Skip to main content

Schematic Eye Models in Vertebrates

  • Conference paper
Progress in Sensory Physiology

Part of the book series: Progress in Sensory Physiology ((PHYSIOLOGY,volume 4))

Abstract

The fascinating diversity of vertebrate ocular structure was first captured in a single work by Soemmering in 1818. Over a century and a half after their publication, Soemmering’s engravings (Fig. 1) still raise a host of intriguing questions regarding how the vertebrate eye works as an optical system. Equally intriguing are the questions which are raised about the functions of the variety of eye shapes and sizes and the subsequent elucidation of general principles which may account for the diversity of eye structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Blest AD, Land MF (1977) The physiological optics of Dinopis subrufus. Koch L: A fishlens in a spider. Proc R Soc Lond B 196: 197–222

    PubMed  CAS  Google Scholar 

  • Block MT (1969) A note on the refraction and image formation of the rat’s eye. Vision Res 9: 705–711

    PubMed  CAS  Google Scholar 

  • Blough DS (1955) Method for tracing dark adaptation in the pigeon. Science 121: 703–704

    PubMed  CAS  Google Scholar 

  • Blough PM (1971) The visual acuity of the pigeon for distant targets. J Exp Anal Behav 15: 57–68

    PubMed  CAS  Google Scholar 

  • Bobier CW, Sivak JG (1978) Chromoretinoscopy. Vision Res 18: 247–250

    PubMed  CAS  Google Scholar 

  • Bonnet R (1964) La topographie cornéenne. Desroches, Paris

    Google Scholar 

  • Bowmaker JK (1977) The visual pigments, oil droplets and spectral sensitivity of the pigeon. Vision Res 17: 1129–1138

    PubMed  CAS  Google Scholar 

  • Bowmaker JK, Dartnall HJA (1980) Visual pigments of rods and cones in a human retina. J Physiol (Lond) 298: 501–511

    CAS  Google Scholar 

  • Bowmaker JK, Martin GR (1978) Visual pigments and colour vision in a nocturnal bird, Strix aluco (tawny owl). Vision Res 18: 1125–1130

    PubMed  CAS  Google Scholar 

  • Brown EB (1965) Modern optics. Reinhold, New York

    Google Scholar 

  • Campbell FW (1957) The depth of field of the human eye. Opt Acta 4: 157–164

    Google Scholar 

  • Campbell MCW, Hughes A (1981) An analytic, gradient index schematic lens and eye for the rat which predicts aberrations for finite pupils. Vision Res 21: 1129–1148

    PubMed  CAS  Google Scholar 

  • Charman WN, Jennings JAM (1976) Objective measurements of the longitudinal chromatic aberration of the human eye. Vision Res 16: 999–1005

    PubMed  CAS  Google Scholar 

  • Charman WN, Tucker J (1973) The optical system of the goldfish eye. Vision Res 13: 1–8

    PubMed  CAS  Google Scholar 

  • Citron MC, Pinto LH (1973) Retinal image larger and more luminous for a nocturnal than for a diurnal lizard. Vision Res 13: 873–876

    PubMed  CAS  Google Scholar 

  • Davson H (1962) Visual optics and the optical space sense. In: The eye, vol 4. Academic, New York

    Google Scholar 

  • Duke-Elder S (1958) The eye in evolution. System of ophthalmology, vol 1. Henry Kimpton, London

    Google Scholar 

  • DuPont J, De Groot PJ (1976) A schematic dioptric apparatus for the frog’s eye. Vision Res 16: 803–810

    CAS  Google Scholar 

  • Emsley HH (1948) Visual optics, 4th edn. Hatton, London

    Google Scholar 

  • Federer CA, Tanner CB (1966) Spectral distribution of light in the forest. Ecology 47: 555–560

    Google Scholar 

  • Fincham WHA, Freeman MH (1980) Optics, 9th edn. Butterworths, London

    Google Scholar 

  • Fite KV (1973) Anatomical and behavioural correlates of visual acuity in the great horned owl. Vision Res 13: 219–230

    PubMed  CAS  Google Scholar 

  • Fletcher A, Murphy T, Young A (1954) Solutions of two optical problems. Proc R Soc Lond A 223: 216–225

    Google Scholar 

  • Gauss JKF (1841) Dioptrische Untersuchungen. Göttingen

    Google Scholar 

  • Glickstein M, Millodot M (1970) Retinoscopy and eye size. Science 168: 605–606

    PubMed  CAS  Google Scholar 

  • Granda AM, Dvorak CA (1977) Vision in turtles. In: Crescitelli F (ed) Handbook of sensory physiology, vol VII/5. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Gullstrand A (1909) Appendix. In: Von Helmholtz H Handbuch der physiologischen Optik, 3rd edn.

    Google Scholar 

  • Gunter R (1951) The absolute threshold for vision in the cat. J Physiol (Lond) 119: 8–15

    Google Scholar 

  • Harkness L, Bennet-Clark HC (1978) The deep fovea as a focus indicator. Nature 272: 814–816

    PubMed  CAS  Google Scholar 

  • Hermann G (1958) Beitrage auf Physiologie des Rattenauges. Z Tierpsychol 15: 463–517

    Google Scholar 

  • Hirschberg J (1882) Zur Dioptrik und Ophthalmoskopie der Fisch– und Amphibienaugen. Arch Anat Physiol 6: 493–526

    Google Scholar 

  • Hodos W, Leibowitz RW (1977) Near-field visual acuity of pigeons: effects of scotopic adaptation and wavelength. Vision Res 17: 463–467

    PubMed  CAS  Google Scholar 

  • Hodos W, Leibowitz RW, Bonbight JC (1976) Near-field acuity of pigeons: effects of head position and stimulus. J Exp Anal Behav 25: 129–141

    PubMed  CAS  Google Scholar 

  • Howcroft MJ, Parker J A (1977) Aspheric curvature for the human lens. Vision Res 17: 1217–1223

    PubMed  CAS  Google Scholar 

  • Hughes A (1972) A schematic eye for the rabbit. Vision Res 12: 123–138

    PubMed  CAS  Google Scholar 

  • Hughes A (1977a) The topography of vision in mammals of contrasting life style: Comparative optics and retinal organisation. In: Handbook of Sensory Physiology, vol 7/5, Crescitelli F (ed). Springer, Berlin Heidelberg New York

    Google Scholar 

  • Hughes A (1977b) The refractive state of the rat eye. Vision Res 17: 927–939

    PubMed  CAS  Google Scholar 

  • Hughes A (1979a) A schematic eye for the rat. Vision Res 19: 569–588

    PubMed  CAS  Google Scholar 

  • Hughes A (1979b) A useful table of reduced schematic eyes for vertebrates which includes computed longitudinal chromatic aberrations. Vision Res 19: 1273–1275

    PubMed  CAS  Google Scholar 

  • Hughes A (1979c) The artefact of retinoscopy in the rat and rabbit eye has its origin at the retina/vitreous interface rather than in longitudinal chromatic aberration. Vision Res 19: 1293–1294

    PubMed  CAS  Google Scholar 

  • Jansson F (1963) Measurements of intraocular distances by ultrasound. Acta Ophthalmol [Suppl] (Copenh) 74

    Google Scholar 

  • Kirschfeld K (1974) The absolute sensitivity of lens and compound eyes. Z Naturforsch 29c: 592–596

    Google Scholar 

  • Kreithen ML, Keeton WT (1974) Detection of polarized light by the homing pigeon Columba livia. J Comp Physiol 89: 83–92

    Google Scholar 

  • Land MF (1981) Optics and vision in invertebrates. In: Handbook of sensory physiology, vol VII/6B, Autrum H (ed). Springer, Berlin Heidelberg New York

    Google Scholar 

  • Lashley KS (1930) The mechanism of vision III. The comparative visual acuity of pigmented and albino rats. J Gen Physiol 37: 481–484

    Google Scholar 

  • Longhurst RS (1973) Geometrical and physical optics. Longman, London

    Google Scholar 

  • Lopping B, Weale RA (1965) Changes in corneal curvature following ocular convergence. Vision Res 5: 207–215

    PubMed  CAS  Google Scholar 

  • Lotmar W (1971) Theoretical eye model with aspherics. J Opt Soc Am 61: 1522–1529

    Google Scholar 

  • Lotmar W, Lotmar T (1974) Peripheral astigmatism in the human eye. Experimental data and theoretical model predictions. J Opt Soc Am 64: 510–513

    PubMed  CAS  Google Scholar 

  • Ludvigh E (1947) Visibility of the deer fly in flight. Science 105: 176–177

    PubMed  CAS  Google Scholar 

  • Ludvigh E (1948) The visibility of moving objects. Science 108: 63–64

    PubMed  CAS  Google Scholar 

  • Lythgoe JN (1979) The ecology of vision. Clarendon, Oxford

    Google Scholar 

  • Marshall J, Mellerio J, Palmer DA (1973) A schematic eye for the pigeon. Vision Res 13: 2449–2453

    PubMed  CAS  Google Scholar 

  • Massof RW, Chang FW (1972) A revision of the rat schematic eye. Vision Res 12: 793–796

    PubMed  CAS  Google Scholar 

  • Martin GR (1977) Absolute visual threshold and scotopic spectral sensitivity in the tawny owl, Strixaluco. Nature 268: 636–638

    PubMed  CAS  Google Scholar 

  • Martin GR (1982) An owl’s eye: schematic optics and visual performance in Strix aluco L. J Comp Physiol 145: 341–349

    Google Scholar 

  • Martin GR, Gordon IE (1974) Visual acuity in the tawny owl (Strix aluco). Vision Res 14: 1393–1397

    PubMed  CAS  Google Scholar 

  • Matthiessen L (1880) Untersuchungen über den Aplanatismus und die Periscopie der Kristallinsen in den Augen der Fische. Pfluegers Arch 21: 287–307

    Google Scholar 

  • Matthiessen L (1886) Ueber den physikalisch-optischen Bau des Auges der Cetaceen und der Fische. Pfluegers Arch 38: 521–528

    Google Scholar 

  • Meyer DB (1977) The avian eye and its adaptations. In: Crescitelli F (ed) Handbook of sensory physiology, vol VII/5. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Miller WH (1979) Ocular optical filtering. In: Autrum H (ed) Handbook of sensory physiology, vol VII/6A. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Millodot M (1972) Reflection from the fundus of the eye and its relevance to retinoscopy. Fondazione Giorgio Ronchi 27: 31–50

    Google Scholar 

  • Millodot M, Sivak J (1978) Hypermetropia of small animals and chromatic aberration. Vision Res 18: 125–126

    PubMed  CAS  Google Scholar 

  • Muntz WRA (1974) Comparative aspects in behavioural studies of vertebrate vision. In: Davson H (ed) The eye, vol 6. Academic, New York

    Google Scholar 

  • Nakao S, Fujimoto S, Nagata R, Iwata K (1968) Model of refractive index distribution in the rabbit crystalline lens. J Opt Soc Am 58: 1125–1130

    PubMed  CAS  Google Scholar 

  • Nakao S, Mine K, Nishioka K, Kamiya S (1969) The distribution of refractive indices in the human crystalline lens. Jpn J Ophthalmol 23: 41–44

    Google Scholar 

  • Nakao S, Mine K, Nishioka K, Kamiya S (1970) A new schematic eye and its clinical application. Abstract of the 21st international congress of Ophthalmology, Mexico

    Google Scholar 

  • Natural illumination charts (1952) US Navy research and development project NS 714–100 Report No. 374–1 (September)

    Google Scholar 

  • Nuboer JFW, van Genderen-Takken H (1978) The artifact of retinoscopy. Vision Res 18: 1091–1096

    PubMed  CAS  Google Scholar 

  • Philipson B (1969) Distribution of protein within the normal rat lens. Invest Ophthalmol Vis Sci 8: 258–269

    CAS  Google Scholar 

  • Pirenne MH, Marriott FHC, O’Doherty EF (1957) Individual differences in night vision efficiency. Med Res Counc (GB) Spec Rep Ser 294

    Google Scholar 

  • Pomerantzeff O, Fish H, Govignon J, Schepens CL (1971) Wide-angle model of the human eye. Ann Ophthalmol 3: 815–819

    PubMed  CAS  Google Scholar 

  • Pumphrey RJ (1948) The theory of the fovea. J Exp Biol 25: 299–310

    Google Scholar 

  • Pumphrey RJ (1961) Concerning vision. In: Ramsay JA, Wigglesworth VB (eds) The cell and the organism. Cambridge University Press, Cambridge

    Google Scholar 

  • Rivamonte A (1977) The under-corrected lens of the frog eye (Rana esculenta) could yield comparable aerial and underwater vision. Vision Res 17: 1237–1238

    PubMed  CAS  Google Scholar 

  • Rochon-Duvigneaud A (1943) Les yeux et la vision des vertébrés. Masson, Paris

    Google Scholar 

  • Rushton RH (1938) The clinical measurement of the axial length of the living eye. Trans Ophthalmol Soc UK 58: 136

    Google Scholar 

  • Shlaer S (1937) The relation between visual acuity and illumination. J Gen Physiol 21: 165–188

    PubMed  CAS  Google Scholar 

  • Sivak JG (1976a) Optics of the eye of the ‘four-eyed fish’ Anableps anableps. Vision Res 16: 531–534

    CAS  Google Scholar 

  • Sivak JG (1976b) The accommodative significance of the “ramp” retina of the eye of the sting-ray. Vision Res 16: 945–950

    PubMed  CAS  Google Scholar 

  • Sivak JG (1976c) The role of the flat cornea in the amphibious behaviour of the blackfoot penguin. Can J Zool 54: 1341–1345

    Google Scholar 

  • Sivak JG (1977) The role of the spectacle in the visual optics of the snake eye. Vision Res 17: 293–298

    PubMed  CAS  Google Scholar 

  • Sivak JG (1978) A survey of vertebrate strategies for vision in air and water. In: Ali MA (ed) Sensory ecology. Plenum, New York

    Google Scholar 

  • Sivak JG, Allen DB (1975) An evaluation of the “ramp” retina of the horse eye. Vision Res 15: 1353–1356

    PubMed  CAS  Google Scholar 

  • Sivak JG, Millodot M (1977) Optical performance of the penguin eye in air and water. J Comp Physiol 119: 241–247

    Google Scholar 

  • Sivak JG, Bobier WR, Levy B (1978) The refractive significance of the nictitating membrane of the bird eye. J Comp Physiol 125: 335–339

    Google Scholar 

  • Snyder AW (1979) Physics of vision in compound eyes. In: Autrum H (ed) Handbook of sensory physiology, vol VII/6A. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Snyder AW, Miller WH (1978) Telephoto lens system of falconiform eyes. Nature 275: 127–129

    PubMed  CAS  Google Scholar 

  • Snyder AW, Laughlin SB, Stavenga DG (1977) Information capacity of eyes. Vision Res 17: 1163–1175

    PubMed  CAS  Google Scholar 

  • Soemmering ST (1818) De oculorum hominis animaliumque sectione horizontali commentatio. Vanderhoeck and Ruprecht, Goettingen

    Google Scholar 

  • Sorsby A, Benjamin B, Davey JB, Sheridan M, Tanner JM (1957) Emmetropia and its aberrations. Med Res Counc (GB) Spec Rep Ser 293

    Google Scholar 

  • Sorsby A, Benjamin B, Sheridan M (1961) Refraction and its components during the growth of the eye from the age of three. Med Res Counc (GB) Spec Rep Ser 301

    Google Scholar 

  • Southern HN (1970) The natural control of a population of tawny owls (Strix aluco). J Zool 162: 197–285

    Google Scholar 

  • Srinivasan MV, Bernard GD (1975) The effect of motion on visual acuity of the compound eye: a theoretical analysis. Vision Res 15: 515–525

    PubMed  CAS  Google Scholar 

  • Suthers RA, Wallis NE (1970) Optics of the eyes of echo-locating bats. Vision Res 10: 1165–1173

    PubMed  CAS  Google Scholar 

  • Tansley K (1965) Vision in vertebrates. Chapman Hall, London

    Google Scholar 

  • Taylor AH, Kerr GP (1941) Distribution of energy in daylight. J Opt Soc Am 31: 3–8

    Google Scholar 

  • Tscherning M (1898) Optique physiologique. Paris. English translation by Weiland C (1920) Physiological optics. Keystone, Philadelphia

    Google Scholar 

  • Vakkur GJ, Bishop PO (1963) The schematic eye in the cat. Vision Res 3: 357–381

    Google Scholar 

  • von Helmholtz H (1909) Handbuch der physiologischen Optik, 3rd edn. Optical Society of America

    Google Scholar 

  • Wallman J, Turkel J, Trachtman J (1978) Extreme myopia produced by modest change in early visual experience. Science 201: 1249–1251

    PubMed  CAS  Google Scholar 

  • Walls GL (1942) The vertebrate eye and its adaptive radiation. Cranbrook Institute of Science, Michigan

    Google Scholar 

  • Weekers R, Delmarcelle Y, Luyckx J (1975) Biometrics of the crystalline lens. In: Bellows JG (ed) Cataract and abnormalities of the lens. Grune and Stratton, New York

    Google Scholar 

  • Westheimer G (1970) Image quality in the human eye. Opt Acta 17: 641–658

    CAS  Google Scholar 

  • Westheimer G (1972) Optical properties of vertebrate eyes. In: Fuortes MGF (ed) Handbook of sensory physiology, vol VII/2. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Young T (1801) On the mechanism of the eye. Philos Trans R Soc Lond [Biol] 92: 23–88

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Martin, G.R. (1983). Schematic Eye Models in Vertebrates. In: Ottoson, D., Autrum, H., Perl, E.R., Schmidt, R.F., Shimazu, H., Willis, W.D. (eds) Progress in Sensory Physiology. Progress in Sensory Physiology, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-69163-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-69163-8_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-69165-2

  • Online ISBN: 978-3-642-69163-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics