1976) Effects of diphenylhydantoin and trimethadione on seizure activity during cobalt experimental epilepsy in the rat. Neuropharmacology 15: 485–489

    Article  PubMed  CAS  Google Scholar 

  • Delgado JMR, Mihailovic L (1956) Use of intracerebral electrodes to evaluate drugs that act on the central nervous system. Ann NY Acad Sci 64: 644–666

    Article  PubMed  CAS  Google Scholar 

  • Desmedt LKC, Niemegeers CJE, Lewi PJ, Janssen PAJ (1976) Antagonism of maximal Metrazol seizures in rats and its relevance to an experimental classification of antiepileptic drugs. Arzneimittelforsch 26: 1592–1603

    PubMed  CAS  Google Scholar 

  • Diaz PM (1974) Interaction of pentylenetetrazol and trimethadione on the metabolism of serotonin in brain and its relation to the anticonvulsant action of trimethadione. Neuropharmacology 13: 615–621

    Article  PubMed  CAS  Google Scholar 

  • Dressier WE, Rossi GV, Orzechowski RF (1972) Effect of several anticonvulsant drugs and procainamide against ouabain-induced cardiac arrhythmias in rabbits. J Pharm Sci 61: 133–134

    Article  Google Scholar 

  • Elazar Z, Blum B (1971) Effect of drugs on interictal spikes and afterdischarges in experimental epilepsy. Arch Int Pharmacodyn Ther 189: 310–318

    PubMed  CAS  Google Scholar 

  • Endröczi E, Fekete T (1967) Amino acid composition of the ammon’s horn and the effect of anticonvulsant drugs. Acta Physiol Hung 32: 389–398

    Google Scholar 

  • Erwin VG, Deitrich RA (1973) Inhibition of bovine brain aldehyde reductase by anticonvulsant compounds in vitro. Biochem Pharmacol 22:2615–2624 Everett GM, Richards RK (1944) Comparative anticonvulsants action of 3,5,5-trimethyl-oxazolidine-2,4-dione (tridione), dilantin and phenobarbital. J Pharmacol Exp Ther 81: 402–407

    Google Scholar 

  • Faingold CL, Berry CA (1973 a) Anticonvulsant modification of tripelennamine effects on the electrographic activity of the cat brain. Neuropharmacology 12: 383–390

    Google Scholar 

  • Faingold CL, Berry CA (1973 b) Quantitative evaluation of the pentylenetetrazol-anticonvulsant interaction on the EEG of the cat. Eur J Pharmacol 24: 381–388

    Google Scholar 

  • Ferngren H (1968) Further studies on chemically induced seizures and their antagonism by anticonvulsants during postnatal development in the mouse. Acta Pharmacol Toxicol 26: 177–188

    Article  CAS  Google Scholar 

  • Ferngren H, Paalzow L (1967) Studies on electrically induced seizures and their antagonism by anticonvulsants during neonatal development in the mouse. Acta Pharmacol Toxicol 25 (Suppl 4): 60

    Article  Google Scholar 

  • Ferngren H, Paalzow L (1969) High frequency electro-shock seizures and their antagonism during postnatal development in the mouse. II. Effects of phenobarbital sodium, mephobarbital, trimethadione, dimethadione, ethosuximide and acetazolamide. Acta Pharmacol Toxicol 27: 249–261 (1969)

    Google Scholar 

  • Ferrari RA, Arnold A (1961) The effect of central nervous system agents on rat-brain γ-aminobutyric acid level. Biochim Biophys Acta 52: 361–367

    Article  PubMed  CAS  Google Scholar 

  • Forda O, McIlwain H (1953) Anticonvulsants on electrically stimulated metabolism of separated mammalian cerebral cortex. Br J Pharmacol 8: 225–229

    CAS  Google Scholar 

  • Frey HH (1964) Note on the interactions of amphetamine with anticonvulsant drugs. Acta Pharmacol Toxicol 21: 290–298

    Article  CAS  Google Scholar 

  • Frey HH (1969) Determination of the anticonvulsant potency of unmetabolized trimethadione. Acta Pharmacol Toxicol 27: 295–300

    Article  CAS  Google Scholar 

  • Frey HH, Kretschmer B-H (1971) Anticonvulsant effect of trimethadione in mice during continued treatment via the drinking water. Arch Int Pharmacodyn Ther 193: 181–190

    PubMed  CAS  Google Scholar 

  • Frey HH, Schulz R (1970) Time course of the demethylation of trimethadione. Acta Pharmacol Toxicol 28: 477–483

    Article  CAS  Google Scholar 

  • Gallagher BB (1972) Trimethadione and other oxazolidinediones: toxicity. In: Woodbury DM, Penry JK, Schmidt P (eds) Antiepileptic drugs. Raven, New York, pp 409–411

    Google Scholar 

  • Gandhi IC, Jindal MN, Patel VK (1976) Mechanism of neuromuscular blockade with some antiepileptic drugs. Arzneimittelforsch 26: 258–261

    PubMed  CAS  Google Scholar 

  • Gardner CR, Webster RA (1973) The effect of some anticonvulsant drugs on leptazol and bicuculline induced acetylcholine efflux from rat cerebral cortex. Br J Pharmacol 47: 652

    Google Scholar 

  • Gardner CR, Webster RA (1977) Convulsant-anticonvulsant interactions on seizure activity and cortical acetylcholine release. Eur J Pharmacol 42: 247–256

    Article  PubMed  CAS  Google Scholar 

  • Gilbert JC, Wyllie MG (1976) Effects of anticonvulsant and convulsant drugs on the ATP-ase activities of synaptosomes and their components. Br J Pharmacol 56: 49–57

    PubMed  CAS  Google Scholar 

  • Gilbert JC, Ortiz WR, Millichap JG (1966) The effects of anticonvulsant drugs on the permeability of brain cells to D-xylose. J Neurochem 13: 247–255

    Article  PubMed  CAS  Google Scholar 

  • Go K, Tsurumi K, Fujimura H ( 1978 a) Anti-convulsant effect of phthalazino-2,3-b-phthalazine-5(14H), 12(7H)-dione (L-5418). I. Behavioral effect. Jpn J Pharmacol 28: 1–12

    Google Scholar 

  • Go K, Tsurumi K, Fujimura H (1978 b) Anti-convulsant effect of phthalazino-[2,3b]-phthalazine-5 (14H), 12 (7H)-dione (L-5418). II. Electroencephalographic study. Jpn J Pharmacol 28:93–104 Godschalk M, Dzoljic MR, Bonta IL (1976) Antagonism of gamma-hydroxybutyrate-induced hypersynchronization in the ECoG of the rat by anti-petit mal drugs. Neurosci Lett 3: 145–150

    Google Scholar 

  • Gogerty JH, Gunn CG (1964) Effects of various centrally acting agents on penicillin-induced temporal lobe seizures in cats. Fed Proc 23: 349

    Google Scholar 

  • Goodman L, Manuel C (1945) The anticonvulsant properties of dimethyl-TV-methyl barbituric acid and 3,5,5-trimethyloxazolidine-2,4-dione (tridione). Fed Proc 4: 119

    Google Scholar 

  • Goodman LS, Toman EP (1945) Experimental indices for comparing the efficacy of compounds with anticonvulsant and antiepileptic properties. Fed Proc 4: 120

    Google Scholar 

  • Goodman LS, Toman JEP, Swinyard EA (1946 a) The anticonvulsant properties of tridione. Am J Med 1: 213–228

    Google Scholar 

  • Goodman LS, Swinyard EA, Toman JEP (1946 b) Further studies on the anticonvulsant properties or tridione (3,5,5-trimethyloxazolidinedione). Fed Proc 5: 179–180

    Google Scholar 

  • Goodman LS, Singh Grewal M, Brown WC, Swinyard EA (1953) Comparison of maximal seizures evoked by pentylenetetrazol ( Metrazol) and electroshock in mice, and their modification by anticonvulsants. J Pharmacol Exp Ther 108: 168–176

    Google Scholar 

  • Gordon SR (1981) Anticonvulsants found to have teratogenic potential. JAMA 245: 36

    Article  Google Scholar 

  • Granick S (1966) The induction in vitro of the synthesis of δ-aminolevulinic acid synthetase in chemical prophyria: a response to certain drugs, sex hormones and foreign chemicals. J Biol Chem 241: 1359–1375

    PubMed  CAS  Google Scholar 

  • Greengard O, McIlwain H (1955) Anticonvulsants and the metabolism of separated mammalian cerebral tissues. Biochem J 61: 61–68

    PubMed  CAS  Google Scholar 

  • Gross GJ, Woodbury DM (1972) Effects of pentylenetetrazol on ion transport in the isolated toad bladder. J Pharmacol Exp Ther 181: 257–272

    PubMed  CAS  Google Scholar 

  • Himwich HE, Essig CF, Hampson JL, Bales PD, Freedman AM (1950) Effect of trimethadione (tridione) and other drugs on convulsions caused by di-isopropyl fluorophosphate ( DFP ). Am J Psychiatry 106: 816–820

    Google Scholar 

  • Hori M, Ito T, Yoshida K, Shimizu, M (1979) Effect of anticonvulsants in spiking activity induced by cortical freezing in cats. Epilepsia 20: 25–36

    Article  PubMed  CAS  Google Scholar 

  • Iorio LC, Ryan EA, Gogerty JH (1973) Anticonvulsant testing with a new analeptic convulsant: N-sulfamoyl-hexahydroazepine (Sah 41–178). Arch Int Pharmacodyn Ther 206: 282–287

    PubMed  CAS  Google Scholar 

  • Ito T, Hori M, Yoshida K, Shimizu M (1977 a) Effect of anticonvulsants on seizures developing in the course of daily administration of pentetrazol to rats. Eur J Pharmacol 45: 165–172

    Google Scholar 

  • Ito T, Hori M, Yoshida K, Shimizu M (1977 b) Studies on freezing-induced experimental epilepsy: II. Effect of anticonvulsants on secondary generalized seizures in cats. Jpn J Pharmacol 27 (Suppl):35

    Google Scholar 

  • Ito T, Hori M, Yoshida K, Shimizu M (1979) Effect of anticonvulsants on experimental cortical epilepsy induced by tungstic acid gel in rats. Arch Int Pharmacodyn Ther 241: 287–299

    PubMed  CAS  Google Scholar 

  • Johnson DD, Crichlow EC, Crawford RD (1974) Epileptiform seizures in domestic fowl IV. The effects of anticonvulsant drugs. Can J Physiol Pharmacol 52: 991–994

    Google Scholar 

  • Joy RM (1973) Electrical correlates of preconvulsive and convulsive doses of chlorinated hydrocarbon insecticides in the CNS. Neuropharmacology 12: 63–76

    Article  PubMed  CAS  Google Scholar 

  • Julien RM, Fowler GW, Danielson MG (1975) The effects of antiepileptic drugs on estrogen-induced electrographic spike-wave discharge. J Pharmacol Exp Ther 193: 647–656

    PubMed  CAS  Google Scholar 

  • Kibler RF, O’Neill RP, Robin ED (1964) Intracellular acid–base relations of dog brain with reference to the brain extracellular volume. J Clin Invest 43: 431–443

    Article  PubMed  CAS  Google Scholar 

  • Killam EK (1976) Measurement of anticonvulsant activity in the Papio papio model of epilepsy. Fed Proc 35: 2264–2269

    PubMed  CAS  Google Scholar 

  • King LJ, Carl J (1969) Effects of antiepileptic drugs on brain energy reserves during convulsions. J Neurochem 16: 637–643

    Article  PubMed  CAS  Google Scholar 

  • Krall RL, Penry JK, White BG, Kupferberg HJ, Swinyard EA (1978) Antiepileptic drug development. II. Anticonvulsant drug screening. Epilepsia 19: 409–428

    Google Scholar 

  • Lahan GD, Osuide G., Stansfield F (1979) Anticonvulsant properties of ethyl-N-phtalimidoxy acetate. Br J Pharmacol 67: 441–442

    Google Scholar 

  • Lemeignan M (1971) Abord pharmacologique de l’etude du mecanisme de Taction convulsivante de l’amino-4 pyridine. Therapie 26: 927–940

    PubMed  CAS  Google Scholar 

  • Löscher W (1979 a) 3-Mercaptopropionic acid: convulsant properties, effects on enzymes of the γ-aminobutyrate system in mouse brain and antagonism by certain anticonvulsant drugs, aminooxyacetic acid and gabaculine. Biochem Pharmacol 28:1397–1407

    Google Scholar 

  • Löscher W (1979 b) A comparative study of the protein binding of anticonvulsant drugs in serum of dog and man. J Pharmacol Exp Ther 208:429–435

    Google Scholar 

  • Löscher W (1980) Comparative study of the inhibition of GABA aminotransferase by different anticonvulsant drugs. Arch Int Pharmacodyn Ther 243: 48–55

    PubMed  Google Scholar 

  • Löscher W, Frey HH (1977) Effect of convulsant and anticonvulsant agents on level and metabolism of γ-aminobutyric acid in mouse brain. Naunyn-Schmiedebergs Arch Pharmacol 296: 263–269

    Article  PubMed  Google Scholar 

  • Loewe S, Aldous RA, Fox SR, Johnson DG, Perkins W (1955) Isobols of dose-effect relations in the combination of pentylenetetrazole and trimethadione. J Pharmacol Exp Ther 113: 475–480

    PubMed  CAS  Google Scholar 

  • Lust WD, Kupferberg HJ, Yonekawa WD, Penry JK, Passonneau JV, Wheaton AB (1978) Changes in brain metabolites induced by convulsants or electroshock: effects of anticonvulsant agents. Mol Pharmacol 14: 347–356

    PubMed  CAS  Google Scholar 

  • McMillen B, Isaac L (1978) Effects of pentylenetetrazol and trimethadione on feline brain monoamine metabolism. Biochem Pharmacol 27: 1815–1820

    Article  PubMed  CAS  Google Scholar 

  • Midha KK, Buttar HS, Rowe M, Dupuis J (1979) Metabolism and disposition of trimethadione in pregnant rats. Epilepsia 20: 417–423

    Article  PubMed  CAS  Google Scholar 

  • Morrell F, Bradley W, Ptashne M (1959) Effect of drugs on discharge characteristics of chronic epileptogenic lesions. Neurology 9: 492–498

    PubMed  CAS  Google Scholar 

  • Nahorski SR (1972) Biochemical effects of the anticonvulsants trimethadione, ethosuximide and chlordiazepoxide in rat brain. J Neurochem 19: 1937–1946

    Article  PubMed  CAS  Google Scholar 

  • Nakamura K, Bernheim F (1961) Effects of some drugs on the γ-aminobutyric acid transaminase and the succinic semialdehyde dehydrogenase of rat brain. Jpn J Pharmacol 11: 37–45

    PubMed  CAS  Google Scholar 

  • Nolte H, Von Schnakenburg K (1973) Morphologische und pharmakologisch-toxikologische Aspekte der Hyperoxie. Int J Clin Pharmacol 74: 340–347

    Google Scholar 

  • Okamoto M, Rosenberg HC, Boisse NR (1977) Evaluation of anticonvulsants in barbiturate withdrawal. J Pharmacol Exp Ther 202: 479–489

    PubMed  CAS  Google Scholar 

  • Osuide G (1972) Pharmacological properties of amino-oxyacetic acid in the chicken. Br J Pharmacol 44: 31–44

    PubMed  CAS  Google Scholar 

  • Paton WDM (1967) Experiments on the convulsant and anaesthetic effects of oxygen. Br J Pharmacol 29: 350–366

    CAS  Google Scholar 

  • Poswillo DE (1972) Tridione and paradione as suspected teratogens. Ann R Coll Surg Engl 50: 367–370

    PubMed  CAS  Google Scholar 

  • Richards RK (1946) Tridione: a new experimental drug for treatment of convulsive and related disorders. I. Pharmacologic aspects. Arch Neurol Psychol 55: 164

    CAS  Google Scholar 

  • Richards RK, Everett GM (1944) Analgesic and anticonvulsive properties of 3,5,5–

    Google Scholar 

  • Trimethyloxalidine-2,4-dione (tridione). Fed Proc 3:39

    Google Scholar 

  • Richards RK, Everett GM (1946) Tridione: a new anticonvulsant drug. J Lab Clin Med 31: 1330–1336

    PubMed  CAS  Google Scholar 

  • Richter W (1964) Estimation of vasodilator drug effects in mice by measurements of paw skin temperature. Acta Pharmacol Toxicol 21: 91–104

    Article  CAS  Google Scholar 

  • Rifkind AB (1974) Teratogenic effects of trimethadione and dimethadione in the chick embryo. Toxicol Appl Pharmacol 30: 452–457

    Article  PubMed  CAS  Google Scholar 

  • Rifkind AB, Gilette PN, Song CS, Kappas A (1973) Drug stimulation of γ-aminolevulinic acid synthetase and cytochrome P-450 in vivo in chick embryo liver. J Pharmacol Exp Ther 185: 214–225

    PubMed  CAS  Google Scholar 

  • Rollins DE, Reed DJ (1970) Transport of DMO out of cerebrospinal fluid of rats. Am J Physiol 219: 1200–1204

    PubMed  CAS  Google Scholar 

  • Roos A (1965) Intracellular pH and intracellular buffering power of the cat brain. Am J Physiol 209: 1233–1246

    PubMed  CAS  Google Scholar 

  • Rümke CL (1961) Beeinflussung der Krampfwirkung des Bemegrids. Naunyn-Schmiedebergs Arch Exp Pathol Pharmacol 241: 511–512

    Article  Google Scholar 

  • Rümke CL (1963) The influence of drugs on the duration of hexobarbital and hydroxydione narcosis in mice. Naunyn-Schmiedebergs Arch Exp Pathol Pharmakol 244: 519–530

    PubMed  Google Scholar 

  • Rümke CL, Bout J (1960) Die Beeinflussung der Hexobarbitalnarkose durch vorher verabfolgte Pharmaka. Naunyn-Schmiedebergs Arch Exp Pathol Pharmakol 240: 218–223

    Google Scholar 

  • Sanders HD (1967) A comparison of the convulsant activity of procaine and pentylenetetrazol. Arch Int Pharmacodyn Ther 170: 165–177

    PubMed  CAS  Google Scholar 

  • Shannon HE, Hotzmann SG (1976) Blockade of the specific lethal effects of narcotic analgesics in the mouse. Eur J Pharmacol 39: 295–303

    Article  PubMed  CAS  Google Scholar 

  • Shull EG, Fabro SE (1978) The teratogenicity of trimethadione in the CD-I mouse. Pharmacologist 20: 263

    Google Scholar 

  • Singh N, Sinha JN, Rastogi SK, Dua PR, Kohli RP (1971) An experimental investigation on the antiarrhythmic activity of antiepileptic agents. Jpn J Pharmacol 21: 755–761

    Article  PubMed  CAS  Google Scholar 

  • Snead OC, Bearden LJ (1980) Anticonvulsants specific for petit mal antagonize epileptogenic effect of leucin encephalin. Science 210: 1031–1033

    Article  PubMed  CAS  Google Scholar 

  • Snead III OC, Bearden LJ, Pegram V (1980) Effect of acute and chronic anticonvulsant administration on endogenous γ-hydroxybutyrate in rat brain. Neuropharmacology 19: 47–52

    Article  PubMed  CAS  Google Scholar 

  • St-Laurent J (1971) Effect of trimethadione on the self-stimulation phenomenon. Can J Physiol Pharmacol 49: 850–853 (1971)

    Google Scholar 

  • Steinhauer HB, Anhut H, Hertting G (1979) The synthesis of prostaglandins and thromboxane in the mouse brain in vivo. Naunyn-Schmiedebergs Arch Pharmacol 310: 53–58

    Article  PubMed  CAS  Google Scholar 

  • Stone WE, Javid MJ (1979) Quantitative evaluation of the actions of anticonvulsants against different chemical convulsants. Arch Int Pharmacodyn Ther 240: 66–78

    PubMed  CAS  Google Scholar 

  • Stone WE, Javid MJ (1980) Effects of anticonvulsants and glutamate antagonists on the convulsive action of kainic acid. Arch Int Pharmacodyn Ther 243: 56–65

    PubMed  CAS  Google Scholar 

  • Struck HC, Stumpff DL, Caffrey RJ (1950) Effect of tridione (3,3,5-trimethyl oxazolidine-2,4-dione) on the oxygen uptake of motor and sensory cortex of dog brain. Fed Proc 9: 123

    Google Scholar 

  • Swinyard EA (1949) Laboratory assay of clinically effective antiepileptic drugs. J Am Pharm Ass Sci Ed 38: 201–204

    Article  CAS  Google Scholar 

  • Swinyard EA (1969) Laboratory evaluation of antiepileptic drugs. Epilepsia 10: 107–119

    Article  PubMed  CAS  Google Scholar 

  • Swinyard EA, Castellion AW (1966) Anticonvulsant properties of some benzodiazepines. J Pharmacol Exp Ther 151: 369–375

    PubMed  CAS  Google Scholar 

  • Swinyard EA, Brown WC, Goodman LS (1952 a) Comparative assays of antiepileptic drugs in mice and rats. J Pharmacol Exp Ther 106: 319–330

    Google Scholar 

  • Swinyard EA, Schiffman DO, Goodman LS (1952 b) Effects of liver injury and nephrectomy on the anticonvulsant activity of oxazolidine-2,4-diones. J Pharmacol Exp Ther 105: 365–370

    Google Scholar 

  • Swinyard EA, Madsen J A, Goodman LS (1954) The effect of β-diethylaminoethyldiphenyl-propylacetate (SKF No. 525 A) on the anticonvulsant properties of antiepileptic drugs. J Pharmacol Exp Ther 111: 54–63

    PubMed  CAS  Google Scholar 

  • Swinyard EA, Castellion AW, Fink GB, Goodman LS (1963) Some neurophysiological and neuropharmacological characteristics of audiogenic-seizure-susceptible mice. J Pharmacol Exp Ther 140: 375–384

    PubMed  CAS  Google Scholar 

  • Taylor JD, Bertcher EL (1952) The determination and distribution of trimethadione ( Tridione) in animal tissues. J Pharmacol Exp Ther 106: 277–285

    Google Scholar 

  • Taylor JD, Richards RK, Everett GM, Bertcher EL (1950) Effect of tridione (3,3,5-trimethyloxazolidine-2,4-dione) on the oxygen uptake of mouse brain. J Pharmacol Exp Ther 98: 392–399

    PubMed  CAS  Google Scholar 

  • Taylor JD, Davin JC, Richards RK (1956) Duration of anticonvulsant action of trimetha-dione and some demethylated oxazolidinediones against pentylenetetrazol in mice. Fed Proc 15: 491

    Google Scholar 

  • Thueson DO, Withrow CD, Giam CS, Woodbury DM (1974) Uptake, distribution, me–tabolism, and excretion of trimethadione in rats. Epilepsia 15: 563–578

    Article  PubMed  CAS  Google Scholar 

  • Toman JEP (1949) The neuropharmacology of antiepileptics. Electroencephalogr Clin Neurophysiol 1: 33–44

    PubMed  CAS  Google Scholar 

  • Toman JEP, Goodman LS (1948) Anticonvulsants. Physiol Rev 28: 409–432

    PubMed  CAS  Google Scholar 

  • Torda C, Wolff HG (1947) Effect of convulsant and anticonvulsant agents on acetylcholine metabolism (activity of choline acetylase, cholinesterase) and on sensitivity to acetylcholine of effector organs. Am J Physiol 151: 345–354

    PubMed  CAS  Google Scholar 

  • Torda C, Wolff HG (1950) Effect of convulsant and anticonvulsant agents on the activity of cytochrome oxidase. Proc Soc Exp Biol Med 74: 744–746

    PubMed  CAS  Google Scholar 

  • Ueki S, Araki Y, Watanabe S (1977) Changes in sensitivity of mice to anticonvulsant drugs following bilateral olfactory bulb ablations. Jpn J Pharmacol 27: 183–192

    Article  PubMed  CAS  Google Scholar 

  • Waddell WJ, Butler TC (1957) Renal excretion of 5,5-dimethyl-2,4-oxazolidinedione (product of demethylation of trimethadione). Proc Soc Exp Biol Med 96: 563–565

    PubMed  CAS  Google Scholar 

  • Wallin RF, Blackburn WH, Napoli MD (1970) Pharmacologic interactions of albutoin with other anticonvulsant drugs. J Pharmacol Exp Ther 174: 276–282

    PubMed  CAS  Google Scholar 

  • Weaver LC, Swinyard EA, Goodman LS (1958) Anticonvulsant drug combinations: diphe-nylhydantoin combined with other antiepileptics. J Am Pharm Assoc Sci Ed 47: 645–648

    Article  CAS  Google Scholar 

  • Wilkison DM, Halpern LM (1974) Effects of selected anticonvulsants on conjugated estrogen–induced epileptiform activity. Proc West Pharmacol Soc 17: 87–91

    CAS  Google Scholar 

  • Withrow CD (1980) Oxazolidinediones. In: Glaser GH, Penry JK, Woodbury DM (eds) Antiepileptic drugs: mechanism of action. Raven, New York, pp 577–586

    Google Scholar 

  • Withrow CD (1982) Trimethadione: absorption, distribution and excretion. In: Woodbury DM, Penry JK, Pippenger CE (eds) Antiepileptic drugs. Raven, New York, pp 681–687

    Google Scholar 

  • Withrow CD, Stout RJ, Barton LJ, Beacham WS, Woodbury DM (1968) Anticonvulsant effects of 5,5-dimethyl-2,4-oxazolidinedione ( DMO ). J Pharmacol Exp Ther 161: 335–341

    Google Scholar 

  • Woodbury DM (1952) Effects of chronic administration of anticonvulsant drugs, alone and in combination with desoxycorticosterone, on electroshock seizure threshold and tissue electrolytes. J Pharmacol Exp Ther 105: 46–57

    PubMed  CAS  Google Scholar 

  • Woodbury DM, Rollins LT, Gardner MD, Hirschi WL, Hogan JR, Rallison ML, Tanner GS, Brodie DA (1958) Effects of carbon dioxide on brain excitability and electrolytes. Am J Physiol 192: 79–90

    PubMed  CAS  Google Scholar 

  • Woodbury DM, Penry JK, Schmidt RP (eds) (1972) Antiepileptic drugs. Raven, New York

    Google Scholar 

  • Woodbury DM, Penry JK, Pippenger CE (eds) (1982) Antiepileptic drugs. Raven, New York

    Google Scholar 

  • Yen HCY, Silverman AJ, Salvatore A (1960) Iproniazid reinforcement of anticonvulsants. Fed Proc 19: 278

    Google Scholar 

  • Yen HCY, Salvatore AT, Silverman AJ, King TO (1962) A study of the effect of iponiazid on anticonvulsants in mice. Arch Int Pharmacodyn Ther 140: 631–645

    PubMed  CAS  Google Scholar 

  • Yeoh PN, Wolf HH (1970) Pharmacological evaluation of seizures induced by electrical stimulation of the hippocampus. J Pharm Sci 59: 950–954

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kretzschmar, R., Teschendorf, H.J. (1985). Oxazolidinediones. In: Frey, HH., Janz, D. (eds) Antiepileptic Drugs. Handbook of Experimental Pharmacology, vol 74. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-69518-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-69518-6_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-69520-9

  • Online ISBN: 978-3-642-69518-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics