Skip to main content

Models in Photomorphogenesis

  • Chapter
Book cover Photomorphogenesis

Part of the book series: Encyclopedia of Plant Physiology ((PLANT,volume 16))

Abstract

Before discussing models in photomorphogenesis it is necessary to give a brief outline of the general uses and limitations of mathematical models in investigating the mechanisms of biological phenomena (see also Fukshansky and Mohr 1980).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Beggs CJ, Geile W, Holmes MG, Jabben M, Jose AM, Schäfer E (1981) High irradiance response promotion of a subsequent light induction response in Sinapis alba L. Planta 151:135–140

    Article  Google Scholar 

  • Boisard J, Marmé D, Briggs WR (1974) In vivo properties of membrane-bound phyto- chrome. Plant Physiol 54:272–276

    Article  PubMed  CAS  Google Scholar 

  • Borthwick HA, Hendricks SB, Toole EH, Toole VK (1959) Action of light on lettuce-seed germination. Bot Gaz 115:205–225

    Article  Google Scholar 

  • Briggs WR, Chon HP (1966) The physiological versus the spectrophotometric status of phytochrome in corn coleoptiles. Plant Physiol 41:1159–1166

    Article  PubMed  CAS  Google Scholar 

  • Brockmann J, Schäfer E (1982) Analysis of Pfr destruction in Amaranthus caudatus L. Evidence for two pools of phytochrome. Photochem Photobiol 35:555–558

    Article  CAS  Google Scholar 

  • Butler WL, Norris KH, Siegelman HW, Hendricks SB (1959) Detection, assay, and preliminary purification of the pigment controlling photoresponsive development of plants. Proc Natl Acad Sci USA 45:1703–1708

    Article  PubMed  CAS  Google Scholar 

  • Butler WL, Hendricks SB, Siegelman HW (1964) Action spectra of phytochrome in vitro. Photochem Photobiol 3:521–528

    Article  CAS  Google Scholar 

  • Chorney W, Gordon SA (1966) Action spectrum and characteristics of the light activated disappearance of phytochrome in oat seedlings. Plant Physiol 41:891–896

    Article  PubMed  CAS  Google Scholar 

  • Clarkson DT, Hillman WS (1967) Apparent phytochrome synthesis in Pisum tissue. Nature 213:468–470

    Article  CAS  Google Scholar 

  • Coleman RA, Pratt LH (1974) Subcellular localization of the red-absorbing form of phytochrome by immunocytochemistry. Planta 121:119–131

    Article  CAS  Google Scholar 

  • De Fabo E (1980) On the nature of the blue light receptor: Still an open question. In: Senger H (ed) The blue light syndrome. Springer, Berlin Heidelberg New York, pp 187–197

    Chapter  Google Scholar 

  • Delbrück M, Reichardt W (1956) System analysis for the light growth reactions of Phyco- myces. In: Rudnick H (ed) Cellular Mechanisms in Differentiation and Growth. Princeton Univ Press, Princeton, pp 3–44

    Google Scholar 

  • Dooskin RH, Mancinelli AL (1968) Phytochrome decay and coleoptile elongation in Avena following various light treatments. Bull Torrey Bot Club 95:474–487

    Article  Google Scholar 

  • Drumm H, Mohr H (1974) The dose-response curve in phytochrome-mediated antho- cyanin synthesis in the mustard seedlings. Photochem Photobiol 20:151–157

    Article  CAS  Google Scholar 

  • Feller W (1940) On the logistic law of growth and its empirical verifications in biology. Acta Biotheor 5:51–65

    Article  Google Scholar 

  • Frankland E (1972) Biosynthesis and dark transformations of phytochrome. In: Mitrakos K, Shropshire W, Jr (eds) Phytochrome. Academic Press, London New York, pp 195–225

    Google Scholar 

  • Fukshansky L, Mohr H (1980) Boundary conditions for mathematical models in photomorphogenesis. In : De Greef J (ed) Photoreceptors and Plant Development. Antwerpen Univ Press, Antwerpen, pp 135–144

    Google Scholar 

  • Gammerman AY, Fukshansky L (1971) Theory and calculation of dynamics of phytochrome transformations in the green leaf. Fiziol Rast 18:661–667 (See Consultants Bur Eng Transi Plant Physiol (1972) 557–562)

    CAS  Google Scholar 

  • Gammerman AY, Fukshansky L (1974) A mathematical model of phytochrome - the receptor of photomorphogenetic processes in plants. Ontogenez 5:122–129

    CAS  Google Scholar 

  • Gorton H, Briggs WR (1980) Phytochrome responses to end-of-day irradiations in light- grown corn grown in the presence and absence of Norflurazon. Plant Physiol 66:1024–1026

    Article  PubMed  CAS  Google Scholar 

  • Hartmann KM (1966) A general hypothesis to interpret ‘high energy phenomena’ of photomorphogenesis on the basis of phytochrome. Photochem Photobiol 5:349–366

    Article  CAS  Google Scholar 

  • Hartmann KM (1977) Aktionsspektrometrie. In: Hoppe W, Lohmann W, Markl H, Ziegler H (eds) Biophysik: Ein Lehrbuch. Springer, Berlin Heidelberg New York, pp 197–222

    Google Scholar 

  • Hartmann KM, Unser IC (1972) Analytical action spectroscopy with living systems: photochemical aspects and attenuance. Ber Dtsch Bot Ges 85:481–551

    CAS  Google Scholar 

  • Heim B, Jabben M, Schäfer E (1981) Phytochrome destruction in dark- and light-grown Amaranthus caudatus seedlings. Photochem Photobiol 34:89–93

    CAS  Google Scholar 

  • Hendricks SB (1960) Rates of change of phytochrome as an essential factor determining photoperiodism in plants. Cold Spring Harbor Symp Quant Biol 25:245–258

    Article  PubMed  CAS  Google Scholar 

  • Hendricks SB, Toole EH, Toole VK, Borthwick HA (1959) Photocontrol of plant development by the simultaneous excitations of two interconvertible pigments. III. Control of seed germination and axis elongation. Bot Gaz 121:1–8

    Article  CAS  Google Scholar 

  • Hillman WS (1967) The physiology of phytochrome. Annu Rev Plant Physiol 18:301–324

    Article  CAS  Google Scholar 

  • Hillman WS (1972) On the physiological significance of in vivo phytochrome assays. In: Mitrakos K, Shropshire W, Jr (eds) Phytochrome. Academic Press, London New York, pp 573–584

    Google Scholar 

  • Hopkins WG, Hillman WS (1966) Relationship between phytochrome state and photosensitive growth of Avena coleoptile segments. Plant Physiol 41:593–598

    Article  PubMed  CAS  Google Scholar 

  • Jabben M (1980) The phytochrome system in light-grown Zea mays L. Planta 149:91–96

    Article  CAS  Google Scholar 

  • Jabben M, Mohr H (1975) Stimulation of the shibata shift by phytochrome in the cotyledons of the mustard seedling Sinapis alba L. Photochem Photobiol 22:55–58

    Article  PubMed  CAS  Google Scholar 

  • Johnson CB (1980) The effect of red light on the high irradiance reaction of phytochrome. Plant Cell Environ 3:45–51

    CAS  Google Scholar 

  • Johnson CB, Tasker R (1979) A scheme to account quantitatively for the action of phytochrome in etiolated and light-grown plants. Plant Cell Environ 2:259–265

    Article  Google Scholar 

  • Kendrick RE (1974) Phytochrome intermediates in freeze-dried tissue. Nature 250:159–161

    Article  CAS  Google Scholar 

  • Kendrick RE, Frankland B (1968) Kinetics of phytochrome decay in Amaranthus seedlings. Planta 82:317–320

    Article  Google Scholar 

  • Kendrick RE, Spruit CJP (1972) Light maintains high levels of phytochrome intermediates. Nat New Biol 237:281–282

    Article  PubMed  CAS  Google Scholar 

  • Kendrick RE, Spruit CJP (1973a) Phytochrome intermediates in vivo. I. Effects of temperature, light intensity, wavelength and oxygen on intermediate accumulation. Photochem Photobiol 18:139–144

    Article  CAS  Google Scholar 

  • Kendrick RE, Spruit CJP (1973b) Phytochrome intermediates in vivo. III. Kinetic analysis of intermediate reactions at low temperature. Photochem Photobiol 18:153–159

    Article  CAS  Google Scholar 

  • Lehmann U, Schäfer E (1975) Kinetic analysis of phytochrome pelletability. In: Smith H (ed) Light and Plant Development. Butterworth, London, pp 92A

    Google Scholar 

  • Lehmann U, Schäfer E (1978) Kinetics of phytochrome pelletability. Photochem Photobiol 27:767–773

    Article  CAS  Google Scholar 

  • Lipson E (1975) White noise analysis of Phycornyces light-growth response system. I. Normal intensity range. Biophys J 15: 989–1011

    Article  PubMed  CAS  Google Scholar 

  • Mackenzie JM Jr, Coleman RA, Briggs WR, Pratt LH (1975) Reversible redistribution of phytochrome within the cell upon conversion to its physiological active form. Proc Natl Acad Sci USA 72:799–803

    Article  PubMed  Google Scholar 

  • Manchinelli AL, Rabino I (1975) Photocontrol of anthocyanin synthesis. IV. Dose dependence and reciprocity relationships. Plant Physiol 56:351–355

    Article  Google Scholar 

  • Manchinelli AL, Rabino I (1978) The “high irradiance responses” of photomorphogenesis. Bot Rev 44:129–180

    Article  Google Scholar 

  • Marmé D, Marchai B, Schäfer E (1971) A detailed analysis of phytochrome decay and dark reversion in mustard cotyledons. Planta 100:331–336

    Article  Google Scholar 

  • Mohr H, Drumm H, Schmidt R, Steinitz B (1979) The effect of light pretreatments on phytochrome-mediated induction of anthocyanin and of phenylalanine-ammonia- lyase. Planta 146:369–376

    Article  CAS  Google Scholar 

  • Neusypina TA, Pumpjanskaja SL, Fukshansky L (1972) A mathematical model of plant photoperiodism. Probi Cybern 25:28–57

    Google Scholar 

  • Pratt LH, Briggs WR (1966) Photochemical and non photochemical reactions of phytochrome in vivo. Plant Physiol 41:467–474

    Article  PubMed  CAS  Google Scholar 

  • Pratt LH, Marmé D (1976) Red-light-enhanced phytochrome pelletability. Re-examination and further characterization. Plant Physiol 58:682–692

    Article  Google Scholar 

  • Quail PH (1975) Particle-bound phytochrome: spectral properties of bound and unbound fractions. Planta 118:345–355

    Article  Google Scholar 

  • Quail PH (1978) Irradiation-enhanced phytochrome pelletability. Plant Physiol 62:773–778

    Article  PubMed  CAS  Google Scholar 

  • Quail PH, Schäfer E (1974) Particle-bound phytochrome: A function of light dose and steady-state level of the far-red absorbing form. J Membr Biol 15:393–404

    Article  PubMed  CAS  Google Scholar 

  • Quail PH, Marmé D, Schäfer E (1973a) Particle-bound phytochrome from maize and pumpkin. Nat New Biol 245:189–191

    PubMed  CAS  Google Scholar 

  • Quail PH, Schäfer E, Marmé D (1973b) Turnover of phytochrome in pumpkin cotyledons. Plant Physiol 52:128–131

    Article  PubMed  CAS  Google Scholar 

  • Raven CW, Shropshire W Jr (1975) Photoregulation of logarithmic fluence response curves for phytochrome control of chlorophyll formation in Pisum sativum L. Photochem Photobiol 21:423–429

    Article  CAS  Google Scholar 

  • Schäfer E (1975) A new approach to explain the “high irradiance responses” of photomorphogenesis on the basis of phytochrome. J Math Biol 2:41–56

    Article  Google Scholar 

  • Schäfer E (1976) The “high irradiance reaction”. In: Schmith H (ed) Light and Plant Development. Butterworth, London, pp 45–59

    Google Scholar 

  • Schäfer E (1978) Variation in the rates of synthesis and degradation of phytochrome in cotyledons of Cucurbita pepo L. during seedlings development. Photochem Photobiol 27:775–780

    Article  Google Scholar 

  • Schäfer E (1981) Phytochrome and daylight. In: Smith H (ed) Plants and the Daylight Spectrum. Academic Press, London New York, pp 461–480

    Google Scholar 

  • Schäfer E, Mohr H (1974) Irradiance dependency of the phytochrome system in cotyledons of mustard (Sinapis alba L.). J Math Biol 1:9–15

    Article  Google Scholar 

  • Schäfer E, Schmidt W (1974) Temperature dependence of phytochrome dark reactions. Planta 116:257–266

    Article  Google Scholar 

  • Schäfer E, Marchai B, Marmé D (1971) On the phytochrome phototransformation kinetics in mustard seedlings. Planta 101:265–276

    Article  Google Scholar 

  • Schäfer E, Marchai B, Marmé D (1972) In vivo measurements of the phytochrome photostationary state in far-red light. Photochem Photobiol 15:457–464

    Article  Google Scholar 

  • Schäfer E, Lassig TU, Schopfer P (1975) Photocontrol of phytochrome destruction in grass seedlings. The influence of wavelength and irradiance. Photochem Photobiol 22:193–202

    Article  PubMed  Google Scholar 

  • Schäfer E, Lassig TU, Schopfer P (1976) Photocontrol of phytochrome destruction and binding in dicotyledonous vs. monocotyledonous seedlings. The influence of wavelength and irradiance. Photochem Photobiol 24:567–572

    Article  Google Scholar 

  • Schmidt W, Marmé D, Quail P, Schäfer E (1973) Phytochrome : first-order photo transformation kinetics in vivo. Planta 111:329–336

    Article  Google Scholar 

  • Shropshire W Jr (1980) Carotinoids as primary photoreceptors in blue-light responses. In: Senger H (ed) The blue light syndrome. Springer, Berlin Heidelberg New York, pp 172–186

    Chapter  Google Scholar 

  • Smith H (1970) Phytochrome and photomorphogenesis in plants. Nature 227:665–668

    Article  PubMed  CAS  Google Scholar 

  • Smith H (1975) Phytochrome and photomorphogenesis. McGraw-Hill, London

    Google Scholar 

  • Steinitz B, Drumm H, Mohr H (1976) The appearance of competence for phytochrome- mediated anthocyanin synthesis in the cotyledons of Sinapis alba L. Planta 130:23–31

    Article  CAS  Google Scholar 

  • Stone HJ, Pratt LH (1979) Characterisation of the destruction of phytochrome in the red absorbing form. Plant Physiol 63:680–682

    Article  PubMed  CAS  Google Scholar 

  • Tanada T (1972) Phytochrome control of another phytochrome-mediated process. Plant Physiol 49:560–562

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fukshansky, L., Schäfer, E. (1983). Models in Photomorphogenesis. In: Shropshire, W., Mohr, H. (eds) Photomorphogenesis. Encyclopedia of Plant Physiology, vol 16. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-68918-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-68918-5_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-68920-8

  • Online ISBN: 978-3-642-68918-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics