Skip to main content

Chemotherapy of Ocular Viral Infections and Tumors

  • Chapter

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 69))

Abstract

This review will focus on drugs useful in the chemotherapy of ocular viral infections. Three drugs now approved for the treatment of herpes simplex virus (HSV) keratitis, iododeoxyuridine (IdUrd), adenine arabinoside (ara-A), and trifluorothymidine (CF3dUrd), will be discussed. In addition, several agents now under development, acycloguanosine (acyclovir), ethyldeoxyuridine (EtdUrd), bromovinyldeoxyuridine (BVdUrd), 1-(2-deoxy-2-fluoro-βarabinosyl)-5-iodo-cytosine (FIAC), 5-iodo-5′-amino-2′,5′-dideoxyuridine (AIdUrd), and the phos-phonates will be reviewed. Each of these compounds was chosen for a particular reason. Acyclovir is a highly unusual acyclic guanosine derivative and is a most promising antiviral agent. Bromovinyldeoxyuridine, EtdUrd, and FIAC represent new pyrimidine derivatives which possess higher degrees of antiviral selectivity than the two thymidine analogs now available (CF3dUrd, IdUrd). 5-Iodo-5′-amino-2′,5′-dideoxyuridine is a novel amino nucleoside that is activated only in herpes-infected cells. The phosphonates, in contrast, are not nucleosides, neither are they metabolized, and they represent inhibitors of the virally induced DNA polymerases. Such highly specific chemotherapy is not available for the treatment of ocular tumors and this topic will be only briefly discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abel R Jr, Kaufman HE, Sugar J (1975) Effect of intravenous adenine arabinoside on herpes simplex keratouveitis in humans. In: Pavan-Langston D, Buchanan RA, Alford CA (eds) Adenine arabinoside: an antiviral agent. Raven, New York, pp 393–400

    Google Scholar 

  • Abramson D (1979) The treatment of orbital rhabdomyosarcoma with irradiation and chemotherapy. Ophthalmology 86:1330–1335

    PubMed  CAS  Google Scholar 

  • Agarwal RP, Spector T, Parks RE Jr (1977) Tight binding inhibitors IV. Inhibition of adenosine deaminases by various inhibitors. Biochem Pharmacol 26:359–367

    PubMed  CAS  Google Scholar 

  • Albert DM, Lahav M, Bhatt PN, Reid TW, Ward RE, Cykiert RC, Lin T-S, Ward DC, Prusoff WH (1976) Successful therapy of herpes hominis keratitis in rabbits by 5-iodo-5′-amino-2′,5′-dideoxyuridine (AIU): a novel analog of thymidine. Invest Ophthalmol 15:470–478

    PubMed  CAS  Google Scholar 

  • Albert DM, Percy DH, Puliafito CA, Fritsch E, Lin T-S, Ward DC, Prusoff WH (1979) Postnatal treatment of mice with the antiviral nucleosides AIU or IdUrd. Adv Ophthalmol 38:89–98

    PubMed  CAS  Google Scholar 

  • Alenius S (1980) Inhibition of herpesvirus multiplication in guinea pig skin by antiviral compounds. Arch Virol 65:149–156

    PubMed  Google Scholar 

  • Alenius S, Nordlinger H (1979) Effect of trisodium phosphonoformate in genital infection of female guinea pigs with herpes simplex virus type 2. Arch Virol 60:197–206

    PubMed  CAS  Google Scholar 

  • Alenius S, Öberg B (1978) Comparison of the therapeutic effects of five antiviral agents on cutaneous herpesvirus infection in guinea pigs. Arch Virol 58:277–288

    PubMed  CAS  Google Scholar 

  • Alenius S. Dinter Z, Öberg B (1978) Therapeutic effect of trisodium phosphonoformate on cutaneous herpesvirus infection in guinea pigs. Antimicrob Agents Chemother 14:408–413

    PubMed  CAS  Google Scholar 

  • Alenius S, Laurent U, Öberg B (1980) Effect of trisodium phosphonoformate and idoxuridine on experimental herpes simplex keratitis in immunized and non-immunized rabbits. Acta Ophthalmol (Copenh) 58:167–173

    CAS  Google Scholar 

  • Allaudeen HS, Kozarich JW, Bertino JR, DeClercq D (1981) On the mechanism of selective inhibition of herpesvirus replication by (E)-5-(2-bromovinyl)-2′-deoxyuridine. Proc Natl Acad Sci USA 78:2698–2702

    PubMed  CAS  Google Scholar 

  • Allaudeen HS, Chen MS, Lee JJ, DeClercq E, Prusoff WH (1982) Incorporation of E-5-(2-halovinyl)-2′-deoxyuridines into deoxyribonucleic acids of herpes simplex virus type-1 infected cells. J Biol Chem 257:303–306

    Google Scholar 

  • Barrio JR, Bryant JD, Keyser GE (1980) A direct method for the preparation of 2-hydroxyethoxymethyl derivatives of guanine, adenine, and cytosine. J Med Chem 23:572–574

    PubMed  CAS  Google Scholar 

  • Bauer DJ, Collins P, Tucker ME, Macklin AW (1979) Treatment of experimental herpes simplex keratitis with acycloguanosine. Br J Ophthalmol 63:429–435

    PubMed  CAS  Google Scholar 

  • Becker Y, Hadar J (1980) Antivirals 1980 — an update. Prog Med Virol 26:1–44

    PubMed  CAS  Google Scholar 

  • Becker Y, Asher Y, Cohen A, Weinberg-Zahlering E, Schlomai (1977) Phosphonoacetic acid-resistant mutants of herpes simplex virus: effect of phosphonoacetic acid on virus replication and in vitro deoxyribonucleic acid synthesis in isolated nuclei. Antimicrob Agents Chemother 11:919–922

    PubMed  CAS  Google Scholar 

  • Bennett LL Jr, Shannon WM, Allan PW, Arnett G (1975) Studies on the biochemical basis for the antiviral activities of some nucleoside analogs. Ann NY Acad Sci 255:342–357

    PubMed  CAS  Google Scholar 

  • Berens K, Shugar D (1963) Ultraviolet absorption spectra and structure of halogenated uracils and their glycosides. Acta Biochim Pol 10:25–47

    PubMed  CAS  Google Scholar 

  • Biron KK, Elion GB (1980) In vitro susceptibility of varicella-zoster to acyclovir. Antimicrob Agents Chemother 18:443–447

    PubMed  CAS  Google Scholar 

  • Bishop JO, Madson EC (1975) Retinoblastoma: review of the current status. Surv Ophthalmol 19:342–366

    PubMed  CAS  Google Scholar 

  • Blyth WA, Harbour DA, Hill TJ (1980) Effect of acyclovir on recurrence of herpes simplex skin lesions in mice. J Gen Virol 48:417–419

    PubMed  CAS  Google Scholar 

  • Boezi JA (1979) The antiherpes action of phosphonoacetate. Pharmacol Ther 4:231–243

    PubMed  CAS  Google Scholar 

  • Bolden A, Aucker J, Weissbach A (1975) Synthesis of herpes simplex virus, vaccinia virus, and adenovirus DNA in isolated HeLa cell nuclei. J Virol 16:1584–1592

    PubMed  CAS  Google Scholar 

  • Bopp, BA, Estep LB, Anderson DJ (1977) Disposition of disodium phosphonoacetate-14C in rat, rabbit, dog, and monkey. Fed Proc 36:939

    Google Scholar 

  • Boston Interhospital Virus Study Group and the NIAID-Sponsored Cooperative Antiviral Clinical Study (1975) Failure of high dose 5-iodo-2′-deoxyuridine in the therapy of herpes simplex virus encephalitis. N Engl J Med 292:599–603

    Google Scholar 

  • Bresnick E, Williams SS (1967) Effects of 5-trifluoromethyldeoxyuridine on deoxythymidine kinase. Biochem Pharmacol 16:503–507

    PubMed  CAS  Google Scholar 

  • Brink JJ, LePage GA (1964) Metabolic effects of 9-D-arabinosylpurines in ascites tumor cells. Cancer Res 24:312–318

    PubMed  CAS  Google Scholar 

  • Buettner W, Werchau H (1973) Incorporation of 5-iodo-2′-deoxyuridine (IUdR) into SV40 DNA. Virology 52:553–561

    PubMed  CAS  Google Scholar 

  • Calabresi P, Cardoso SS, Finch SC, Kligerman MS, Von Essen CF, Chu MY, Welch AD (1961) Initial clinical studies with 5-iodo-2′-deoxyuridine. Cancer Res 21:550–554

    PubMed  CAS  Google Scholar 

  • Cass CE (1979) 9-β-D-Arabinofuranosyladenine (ara-A). In: Hahn FE (ed) Antibiotics V-2, Springer, Berlin Heidelberg New York, pp 85–109

    Google Scholar 

  • Cass CE, Ah-Yeung TH (1976) Enhancement of 9-β-D-arabinofuranosyladenine cytotoxicity to mouse leukemia L1210 in vitro by 2′-deoxycoformycin. Cancer Res 36:1486–1491

    PubMed  CAS  Google Scholar 

  • Centifanto YM, Kaufman HE (1979) 9-(2-Hydroxyethoxymethyl)guanine as an inhibitor of herpes simplex virus replication. Chemotherapy 25:279–281

    PubMed  CAS  Google Scholar 

  • Cha S (1975) Tight-binding inhibitors —I. Kinetic behavior. Biochem. Pharmacol 24:2187–2197

    PubMed  CAS  Google Scholar 

  • Chan T-S (1977) Induction of deoxycytidine deaminase activity in mammalian cell lines by infection with herpes simplex virus type 1. Proc Natl Acad Sci USA 74:1734–1738

    PubMed  CAS  Google Scholar 

  • Chang T-W, Syndman DR (1979) Antiviral agents: action and clinical use. Drugs 18:354–376

    PubMed  CAS  Google Scholar 

  • Chen MS, Prusoff WH (1978) Association of thymidylate kinase activity with pyrimidine deoxyribonucleoside kinase induced by herpes simplex virus. J Biol Chem 253:1325–1327

    PubMed  CAS  Google Scholar 

  • Chen MS, Prusoff WH (1979) Phosphorylation of 5-iodo-5′-amino-2′,5′-dideoxyuridine by herpes simplex virus type 1 encoded thymidine kinase. J Biol Chem 254:10449–10452

    PubMed  CAS  Google Scholar 

  • Chen MS, Ward DC, Prusoff WH (1976 a) Specific herpes simplex virus-induced incorporation of 5-iodo-5′-amino-2′,5′-dideoxyuridine into deoxyribonucleic acid. J Biol Chem 251:4833–4838

    PubMed  CAS  Google Scholar 

  • Chen MS, Ward DC, Prusoff WH (1976b) 5-Iodo-5′amino-2′,5′-dideoxyuridine-5′-N′-triphosphate synthesis, chemical properties, and effect on Escherichia coli thymidine kinase activity. J Biol Chem 251:4839–4842

    PubMed  CAS  Google Scholar 

  • Chen MS, Shiau GT, Prusoff WH (1980) 5′-Amino-5′-deoxythymidine: synthesis, specific phosphorylation by herpesvirus thymidine kinase, and stability to pH of the enzymically formed diphosphate derivative. Antimicrob Agents Chemother 18:433–436

    PubMed  CAS  Google Scholar 

  • Chen MS, Lee JJ, Allaudeen HS, DeClercq E, Prusoff WH (1981) Incorporation of E-5-(2-halovinyl)-2′-deoxyuridines into the deoxyribonucleic acid of herpes simplex virus type-1 infected Vero cells. Fed Proc 40:1826

    Google Scholar 

  • Cheng Y-C (1976) Deoxythymidine kinase induced in HeLa TK-cells by herpes simplex virus type I and II. Substrate specificity and kinetic behavior. Biochim Biophys Acta 452:370–381

    PubMed  CAS  Google Scholar 

  • Cheng Y-C (1977) A rational approach to the development of antiviral chemotherapy. Alternate substrates of herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2) thymidine kinase. Ann NY Acad Sci 284:594–598

    PubMed  CAS  Google Scholar 

  • Cheng Y-C, Goz B, Neenan JP, Ward DC, Prusoff WH (1975) Selective inhibition of herpes simplex virus by 5′-amino-2′,5′-dideoxy-5-iodouridine. J Virol 15:1284–1285

    PubMed  CAS  Google Scholar 

  • Cheng Y-C, Domin BA, Sharma RA, Bobek M (1976) Antiviral action and cellular toxicity of four thymidine analogues: 5-ethyl-, 5-vinyl-, 5-propyl-, and 5-allyl-2′-deoxyuridine. Antimicrob Agents Chemother 10:119–122

    PubMed  CAS  Google Scholar 

  • Cheng Y-C, Grill S, Derse D, Chen J-Y, Caradonna SJ, Connor K (1981a) Mode of action of phosphonoformate as an antiherpes simplex virus agent. Biochim Biophys Acta 652:90–98

    PubMed  CAS  Google Scholar 

  • Cheng Y-C, Dutschman G, DeClercq E, Jones AS, Rahim SG, Verhelst G, Walker RT (1981b) Differential affinities of 5-(2-halogenovinyl-2′-deoxyuridines for deoxythymidine kinases of various origins. Mol Pharmacol 20:230–233

    PubMed  CAS  Google Scholar 

  • Ch’ien LT, Schabel FM Jr, Alford CA (1973) Arabinosyl nucleosides and nucleotides. In: Carter WA (ed) Selective inhibitors of viral functions. CRC Press, Cleveland, pp 227–256

    Google Scholar 

  • Chou T-C, Feinberg A, Grant AJ, Vidal P, Reichman U, Watanabe KA, Fox JJ, Philips FS (1981) Pharmacological disposition and metabolic fate of 2′-fluoro-5-iodo-l-β-D-arabinofuranosylcytosine in mice and rats. Cancer Res 41:3336–3342

    PubMed  CAS  Google Scholar 

  • Clough DW, Parkhurst JR (1977) Experimental herpes simplex virus type 1 encephalitis: treatment with trifluoromethyl-2′-deoxyuridine. Antimicrob Agents Chemother 11:307–311

    PubMed  CAS  Google Scholar 

  • Coen DM, Schaffer PA (1980) Two distinct loci confer resistance to acycloguanosine in herpes simplex virus type 1. Proc Natl Acad Sci USA 77:2265–2269

    PubMed  CAS  Google Scholar 

  • Cohen GH (1972) Ribonucleotide reductase activity of synchronized KB cells infected with herpes simplex virus. J Virol 9:408–418

    PubMed  CAS  Google Scholar 

  • Cohen SS (1966) Introduction to the biochemistry of D-arabinosyl nucleosides. Prog Nucleic Acid Res Mol Biol 5:1–88

    PubMed  Google Scholar 

  • Cohen SS (1976) The lethality of aranucleotides. Med Biol 54:299–326

    PubMed  CAS  Google Scholar 

  • Colby BM, Shaw JE, Elion GB, Pagano JS (1980) Effect of acyclovir [9-(2-hydroxyethoxymethyl)guanine] on Epstein-Barr virus DNA replication. J Virol 34:560–568

    PubMed  CAS  Google Scholar 

  • Collins P, Bauer DJ (1979) The activity in vitro of 9-(2-hydroxyethoxymethyl)guanine (acycloguanosine), a new antiviral agent. J Antimicrob Chemother 5:431–436

    PubMed  CAS  Google Scholar 

  • Collum LM, Benedict-Smith A, Hillary IB (1980) Randomized double-blind trial of acyclovir and idoxuridine in dendritic corneal ulceration. Br J Ophthalmol 64:766–769

    PubMed  CAS  Google Scholar 

  • Connor JD, Sweetman L, Carey S, Stuckey MA, Buchanan R (1975) Susceptibility in vitro of several large DNA viruses to the antiviral activity of adenine arabinoside: relation to human pharmacology. In: Pavang-Langston D, Buchanan RA, Alford CA Jr (eds) Adenine arabinoside: an antiviral agent. Raven, New York, pp 177–196

    Google Scholar 

  • Coster DJ, McKinnon JR, McGill JI, Jones BR, Fraunfelder, FT (1976) Clinical evaluation of adenine arabinoside and trifluorothymidine in the treatment of corneal ulcers caused by herpes simplex virus. J Infect Dis S-133:A173–A177

    Google Scholar 

  • Coster DJ, Wilkelmus JR, Michaud R, Jones BR (1980) A comparison of acyclovir and idoxuridine as treatment for ulcerative herpetic keratitis. Br J Ophthalmol 64:763–765

    PubMed  CAS  Google Scholar 

  • Crumpacker CS, Schnipper LE, Zaia JA, Lewis MJ (1979) Growth inhibition by Acycloguanosine of herpesviruses isolated from human infections. Antimicrob Agents Chemother 15:642–645

    PubMed  CAS  Google Scholar 

  • Crumpacker CS, Chartrand P, Subak-Sharpe JH, Wilkie NM (1980) Resistance of herpes simplex virus to acycloguanosine–genetic and physical analysis. Virology 105:171–184

    PubMed  CAS  Google Scholar 

  • Darby G, Larder BA, Bastow KF, Field HJ (1980) Sensitivity of viruses to phosphorylated 9-(2-hydroxyethoxymethyl)guanine revealed in TK-transformed cells. J Gen Virol 48:541–554

    Google Scholar 

  • Darby G, Field HJ, Salisbury SA (1981) Altered substrate specificity of herpes simplex virus thymidine kinase confers acyclovir-resistance. Nature 289:81–83

    PubMed  CAS  Google Scholar 

  • Datta AK, Colby BM, Shaw JE, Pagano JS (1980) Acyclovir inhibition of Epstein-Barr virus replication. Proc Natl Acad Sci USA 77:5163–5166

    PubMed  CAS  Google Scholar 

  • Davis WB, Oakes JE, Taylor JA (1978) Effects of treatment with 5-ethyl-2′-desoxyuridine on herpes simplex virus encephalitis in normal and immunosuppressed mice. Antimicrob Agents Chemother 14:743–748

    PubMed  CAS  Google Scholar 

  • Davis WB, Oakes JE, Vacik JP, Rebert RR, Taylor JA (1979) 5-ethyl-2′-deoxyuridine as a systemic agent for treatment of herpes simplex virus encephalitis. Adv Ophthalmol 38:140–150

    PubMed  CAS  Google Scholar 

  • DeClercq E (1979) New trends in antiviral chemotherapy. Arch Int Physiol Biochim 81:353–395

    Google Scholar 

  • DeClercq E, Shugar D (1975) Antiviral activity of 5-ethyl pyrimidine deoxyribonucleosides. Biochem Pharmacol 24:1073–1078

    CAS  Google Scholar 

  • DeClercq E, Torrence PF (1978) Nucleoside analogs with selective antiviral activity. J Carbohydr Nucleosides Nucleotides 5:187–224

    CAS  Google Scholar 

  • DeClercq E, Krajewska E, Descamps J, Torrence PF (1977) Antiherpes activity of deoxythymidine analogues: specific dependence on virus-induced deoxythymidine kinase. Mol Pharmacol 13:980–984

    CAS  Google Scholar 

  • DeClercq E, Descamps J, Desomer P, Barr PJ, Jones AS, Walker RT (1979 a) E-5-(2-Bromo-vinyl)-2′-deoxyuridine: a potent and selective antiherpes agent. Proc Natl Acad Sci USA 76:2947–2951

    CAS  Google Scholar 

  • DeClercq E, Descamps J, Desomer P, Barr PJ, Jones AS, Walker RT (1979 b) Pharmacokinetics of E-5-(2-bromo-vinyl)-2′-deoxyuridine in mice. Antimicrob Agents Chemother 16:234–236

    CAS  Google Scholar 

  • DeClercq E, DeGreef H, Wildiers J, deJonge G, Drochmans A, Descamps J, deSomer P (1980 a) Oral (E)-5-(2-bromovinyl)-2′-deoxyuridine in severe herpes zoster. Br Med J 281:1778

    Google Scholar 

  • DeClercq E, Descamps J, Verhelst G, Jones AS, Walker RT (1980 b) Antiviral activity of 5-(2-halogenovinyl)-2′-deoxyuridines. In: Nelson JD, Grassi C (eds) Current chemotherapy and infectious disease. American Society for Microbiology. Washington DC, pp 1372–1374

    Google Scholar 

  • DeClercq E, Descamps J, Verhelst G, Walker RT, Jones AS, Torrence PF, Shugar D (1980c) Comparative efficiency of different antiherpes drug against different strains of herpes simplex virus. J Infect Dis 141:563–574

    CAS  Google Scholar 

  • DeClercq E, Heremans H, Descamps J, Verhelst G, DeLey M, Billiau A (1981) Effects of E-5-(2-bromovinyl)-2′-deoxyuridine and other selective anti-herpes compounds on the induction of retrovirus particles in mouse Balb/3T3 cells. Mol Pharmacol 19:122–129

    CAS  Google Scholar 

  • DeMiranda P, Whithley RJ, Blum MR, Keeney RE, Barton N, Cocchetto DM, Good S, Hemstreet GP, Kirk LE, Page DA, Elion GB (1979) Acyclovir kinetics after intravenous infusion. Clin Pharmacol Ther 26:718–728

    CAS  Google Scholar 

  • Derse D, Cheng Y-C, Furman PA, St Clair HH, Elion GB (1981) Inhibition of purified human and herpes simplex virus-induced DNA polymerases by 9-(2-hydroxyethoxymethyl)guanine triphosphate. Effects on primer-template function. J Biol Chem 256:11447–11451

    PubMed  CAS  Google Scholar 

  • DeRudder J, Privat-Degarilhe M (1965/1966) Inhibitory effect of some nucleosides on the growth of various human viruses in tissue culture. Antimicrob Agents Chemother 578–584

    Google Scholar 

  • Descamps J, DeClercq E (1981) Specific phosphorylation of E-5-(2-iodovinyl)-2′-deoxyuridine by herpes simplex virus-infected cells. J Biol Chem 256:5973–5976

    PubMed  CAS  Google Scholar 

  • Descamps J, CeClercq E, Barr PJ, Jones AS, Walker RT, Torrence PF, Shugar D (1979) Relative potencies of different anti-herpes agents in the topical treatment of cutaneous herpes simplex infection of athymic nude mice. Antimicrob Agents Chemother 16:680–682

    PubMed  CAS  Google Scholar 

  • Dexter DL, Oki T, Heidelberger C (1973) Fluorinated pyrimidines XLII. Effect of 5-trifluoromethyl-2′-deoxyuridine on transcription of vaccinia viral messenger ribonucleic acid. Mol Pharmacol 9:283–296

    PubMed  CAS  Google Scholar 

  • Doering A, Keller J, Cohen SS (1966) Some aspects of D-arabinosyl nucleosides on polymer synthesis in mouse fibroblasts. Cancer Res 26:2444–2450

    PubMed  CAS  Google Scholar 

  • Duff RG, Robishaw EE, Mao JC-H, Overby LR (1978) Characteristics of herpes simplex virus resistance to disodium phosphonoacetate. Intervirology 9:193–205

    PubMed  CAS  Google Scholar 

  • Elion GB, Furman PA, Fyfe JA, DeMiranda P, Beauchamp L, Schaeffer HJ (1977) Selectivity of action of an antiherpetic agent, 9-(2-hydroxyethoxymethyl)-guanine. Proc Natl Acad Sci USA 74:5716–5720

    PubMed  CAS  Google Scholar 

  • Elliott RM, Bateson A, Kelley DC (1980) Phosphonoacetic acid inhibition of frog virus 3 replication. J Virol 33:539–542

    PubMed  CAS  Google Scholar 

  • Elze K-L (1979) Ten years of clinical experiences with ethyldeoxyuridine. Adv Ophthalmol 38:134–139

    PubMed  CAS  Google Scholar 

  • Eriksson B, Öberg B (1979) Characteristics of herpesvirus mutants resistant to phosphonoformate and phosphonoacetate. Antimicrob Agents Chemother 15:758–762

    PubMed  CAS  Google Scholar 

  • Eriksson B, Larsson A, Helgstrand E, Johansson N-G, Oberg B (1980) Pyrophosphate analogues as inhibitors of herpes simplex virus type 1 DNA polymerase. Biochim Biophys Acta 607:53–64

    PubMed  CAS  Google Scholar 

  • Falcon MG, Jones BR (1979) Acycloguanosine: antiviral activity in the rabbit cornea. Br J Ophthalmol 63:422–424

    PubMed  CAS  Google Scholar 

  • Felsenfeld AD, Abee CR, Gerone PJ, Soike KF, Williams SR (1978) Phosphonoacetic acid in the treatment of simian varicella. Antimicrob Agents Chemother 14:331–335

    PubMed  CAS  Google Scholar 

  • Field HJ, Darby G (1980) Pathogenicity in mice of strains of herpes simplex virus which are resistant to acyclovir in vitro and in vivo. Antimicrob Agents Chemother 17:209–216

    PubMed  CAS  Google Scholar 

  • Field HJ, Wildy P (1978) The pathogenicity of thymidine kinase — deficient mutants of herpes simplex virus in mice. J Hyg Camb 81:267–277

    PubMed  CAS  Google Scholar 

  • Field HJ, Bell SE, Elion GB, Nash AA, Wildy P (1979) Effect of acycloguanosine treatment on acute and latent herpes simplex infections in mice. Antimicrob Agent Chemother 15:554–561

    CAS  Google Scholar 

  • Fischer PH, Prusoff WH (1982) Pyrimidine nucleosides with selective antiviral activity. In: Came PE, Caliguiri LA (eds) Chemotherapy of viruses. Springer, Berlin Heidelberg New York, Handbook of experimental pharmacology, vol 61 pp 95–116

    Google Scholar 

  • Fischer PH, Chen MS, Prusoff WH (1980) the incorporation of 5-iodo-5′-amino-2′,5′-dideoxyuridine and 5-iodo-2′-deoxyuridine into herpes simplex virus DNA: a relationship to their antiviral activity and effects on DNA structure. Biochim Biophys Acta 606:236–245

    PubMed  CAS  Google Scholar 

  • Fitzwilliam JF, Griffith JF (1976) Experimental ecephalitis caused by herpes simplex virus: comparison of treatment with tilorone hydrochloride and phosphonacetic acid. J Infect Dis 133: A221–225

    Google Scholar 

  • Foster CS, Pavan-Langston D (1977) Corneal wound healing and antiviral medication. Arch Ophthalmol 95:2062–2067

    PubMed  CAS  Google Scholar 

  • Fox JJ, Lopez C, Watanabe KA (1981) 2′-Fluoro-arabinosyl pyrimidine nucleosides: chemistry, antiviral, and potential anticancer activities. In: LaHeras FG, Vegas S (eds) Medicinal chemistry advances. Pergamon, Oxford, pp 27–40

    Google Scholar 

  • Friedman-Kien AE, Fondak AA, Klein RJ (1976) Phosphonoacetic acid in the treatment of Shope fibroma and vaccinia virus skin infections in rabbits. J Invest Dermatol 66:99–102

    PubMed  CAS  Google Scholar 

  • Fujiwara Y, Heidelberger C (1970) Fluorinated pyrimidines XXXVIII. The incorporation of 5-trifluoromethyl-2′-deoxyuridine into the deoxyribonucleic acid of vaccinia virus. Mol Pharmacol 6:281–291

    PubMed  CAS  Google Scholar 

  • Fujiwara Y, Oki T, Heidelberger C (1970) Fluorinated pyrimidines XXXVII. Effects of 5-trifluoromethyl-2′-deoxyuridine on the synthesis of deoxyribonucleic acid of mammalian cells in culture. Mol Pharmacol 6:273–280

    PubMed  CAS  Google Scholar 

  • Furman PA, St Clair MH, Fyfe JA, Rideout JL, Keller PM, Elion GB (1979) Inhibition of herpes simplex virus-induced DNA polymerase activity and viral DNA replication by 9-(2-hydroxyethoxymethyl)guanine and its triphosphate. J Virol 32:72–77

    PubMed  CAS  Google Scholar 

  • Furman PA, McGuirt PV, Keller PM, Fyfe JA, Elion GB (1980) Inhibition of cell growth and DNA synthesis of cells biochemically transformed with herpes virus genetic information. Virology 102:420–430

    PubMed  CAS  Google Scholar 

  • Furth JJ, Cohen SS (1967) Inhibition of mammalian DNA polymerase by the 5′-triphosphate of 9-β-D-arabinofuranosyladenine. Cancer Res 27:1528–1533

    PubMed  CAS  Google Scholar 

  • Furth JJ, Cohn SS (1968) Inhibition of mammalian DNA polymerases by the 5′-triphosphate of l-β-D-arabinofuranosylcytosine and the 5′-triphosphate of 9-β-D-arabinofuranosyladenine. Cancer Res 28:2061–2067

    PubMed  CAS  Google Scholar 

  • Fyfe JA, Keller PM, Furman PA, Miller RL, Elion GB (1978) Thymidine kinase from herpes simplex virus phosphorylates the new antiviral compound, 9-(2-hydroxyethoxymethyl)guanine. J Biol Chem 253:8721–8727

    PubMed  CAS  Google Scholar 

  • Gauri KK (1968) Subconjunctival application of 5-ethyl-2′-deoxyuridine in the chemotherapy of experimental keratitis in rabbits. Klin Monatsbl Augenheilkd 153:837–841

    PubMed  CAS  Google Scholar 

  • Gauri KK, Elze KL (1977) Concentration dependent effectiveness of 5-ethyl-2′-deoxyuridine in animal experiments and in the clinic. Klin Monatsbl Augenheilkd 171:459–463

    PubMed  CAS  Google Scholar 

  • Gauri KK, Malorny G (1967) Chemotherapy der Herpes-Infektion mit neuen 5-Akyl-uracildesoxyribosiden. Naunyn-Schmiedebergs Arch Exp Pathol Pharmakol 257:21–22

    PubMed  CAS  Google Scholar 

  • Gauri KK, Malorny G, Schiff W (1969) Immunobiological studies with the viro-statics 5-ethyl-2′-deoxyuridine and 1-allyl-3,5-diethyl-6-chlorouracil. Chemotherapy 14:129–132

    PubMed  CAS  Google Scholar 

  • Gerstein DD, Dawson CR, Oh JD (1975) Phosphonoacetic acid in the treatment of experimental herpes simplex keratitis. Antimicrob Agents Chemother 7:285–288

    PubMed  CAS  Google Scholar 

  • Goz B (1978) The effects of incorporation of 5-halogenated deoxyuridines into the DNA of eukaryotic cells. Pharmacol Rev 29:249–272

    Google Scholar 

  • Goz B, Prusoff WH (1970) Pharmacology of viruses. Annu Rev Pharmacol 10:143–170

    PubMed  CAS  Google Scholar 

  • Haschke RH, Ordronneau JM, Bunt AH (1980) Preparation and retrograde axonal transport of an antiviral drug/horseradish peroxidase conjugate. J Neurochem 35:1431–1435

    PubMed  CAS  Google Scholar 

  • Hay J, Subak-Sharpe JH (1976) Mutants of herpes simplex virus type I and II that are resistant to phosphonoacetic acid induce altered DNA polymerase activities in infected cells. J Gen Virol 31:145–148

    PubMed  CAS  Google Scholar 

  • Hay J, Brown SM, Jamieson AT, Riyon FJ, Moss H, Dargan DA, Subak-Sharpe JH (1977) The effect of phosphanoacetic acid on herpes viruses. J Antimicrob Chemother 3 [Suppl A]: 63–70

    PubMed  Google Scholar 

  • Heidelberger C (1975a) On the molecular mechanism of the antiviral activity of trifluorothymidine. Ann NY Acad Sci 255:317–325

    PubMed  CAS  Google Scholar 

  • Heidelberger C (1975 b) Fluorinated pyrimidines and their nucleosides. In: Sartorelli AC, Johns DG (eds) Antineoplastic and immunosuppressive agents, vol 2. Springer, Berlin Heidelberg New York, pp 193–231

    Google Scholar 

  • Heidelberger C, Anderson SW (1964) Fluorinated pyrimidines XXI. The tumor-inhibitory activity of 5-trifluoromethyl-2′-deoxyuridine. Cancer Res 24:1979–1985

    PubMed  CAS  Google Scholar 

  • Heidelberger C, King DH (1979) Trifluorothymidine. Pharmacol Ther 6:427–442

    CAS  Google Scholar 

  • Heidelberger C, Parsons DG, Remy DC (1964) Synthesis of 5-trifluoromethyluracil and 5-trifluoromethyl-2′-deoxyuridine. J Med Chem 7:1–5

    PubMed  CAS  Google Scholar 

  • Helgstrand E, Öberg B (1980) Enzymatic targets in virus chemotherapy. Antibiotics Chemother 27:27–69

    Google Scholar 

  • Helgstrand E, Eriksson B, Johansson NG, Lannero B, Larsson A, Misiorny A, Noren JP, Sjoberg B, Stenberg K, Stening G, Stridh S, Öberg B, Alenius S, Philpson L (1978) Trisodium phosphonoformate, a new antiviral compound. Science 201:819–821

    PubMed  CAS  Google Scholar 

  • Helgstrand E, Öberg B, Alenius S (1979) Experimental studies on the antiherpetic agent phosphonoformic acid. Adv Ophthalmol 38:276–280

    PubMed  CAS  Google Scholar 

  • Henderson EE, Long WK, Ribecky K (1979) Effects of nucleoside analogs on Epstein-Barr virus-induced transformation of human umbilical cord leukocytes and Epstein-Barr virus expressions in transformed cells. Antimicrob Agents Chemother 15:101–110

    PubMed  CAS  Google Scholar 

  • Herrmann EC Jr (1961) Plaque inhibition test for detection of specific inhibitors of DNA containing viruses. Proc Soc Exp Biol Med 107:142–145

    CAS  Google Scholar 

  • Herrmann EC Jr, Herrmann JA (1979) Diagnosis of viral disease and the advent of antiviral drugs. Pharmacol Ther 7:35–69

    PubMed  CAS  Google Scholar 

  • Hershfield MS (1979) Apparent suicide inactivation of human lymphoblast S-adenosyl-homocysteine hydrolase by 2′-deoxyadenosine and adenine arabinoside: a basis for direct toxic effects of analogs of adenosine. J Biol Chem 254:22–25

    PubMed  CAS  Google Scholar 

  • Hirsh MS, Swartz MN (1980) Antiviral agents (parts I and II). N Engl J Med 302:903,949–953

    Google Scholar 

  • Honess RW, Watson DH (1977) Herpes simplex virus resistance and sensitivity to phosphonoacetic acid. J Virol 21:584–600

    PubMed  CAS  Google Scholar 

  • Huang E-S (1975) Human cytomegalovirus. IV. Specific inhibition of virus induced DNA polymerase activity and viral DNA replication by phosphonoacetic acid. J Virol 16:1560–1565

    PubMed  CAS  Google Scholar 

  • Huang E-S, Huang C-H, Huong S-M, Selgrade M (1976) Preferential inhibition of herpes-group viruses by phosphonoacetic acid: effects on virus DNA synthesis and virus-induced DNA polymerase activity. Yale J Biol Med 49:93–98

    PubMed  CAS  Google Scholar 

  • litis JP, Lin T-S, Prusoff WH, Rapp F (1979) Effect of 5-iodo-5′-amino-2′,5′-dideoxyuridine on varicella-zoster virus in vitro. Antimicrob Agents Chemother 16:92–97

    PubMed  CAS  Google Scholar 

  • Itoi M, Gefter JW, Kaneko N, Ishii Y, Ramer RM, Gassert S (1975) Teratogenicities of ophthalmic drugs I. Antiviral ophthalmic drugs. Arch Ophthalmol 93:46–51

    PubMed  CAS  Google Scholar 

  • Jamieson AT, Subak-Sharpe JH (1974) Biochemical studies on the herpes simplex virus-specified deoxypyrimidine kinase activity. J Gen Virol 24:481–492

    PubMed  CAS  Google Scholar 

  • Jamieson AT, Gentry GA, Subak-Sharpe JH (1974) Induction of both thymidine and deoxycytidine kinase activity by herpes viruses. J Gen Virol 24:465–480

    PubMed  CAS  Google Scholar 

  • Jofre JT, Schaffer PA, Parris DS (1977) Genetics of resistance to phosphonoacetic acid in strain KOS of herpes simplex type I. J Virol 23:833–836

    PubMed  CAS  Google Scholar 

  • Jones AS, Verhelst G, Walker RT (1979) The synthesis of the potent anti-herpes virus agent E-(5)-(2-bromovinyl)-2′-deoxyuridine and related compounds. Tetrahedron Lett 45:4415–4418

    Google Scholar 

  • Jones BR, McGill JI, Mckinnon JR, Holt-Wilson AD, Williams HP (1975) Preliminary experience with adenine arabinoside in comparison with idoxuridine and trifluorothymidine in the management of herpectic keratitis. In: Pavan-Langston D, Buchanan RA, Alford CA Jr (eds) Adenine arabinoside: a antiviral agent. Raven New York, pp 411–416

    Google Scholar 

  • Juel-Jensen BE (1973) Herpes simplex and zoster. Med J 1:406–410

    CAS  Google Scholar 

  • Juel-Jensen BE (1974) Virus diseases. Practitioner 213:508–518

    PubMed  CAS  Google Scholar 

  • Kan-Mitchell J, Prusoff WH (1979) Studies of the effects of 5-iodo-2′-deoxyuridine on the formation of adenovirus type 2 virions and the synthesis of virus induced polypeptides. Biochem Pharmacol 28:1819–1829

    PubMed  CAS  Google Scholar 

  • Kan-Mitchell J, Mitchell M, Lin T-S, Prusoff WH (1980) Comparative analysis of the immunosuppressive properties of two antiviral iodinated thymidine analogs, 5-iodo-2′-deoxyuridine and 5-iodo-5′-amino-2′,5′-dideoxyuridine. Cancer Res 40:3491–3494

    PubMed  CAS  Google Scholar 

  • Kaplan AS, Ben-Porat T (1966) Mode of antiviral action of 5-iodouracil deoxyriboside. J Mol Biol 19:302–332

    Google Scholar 

  • Kaufman ER, Davidson RL (1979) Altered thymidylate kinase substrate specificity in mammalian cells selected for resistance to iododeoxyuridine. Exp Cell Res 123:355–363

    PubMed  CAS  Google Scholar 

  • Kaufman HE (1962) Clinical cure of herpes simplex keratitis by 5-iodo-2′-deoxyuridine. Proc Soc Exp Biol Med 109:251–252

    PubMed  CAS  Google Scholar 

  • Kaufman HE (1965) Problems in virus chemotherapy. Prog Med Virol 7:116–159

    PubMed  CAS  Google Scholar 

  • Kaufman HE (1977) Antiviral drugs. Int J Dermatol 16:464–475

    PubMed  CAS  Google Scholar 

  • Kaufman HE (1980) Antimetabolite therapy in herpes simplex. Ophthalmology 87:135–139

    PubMed  CAS  Google Scholar 

  • Kaufman HE, Heidelberger C (1964) Therapeutic antiviral action of 5-trifluoromethyl-2′-deoxyuridine in herpes simplex keratitis. Science 145:585–586

    PubMed  CAS  Google Scholar 

  • Kaufman HE, Maloney ED, Nesburn AB (1962 a) Comparison of specific antiviral agents in herpes simplex keratitis. Invest Ophthalmol 1:686–692

    PubMed  CAS  Google Scholar 

  • Kaufman HE, Martola E, Dohlman C (1962 b) Use of 5-iodo-2′-deoxyuridine (IDU) in treatment of herpes simplex keratitis. Arch Ophthalmol 68:235–239

    PubMed  CAS  Google Scholar 

  • Kaufman HE, Yarnell ED, Centifanto YM, Rheinstrom SD (1978) Effect of 9-(2-hydroxyethoxymethyl)guanine on herpesvirus-induced keratitis and iritis in rabbits. Antimicrob Agents Chemother 14:842–845

    PubMed  CAS  Google Scholar 

  • Keir HM, Gold E (1963) Deoxyribonucleic acid nucleotidyltransferase and deoxyribonuclease from cultured cells infected with herpes simplex virus. Biochim Biophys Acta 72:263–276

    CAS  Google Scholar 

  • Kern ER, Richards JR, Overall JC, Glasgow LA (1977) Genital herpesvirus hominis infection in mice. II. Treatment with phosphonoacetic acid, adenine arabinoside, and adenine arabinoside 5′-monophosphate. J Infect Dis 135:557–567

    PubMed  CAS  Google Scholar 

  • Kern ER, Richards JR, Overall JC Jr, Glasgow LA (1978) Alteration of mortality and pathogenesis of three experimental herpesvirus hominis infections of mice with adenine arabinoside-5′-monophosphate, adenine arabinoside, and phosphonoacetic acid. Anti-microb Agents Chemother 13:53–60

    PubMed  CAS  Google Scholar 

  • Kit S (1979) Viral-associated and induced enzymes. Pharmacol Ther 4:501–585

    CAS  Google Scholar 

  • Kit S, Dubbs DR (1963) Acquisition of thymidine kinase activity by herpes simplex-infected mouse fibroblast cells. Biochem Biophys Res Commun 11:55–59

    PubMed  CAS  Google Scholar 

  • Kit S, Dubbs DR, Pierkaraki JJ, Hsu TC (1963) Deletion of thymidine kinase activity from L cells resistant to bromodeoxyuridine. Exp Cell Res 31:297–312

    PubMed  CAS  Google Scholar 

  • Kitchin FD, Ellsworth RM (1980) Chemotherapy of ocular tumors. In: Srinivasan BD (ed) Ocular therapeutics. Masson, New York, pp 169–173

    Google Scholar 

  • Klein RJ, Friedman-Kien AE (1975) Phosphonoacetic acid-resistant herpes simplex virus infection in hairless mice. Antimicrob Agents Chemother 7:289–293

    PubMed  CAS  Google Scholar 

  • Klein RJ, Friedman-Kien AE, DeStefano E (1979 a) Latent herpes simplex virus infections in sensory ganglia of hairless mice prevented by acycloguanosine. Antimicrob Agents Chemother 15:723–729

    PubMed  CAS  Google Scholar 

  • Klein RJ, DeStefano E, Brady E, Friedman-Kien AE (1979 b) Latent infections of sensory ganglia as influenced by phosphonoformate treatment of herpes simplex-virus-induced skin infections in hairless mice. Antimicrob Agents Chemother 16:266–270

    PubMed  CAS  Google Scholar 

  • Klein RJ, DeStefano E, Brady E, Friedman-Kien AE (1980) Experimental skin infection with acyclovir resistant mutant: response to antiviral treatment and protection against reinfection. Arch Virol 65:237–246

    PubMed  CAS  Google Scholar 

  • Kurtz SM (1975) Toxicology of adenine arabinoside. In: Pavan-Langston D, Buchanan RA, Alford CA (eds) Adenine arabinoside: an antiviral agent. Raven, New York, pp 145–157

    Google Scholar 

  • Laibson PR, Arentsen JJ, Mazzanti WD, Eiferman RA (1977) Double-controlled comparison of IDU and trifluorothymidine in thirty-three patients with superficial herpetic keratitis. Trans Am Ophthalmol Soc 75:316–324

    PubMed  CAS  Google Scholar 

  • Langen P (1975) Antimetabolites of nucleic acid metabolism. Gordon and Breach, New York, pp 1–213

    Google Scholar 

  • Langen P, Kowolik G (1968) 5′-Deoxy-5′-fluorothymidine, a biochemical analogue of thymidine-5′-monophosphate selectively inhibiting DNA synthesis. Eur J Biochem 6:344–351

    PubMed  CAS  Google Scholar 

  • Langen P, Kowollik G, Schutt M, Etzold G (1969) Thymidylate kinase as target enzyme for 5′-deoxythymidine and various 5′dexoy-5′halogeno pyrimidine nucleosides. Acta Biol Med Ger 23:K19–K22

    CAS  Google Scholar 

  • Langen P, Etzold G, Kowollik G (1972) Inhibition of DNA synthesis and thymidylate kinase by halogeno derivatives of 3′,5′-dideoxythymidine. Acta Biol Med Ger 28:K5–K10

    Google Scholar 

  • Langston RHS, Pavan-Langston D, Dohlman CH (1974) Antiviral medication and corneal wound healing. Arch Ophthalmol 92:509–513

    PubMed  CAS  Google Scholar 

  • Larsson A, Öberg B (1981) Selective inhibition of herpesvirus deoxyribonucleic acid synthesis by acycloguanosine, 2′-fluoro-5-iodo-aracytosine, and (E)-5-(2-bromovinyl)-2′-deoxyuridine. Antimicrob Agents Chemother 19:927–929

    PubMed  CAS  Google Scholar 

  • Lee LF, Nazerian K, Leinback SS, Reno JM, Boezi JA (1976) Effect of phosphonoacetate on Marek’s disease virus replication. N Natl Cancer Inst 56:823–827

    CAS  Google Scholar 

  • Lee LF, Nazerian K, Witter RL, Leinback SS, Boezi, JA (1978) A phosphonoacetate-resistant mutant of herpes virus of turkeys. J Natl Cancer Inst 60:1141–1145

    PubMed  CAS  Google Scholar 

  • Lee WW, Benitez A, Goodman L, Baker BR (1960) Potential anticancer agents. XL Synthesis of the β-anomer of 9-(D-arabinofuranosyl)adenine. J Am Chem Soc 82:2648–2649

    CAS  Google Scholar 

  • Leinbach SS, Reno JM, Lee LF, Isbell AF, Boezi JA (1976) Mechanism of phosphonoacetate inhibition of herpesvirus-induced DNA polymerase. Biochemistry 15:426–430

    PubMed  CAS  Google Scholar 

  • LePage GA (1975) Purine arabinosides, xylosides and lyxosides. In: Sartorelli AC, Johns DG (eds) Antineoplastic and immunosuppressive agents, vol 2. Springer, Berlin Heidelberg New York, pp 426–433

    Google Scholar 

  • Lin T-S, Prusoff WH (1978 a) A novel synthesis and biological activity of several 5-halo-5′-amino analogues of deoxyribopyrimidine nucleosides. J Med Chem 21:106–109

    PubMed  CAS  Google Scholar 

  • Lin T-S, Prusoff WH (1978 b) Synthesis and biological activity of several amino analogues of thymidine. J Med Chem 21:109–112

    PubMed  CAS  Google Scholar 

  • Lin TS, Neenan JP, Cheng Y-C, Prusoff WH, Ward DC (1976) Synthesis and antiviral activity of 5- and 5′-substituted thymidine analogs. J Med Chem 19:495–498

    PubMed  CAS  Google Scholar 

  • Lopez C, Watanabe KA, Fox JJ (1980) 2′-Fluoro-5-iodoaracytosine, a potent selective anti-herpes agent. Antimicrob Agents Chemother 17:803–806

    PubMed  CAS  Google Scholar 

  • Maass G, Haas R (1966) Über die Bildung von virusspezifischen SV-40 Antigen in Gegenwart von 5-Iodo-2′-desoxyuridine. Arch Gesamte Virusforsch 18:253–256

    PubMed  CAS  Google Scholar 

  • Mao JC-H, Robishaw EE (1975) Mode of inhibition of herpes simplex virus DNA polymerase by phosphonoacetate. Biochemistry 14:5475–5479

    PubMed  CAS  Google Scholar 

  • Mao JC-H, Robishaw EE, Overby LR (1975) Inhibition of DNA polymerase from herpes simplex virus infected WI-38 cells by phosphonoacetic acid. J Virol 15:1281–1283

    PubMed  CAS  Google Scholar 

  • Martenet A-C (1975) The treatment of experimental deep herpes simplex keratitis with 5-ethyldeoxyuridine and iododeoxycytidine. Ophthalmol Res 7:170–180

    Google Scholar 

  • Mathias AP, Fischer GA (1962) The metabolism of thymidine by murine leukemia lymphoblasts (L5178Y). Biochem Pharmacol 11:57–68

    PubMed  CAS  Google Scholar 

  • Maudgal PC, CeClercq E, Descamps J, Missotten L, Desomer P, Busson R, Vanderhaeghe H, Verhelst G, Walker RT, Jones AS (1980) (E)-5-(Bromovinyl)-2′-deoxyuridine in the treatment of experimental herpes simplex keratitis. Antimicrob Agents Chemother 17:8–12

    PubMed  CAS  Google Scholar 

  • McGill J, Holt-Wilson AP, McKinnon JR, Williams HP, Jones BR (1974) Some aspects of the clinical use of trifluorothymidine in the treatment of herpetic ulceration of the cornea. Trans Ophthalmol Soc UK 94:342–352

    Google Scholar 

  • McGuffin RW, Shiota FM, Meyers JD (1980) Lack of toxicity of acyclovir to granulocyte progenitor cells in vitro. Antimicrob Agents Chemother 18:471–473

    PubMed  CAS  Google Scholar 

  • McKinnon JR, McGill JI, Jones BR (1975) A coded clinical evaulation of adenine arabinoside and trifluorothymidine in the treatment of ulcerative herpetic keratitis. In: Pavan-Langston D, Buchanan RA, Alford CA (eds) Adenine arabinoside: an antiviral agent. Raven, New York, pp 401–410

    Google Scholar 

  • Meyer RF, Varnell ED, Kaufman HE (1976) Phosphonoacetic acid in the treatment of experimental ocular herpes simplex infection. Antimicrob Agents Chemother 9:308–311

    PubMed  CAS  Google Scholar 

  • Miller FA, Dixon GJ, Ehrlich J, Sloan BJ, McLean IW Jr (1969) Antiviral activity of 9-β- D-arabinofuranosyladenine. I. Cell culture studies. Antimicrob Agents Chemother 1:136–147

    Google Scholar 

  • Miller WH, Miller RL (1980) Phosphorylation of acyclovir (acycloguanosine)-monophosphate by GMP kinase. J Biol Chem 255:7204–7207

    PubMed  CAS  Google Scholar 

  • Moore EC, Cohen SS (1967) Effects of arabino nucleotides on ribonucleotide reduction by an enzyme system from rat tumor. J Biol Chem 242:2116–2118

    PubMed  CAS  Google Scholar 

  • Müller WEG (1979) Mechanism of action and pharmacology: chemical agents. In: Galasso G J (ed) Antiviral agents and virus diseases of man. Raven, New York, pp 77–149

    Google Scholar 

  • Müller WEG (1980) Purines and their nucleosides. Antibiot Chemother 27:139–163

    PubMed  Google Scholar 

  • Müller WEG, Rohde HJ, Beyer R, Maidhof A, Lachmann M, Taschner H, Zahn RH (1975) Mode of action of 9β-arabinofuranosyladenine on the synthesis of DNA, RNA, and protein in vivo and in vitro. Cancer Res 35:2160–2168

    PubMed  Google Scholar 

  • Müller WEG Zahn RK, Beyer R, Falke D (1977 a) 9-β-D-Arabinofuranosyladenine as a tool to study herpes simplex virus replication in vitro. Virology 76:787–796

    PubMed  Google Scholar 

  • Müller WEG, Zahn RK, Bittlingmaier K, Falke D (1977 b) Inhibition of herpesvirus DNA synthesis by 9-β-D-Arabinofuranosyladenine in cellular and cell-free systems. Ann NY Acad Sci 284:34–38

    PubMed  Google Scholar 

  • Nazerian K, Lee LF (1976) Selective inhibition by phosphonoacetic acid of MDV DNA replication in a lymphoblastoid cell line. Virology 74–188–193

    PubMed  CAS  Google Scholar 

  • Newton AA (1979) Inhibition of the replication of herpes viruses by phosphonoacetate and related compounds. Adv Ophthalmol 38:267–275

    PubMed  CAS  Google Scholar 

  • Nishiyama Y, Rapp F (1979) Anticellular effects of 9-(2-hydroxyethoxymethyl)-guanine against herpes simplex virus-transformed cells. J Gen Virol 45:227#x2013;230

    PubMed  CAS  Google Scholar 

  • North TW, Cohen SS (1979) Aranucleosides and aranucleotides in viral chemotherapy. Pharmacol Ther 4:81–108

    PubMed  CAS  Google Scholar 

  • Nylén P (1924) Beitrag zur Kenntnis der organischen Phosphonerbindungen. Chem Ber 57B: 1023–1035

    Google Scholar 

  • O’Brien WJ, Edelhauser HF (1977) The corneal penetration of trifluorothymidine, adenine arabinoside and idoxuridine: a comparative study. Invest Ophthalmol Vis Sci 16:1093–1103

    PubMed  Google Scholar 

  • Oki T, Heidelberger C (1971) Fluorinated pyrimidine XXXIV. Effects of 5-trifluromethyl-2′-deoxyuridine on the replication of vaccinia viral messenger RNA and proteins. Mol Pharmacol 7:653–662

    PubMed  CAS  Google Scholar 

  • Ostrander M, Cheng Y-C (1980) Properties of herpes simplex virus type 1 and type 2 DNA polymerase. Biochim Biophys Acta 609:232–245

    PubMed  CAS  Google Scholar 

  • Otto MJ, Lee JJ, Prusoff WH (1982) Effects of nucleoside analogues on the expression of herpes simplex type 1 induced proteins. Antiviral Res 5:267–282

    Google Scholar 

  • Overall JR Jr, Kern ER, Glasgow LA (1976) Effective antiviral chemotherapy in cytomegalovirus infection in mice. J Infect Dis 133:A237–A244

    PubMed  Google Scholar 

  • Overby, LR, Robishaw EE, Schleicher JB, Rueter A, Shipkowitz NL, Mao JC-H (1974) Inhibition of herpes simplex virus replication by phosphonoacetic acid. Antimicrob Agents Chemother 6:360–365

    PubMed  CAS  Google Scholar 

  • Overby LR, Duff RG, Mao JC-H (1977) Antiviral potential of phosphonoacetic acid. Ann NY Acad Sci 284:310–320

    PubMed  CAS  Google Scholar 

  • Oxford JS (1979) Inhibition of herpes virus by a new compound—acyclic guanosine. J Antimicrob Chemother 5:333–334

    PubMed  CAS  Google Scholar 

  • Park N-H, Pavan-Langston D, McLean SL (1979 a) Acyclovir in oral and ganglionic herpes simplex infections. J Infect Dis 140:802–806

    PubMed  CAS  Google Scholar 

  • Park N-H, Pavan-Langston D, McLean SL, Albert DM (1979 b) Therapy of experimental herpes simplex encephalitis with acyclovir in mice. Antimicrob Agents Chemother 15:775–779

    PubMed  CAS  Google Scholar 

  • Park N-H, Pavan-Langston D, Hettinger ME, McLean SL, Albert DM, Lin T-S, Prusoff WH (1980 a) Topical therapeutic efficacy of 9-(2-hydroxyethoxymethyl)-guanine and 5-iodo-5′-amino-2′-5′-dideoxyuridine on oral infection with herpes simplex virus in mice. J Infect Dis 141:575–579

    PubMed  CAS  Google Scholar 

  • Park N-H, Pavan-Langston D, McLean SL, Lass JH (1980 b) Acyclovir topical therapy of cutaneous herpes simplex virus infection in guinea pigs. Arch Dermatol 116:672–675

    PubMed  CAS  Google Scholar 

  • Parkhurst JR, Dannenberg PV, Heidelberger C (1976) Growth inhibition of cells in culture and of vaccinia virus infected HeLa cells by derivatives of trifluorothymidine. Chemotherapy 22:221–232

    PubMed  CAS  Google Scholar 

  • Pavan-Langston D (1979) Current trends in therapy of ocular herpes simplex: experimental and clinical studies. Adv Ophthalmol 38:82–88

    PubMed  CAS  Google Scholar 

  • Pavan-Langston D (1980) Ocular herpes simplex—current and future therapeutic trends. In: Srinivasan DB (ed) Ocular therapeutics. Masson, New York, pp 5–19

    Google Scholar 

  • Pavan-Langston D, Buchanan RA (1976) Vidarabine therapy of simplex and IDU-complicated herpetic keratitis. Trans Am Acad Ophthalmol Otolaryngol 81:813–825

    CAS  Google Scholar 

  • Pavan-Langston D, Dohlman CH (1972) A double blind clinical study of adenine arabinoside therapy of viral keratoconjunctivitis. Am J Ophthalmol 74:81–88

    PubMed  CAS  Google Scholar 

  • Pavan-Langston D, Foster CS (1977) Trifluorothymidine and iododeoxyuridine therapy of ocular herpes. Am J Ophthalmol 84:818–825

    PubMed  CAS  Google Scholar 

  • Pavan-Langston D, Buchanan RA, Alford CA Jr (1975) Adenine arabinoside: a antiviral agent. Raven, New York

    Google Scholar 

  • Pavan-Langston D, Campbell R, Lass J (1978) Acyclic antimetabolite therapy of experimental herpes simplex keratitis. Am J Ophthalmol 86:618–623

    PubMed  CAS  Google Scholar 

  • Pavan-Langston D, Park N-H, Lass JH (1979) Herpetic ganglionic latency. Acyclovir and Vidarabine therapy. Arch Ophthalmol 97:1508–1510

    PubMed  CAS  Google Scholar 

  • Pelling JC, Drach JC, Shipman C Jr (1981) Internucleotide incorporation of arabinosyladenine into herpes simplex virus and mammalian cell DNA. Virology 109:323–325

    PubMed  CAS  Google Scholar 

  • Perkins ES, Wood RM, Sears ML, Prusoff WH, Welch AD (1962) Antiviral activities of several iodinated pyrimidine deoxyribonucleosides. Nature 194:985–986

    PubMed  CAS  Google Scholar 

  • Pietryzkowska I, Shugar D (1966) Replacement of thymine by 5-ethyluracil in bacteriophage DNA. Biochem Biophys Res Commun 25:567–572

    Google Scholar 

  • Plunkett W, Cohen SS (1975) Two approaches that increase the activity of analogs of adenine nucleosides in animal cells. Cancer Res 35:1547–1554

    PubMed  CAS  Google Scholar 

  • Plunkett W, Lapi L, Oritz PJ, Cohen SS (1974) Penetration of mouse fibroblasts by the 5′-phosphate of 9-β-D-arabinofuranosyladenine and incorporation of the nucleotide into DNA. Proc Natl Acad Sci USA 71:73–77

    PubMed  CAS  Google Scholar 

  • Prusoff WH (1959) Synthesis and biological activities of iododeoxyuridine, an analog of the thymidine. Biochim Biophys Acta 32:295–296

    PubMed  CAS  Google Scholar 

  • Prusoff WH (1967) Recent advances in chemotherapy of viral diseases. Pharmacol Rev 19:209–250

    CAS  Google Scholar 

  • Prusoff WH, Fischer PH (1979) Basis for the selective antiviral and antitumor activity of pyrimidine nucleoside analogs. In: Walker RT, DeClercq E, Eckstein F (eds) Nucleoside analogs. Plenum, New York, pp 281–318

    Google Scholar 

  • Prusoff WH, Goz B (1973 a) Potential mechanisms of action of antiviral agents. Fed Proc 32:1679–1687

    PubMed  CAS  Google Scholar 

  • Prusoff WH, Goz B (1973 b) Chemotherapy-molecular aspects. In: Kaplan AS (ed) The herpes viruses. Academic, New York, p 641

    Google Scholar 

  • Prusoff WH, Goz B (1975) Halogenated pyrimidine deoxyribonucleosides. In: Sartorelli AC, Johns DG (eds) Antineoplastic and immunosuppressive agents. Springer, Berlin Heidelberg New York, pp 272–347

    Google Scholar 

  • Prusoff WH, Ward DC (1976) Nucleosides with antiviral activity. Biochem Pharmacol 25:1233–1239

    PubMed  CAS  Google Scholar 

  • Prusoff WH, Bakhle YS, Sekely L (1965) Cellular and antiviral effects of halogenated deoxyribonucleosides. Ann NY Acad Sci 130:135–150

    PubMed  CAS  Google Scholar 

  • Prusoff WH, Ward DC, Lin T-S, Chen MS, Shiau GT, Chai C, Lentz E, Capizzi R, Idriss J, Ruddle NH, Black FL, Kumari HL, Albert D, Bhatt PN, Hsiung GD, Strickland S, Cheng YC (1977) Recent studies on the antiviral and biochemical properties of 5-halo-5′-amino-deoxyribonucleosides. Ann NY Acad Sci 284:335–341

    PubMed  CAS  Google Scholar 

  • Prusoff WH, Chen MS, Fischer PH, Lin T-S, Shiau GT (1979 a) 5-Iodo-2′-deoxyuridine. In: Hahn FE (ed) Antibiotics, vol 2. Springer, Berlin Heidelberg New York, pp 236–261

    Google Scholar 

  • Prusoff WH, Chen MS, Fischer PH, Lin T-S, Schinazi RF, Walker J (1979 b) Antiviral iodinated pyrimidine deoxyribonucleosides: 5-iodo-2′-deoxyuridine; 5-iodo-2′-deoxycytidine; 5-iodo-5′-amino-2′,5′-dideoxyuridine. Pharmacol Ther 7:1–34

    PubMed  CAS  Google Scholar 

  • Puliafito CA, Robinson NL, Albert DH, Pavan-Langston D, Lin T-S, Ward DC, Prusoff WH (1977) Therapy of experimental herpes simplex keratitis in rabbits with 5-iodo-5′-amino-2′,5′-dideoxyuridine. Proc Soc Exp Biol Med 156:92–96

    PubMed  CAS  Google Scholar 

  • Purifoy DJM, Powell KL (1977) Herpes simplex virus DNA polymerase as the site of phosphonoacetate sensitivity: temperature-sensitive mutants. J Virol 24:470–477

    PubMed  CAS  Google Scholar 

  • Renis HE (1977) Chemotherapy of genital herpes simplex virus type 2 infections of female hamsters. Antimicrob Agents Chemother 11:701–707

    PubMed  CAS  Google Scholar 

  • Renis HE (1980) Pyrimidines and their nucleosides. Antibiot Chemother 27:164–207

    PubMed  CAS  Google Scholar 

  • Reno JM, Lee LF, Boezi JA (1978) Inhibition of herpesvirus replication and herpesvirus-induced deoxyribonucleic acid polymerase by phosphonoformate. Antimicrob Agents Chemother 13:188–192

    PubMed  CAS  Google Scholar 

  • Reyes P, Heidelberger C (1965) Fluorinated pyrimidines XXVI. Mammalian thymidylate synthetase, its mechanism of action and inhibition by fluorinated nucleotides. Mol Pharmacol 1:14–30

    PubMed  CAS  Google Scholar 

  • Roizman G, Aurelian L, Roane PR Jr (1963) The multiplication of herpes simplex virus I. The programming of viral DNA duplication in HEP-2 cells. Virology 21:482–498

    PubMed  CAS  Google Scholar 

  • Rosenbaum A, Parker RG, Falk P (1980) Retinoblastoma. In: Haskell CM (ed) Cancer treatment. Saunders, Philadelphia, pp 569–577

    Google Scholar 

  • Sabourin CLK, Reno JM, Boezi JA (1978) Inhibition of eukaryotic DNA polymerases by phosphonoacetate and phosphonoformate. Arch Biochem Biophys 187:96–101

    PubMed  CAS  Google Scholar 

  • Schabel FM Jr (1968) The antiviral activity of 9-β-D-arabinofuranosyladenine. Chemotherapy 13:321–338

    PubMed  CAS  Google Scholar 

  • Schabel FM Jr, Montgomery JA (1972) Purines and pyrimidines. In: Bauer DJ (ed) Chemotherapy of virus diseases. Pergamon, Oxford, pp 231–363

    Google Scholar 

  • Schaeffer JH, Gurwara S, Vince R, Bittner SJ (1971) Novel substrates of adenosine deaminase. J Med Chem 14:367–369

    PubMed  CAS  Google Scholar 

  • Schaeffer JH, Beauchamp L, de Miranda P, Elion GB, Bauer DJ, Collins P (1978) 9-(2-hydroxyethoxymethyl)guanine activity against viruses of the herpes group. Nature 272:583–585

    PubMed  CAS  Google Scholar 

  • Schinazi RF, Peters J, Nahmias AJ (to be published) The effect of FIAC and FMAU alone and in combination with ACV and ara-A in mice infected intracerebrally with herpes simplex virus type 2.

    Google Scholar 

  • Schnipper LE, Crumpacker CS (1980) Resistance of herpes simplex virus to acycloguanosine: role of viral thymidine kinase and DNA polymerase loci. Proc Natl Acad Sci USA 77:2270–2273

    PubMed  CAS  Google Scholar 

  • Schwartz PM, Shipman C Jr, Drach JC (1976) Antiviral activity of arabinosyladenine and arabinosylhypoxanthine in herpes simplex virus-infected KB cells: selective inhibition of viral deoxyribonucleic acid synthesis in the presence of an adenosine deaminase inhibitor. Antimicrob Agents Chemother 10:64–74

    PubMed  CAS  Google Scholar 

  • Selby PJ, Powles RC, Jameson B, Kay HEM, Watson JG, Thornton R, Morgenstern G, Clink HM, McElwain TJ, Prentice HG, Corringham R, Ross MG, Hoffbrand HV, Bridgen D (1979) Parenteral acyclovir therapy for herpesvirus infections in man. Lancet II:1267–1270

    Google Scholar 

  • Shannon WM (1975) Adenine arabinoside: antiviral activity in vitro. In: Pavan-Langston D, Buchanan RA, Alford CA (eds) Adenine arabinoside: an antiviral agent: Raven, New York, pp 1–43

    Google Scholar 

  • Shiota H, Inou S, Yamane S (1979) Efficacy of acycloguanosine against herpetic ulcers in rabbit cornea. Br J Ophthalmol 63:425–428

    PubMed  CAS  Google Scholar 

  • Shipkowitz NL, Bower RR, Appell RN, Nordeen CW, Overby LR, Roderick WR, Schleicher JB, von Esch AM (1973) Suppression of herpes simplex virus infection by phosphonoacetic acid. Appl Microbiol 26:264–267

    PubMed  CAS  Google Scholar 

  • Shipman C Jr, Smith SH, Carlson RH, Drach JC (1976) Antiviral activity of arabinosyladenine and arabinosylhypoxanthine in herpes simplex virus-infected KB cells: selective inhibition of viral deoxyribonucleic acid synthesis in synchronized suspension cultures. Antimicrob Agents Chemother 9:120–127

    PubMed  CAS  Google Scholar 

  • Sidwell RW, Witkowski JT (1979) Antiviral agents. In: Wolf ME (ed) Burger’s medicinal chemistry. Wiley, New York, pp 543–593

    Google Scholar 

  • Silagi S, Balint RF, Gauri KK (1977) Comparative effects on growth and tumorigenicity of mouse melanoma cells by thymidine and its analogs, 5-ethyl- and 5-bromodeoxyuridine. Cancer Res 37:3367–3373

    PubMed  CAS  Google Scholar 

  • Singh S, Willers I, Goedde HW, Gauri KK (1974) 5-Ethyl-2′-deoxyuridine: absence of effect on the chromosomes of human lymphocytes and fibroblasts in culture. Humangenetik 24:135–139

    PubMed  CAS  Google Scholar 

  • Sloan BJ, Miller FA, McLean IW (1973) Treatment of herpes simplex virus type 1 and 2 encephalitis in mice with 9-β-D-arabinofuranosyladenine (ara-A). Antimicrob Agents Chemother 3:74–80

    PubMed  CAS  Google Scholar 

  • Smith KO (1963) Some biologic aspects of herpesvirus-cell interactions in the presence of 5-iodo-2′-desoxyuridine (IDU). J Immunol 91:582–590

    PubMed  CAS  Google Scholar 

  • Smith KO, Dukes CD (1964) Effects of 5-iodo-2′-desoxyuridine (IDU) on herpes virus synthesis and survival in infected cells. J Immunol 92:550–554

    PubMed  CAS  Google Scholar 

  • Smith KO, Kennell WL, Poirier RH, Lynd FT (1980) In vitro and in vivo resistance of herpes simplex virus to 9-(2-hydroxytheoxymethyl)guanine (acycloguanosine). Antimicrob Agents Chemother 17:144–150

    PubMed  CAS  Google Scholar 

  • Smith RA, Sidwell RW, Robins RK (1980) Antiviral mechanism of action. Annu Rev Pharmacol Toxicol 20:259–284

    PubMed  CAS  Google Scholar 

  • St Clair MH, Furman PA, Lubbers CM, Elion GB (1980) Inhibition of cellular and virally induced deoxyribonucleic acid polymerases by the triphosphate of acyclovir. Antimicrob Agents Chemother 18:741–745

    Google Scholar 

  • Steele RW, Marmer DJ, Kenney RE (1980) Comparative in vitro immunotoxicology of acyclovir and other antiviral agents. Infect Immun 28:957–962

    PubMed  CAS  Google Scholar 

  • Stenberg K, Larsson A (1978) Reversible effects on cellular metabolism and proliferation by trisodium phosphonoformate. Antimicrob Agents Chemother 14:727–730

    PubMed  CAS  Google Scholar 

  • Sugar J, Kaufmann HE (1973) Halogenated pyrimidines in antiviral therapy. In: Carter WA (ed) Selective inhibitors of viral funktions. CRC, Cleveland, pp 295–311

    Google Scholar 

  • Sugar J, Varnell E, Centiafanto Y, Kaufman HE (1973) TrifTuorothymidine treatment of herpetic iritis in rabbits and ocular penetration. Invest Ophthalmol 12:532–534

    PubMed  CAS  Google Scholar 

  • Summers WC, Klein G (1976) Inhibition of Epstein-Barr virus DNA synthesis and late gene expression by phosphonoacetic acid. J Virol 18:151–155

    PubMed  CAS  Google Scholar 

  • Swierkowski KM, Shugar D (1969) A nonmutagenic thymidine analog with antiviral activity. 5-Ethyldeoxyuridine. J Med Chem 12:533–534

    PubMed  CAS  Google Scholar 

  • Swierkowska KM, Jasinska JK, Steffen JA (1973) 5-Ethyl-2′-deoxyuridine: evidence for incorporation into DNA and evaluation of biological properties in lymphocte cultures grown under conditions of amethopterin-imposed thymidine deficiency. Biochem Pharmacol 22:85–93

    PubMed  CAS  Google Scholar 

  • Tone H, Heidelberger C (1973) Interaction of 5-trifluoromethyl-2′-deoxyuridine-5′-triphosphate with deoxyribonucleic acid polymerases. Mol Pharmacol 9:783–791

    PubMed  CAS  Google Scholar 

  • Travers JP, Patterson A (1978) A controlled trial of adenine arabinoside and trifluorothymidine in herpetic keratitis. J Int Med Res 6:102–104

    PubMed  CAS  Google Scholar 

  • Trousdale MD, Dunkel EC, Nesburn AB (1980) Effect of acyclovir on acute and latent herpes simplex virus infections in the rabbit. Invest Ophthalmol Vis Sci 19:1336–1341

    PubMed  CAS  Google Scholar 

  • Umeda M, Heidelberger C (1968) Fluorinated pyrimidines XXX. Comparative studies of fluorinated pyrimidines with various cell lines. Cancer Res 28:2529–2538

    PubMed  CAS  Google Scholar 

  • Umeda M, Heidelberger C (1969) Fluorinated pyrimidines XXXI. Mechanism of inhibition of vaccinia virus replication in HeLa cells by pyrimidine nucleosides. Proc Soc Exp Biol Med 130:24–29

    PubMed  CAS  Google Scholar 

  • Verbov J (1979) Local idoxuridine treatment of herpes simplex and zoster. J Antimicrob Chemother 5:126–128

    PubMed  CAS  Google Scholar 

  • Walter RD, Gauri KK (1975) 5-Ethyl-2′-deoxyuridine-5′-monophosphate inhibition of the thymidylate synthetase from Escherichia coli. Biochem Pharmacol 24:1025–1027

    PubMed  CAS  Google Scholar 

  • Waqar MA, Burgoyne LA, Atkinson MR (1971) Deoxyribonucleic acid synthesis in mammalian nuclei. Incorporation of deoxyribonucleotides and chain terminating nucleotide analogues. Biochem J 121:803–809

    PubMed  CAS  Google Scholar 

  • Watanabe KA, Reichman U, Hirota K, Lopez C, Fox JJ (1979) Nucleosides. 110. Synthesis and antiherpes virus activity of some 2′-fluoro-2′-deoxyarabinofuranosyl-pyrimidine nucleosides. J Med Chem 22:21–24

    PubMed  CAS  Google Scholar 

  • Webb JL (1963) Enzyme and metabolic inhibitors. Academic, New York, pp 104–105

    Google Scholar 

  • Welch AD, Prusoff WH (1960) A synopsis of recent investigations of 5-iodo-2′-deoxyuridine. Cancer Chemother Rep 6:29–36

    PubMed  CAS  Google Scholar 

  • Wellings PC, Audry PN, Bors FH, Jones BR, Brown DC, Kaufman HE (1972) Clinical evaluation of trifluorothymidine in the treatment of herpes simplex corneal ulcers. Am J Ophthalmol 73:932–942

    PubMed  CAS  Google Scholar 

  • Whitley RJ, Ch’ien LT, Dolin R, Galasso GJ, Alford CA, and the collaborative study group (1976). Adenine arabinoside therapy of herpex zoster in the immunosuppressed. N Engl J Med 294:1193–1199

    PubMed  CAS  Google Scholar 

  • Whitley RJ, Soong SJ, Dolin R, Galasso GJ, Ch’ien LT, Alford CA (1977) Adenine arabinoside therapy of biopsy proved herpes simplex encephalitis. N Engl J Med 297:289–294

    PubMed  CAS  Google Scholar 

  • Whitley RJ, Nahmias AJ, Soong SJ, Galasso GJ, Fleming CL, Alford CA (1980 a) Vidarabine therapy of neonatal herpes simplex virus infection. Pediatrics 66:495–501

    PubMed  CAS  Google Scholar 

  • Whitley RJ, Alford CA, Hess F, Buchanan R (1980 b) Vidarabine: a preliminary review of its pharmacological properties and therapeutic use. Drugs 20:267–282

    PubMed  CAS  Google Scholar 

  • Wigand R, Klein W (1974) Properties of adenovirus substituted with iododeoxyuridine. Arch Gesamte Virusforschung 45:298–300

    CAS  Google Scholar 

  • Yajima Y, Tanaka A, Nonoyama M (1976) Inhibition of productive replication of Epstein-Barr virus DNA by phosphonoacetic acid. Virology 71:352–354

    PubMed  CAS  Google Scholar 

  • York JL, LePage GA (1966) A proposed mechanism for the action of 9-β-D-arabinofuranosyladenine as an inhibitor of the growth of some ascites cells. Can J Biochem 44:19–26

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fischer, P.H., Prusoff, W.H. (1984). Chemotherapy of Ocular Viral Infections and Tumors. In: Sears, M.L. (eds) Pharmacology of the Eye. Handbook of Experimental Pharmacology, vol 69. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-69222-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-69222-2_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-69224-6

  • Online ISBN: 978-3-642-69222-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics