Skip to main content

The Actions of Glucagon at Its Receptor: Regulation of Adenylate Cyclase

  • Chapter
Glucagon I

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 66 / 1))

Abstract

The “second messenger” concept of hormone action, first proposed nearly 20 years ago, states that hormones generally act by changing the levels of chemical signals produced by effector processes localized at the target cell plasma membrane (Sutherland 1972). These chemical signals govern in turn the activity of key intracellular enzymes that regulate, through a complex series of reactions, numerous metabolic processes in the cell. The concept of second messengers arose from the discovery that cyclic AMP mediates the actions of catecholamines and glucagon on glycogen metabolism in liver; numerous studies subsequently showed that cyclic AMP mediates the actions of a large number of hormones and neurotransmitters and that the latter agents act by either stimulating or inhibiting the nucleotide’s production (Rodbell 1978). Although the correlations between cyclic AMP production and hormone action are generally good, it must be emphasized that proof is lacking that regulation of cyclic AMP levels is the single action responsible for all effects of hormones or neurotransmitters. As a model process, however, hormonal regulation of cyclic AMP production has proven to be ideal since it can be observed with isolated preparations of membranes from a variety of sources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bergman RN, Hechter O (1978) Neurohypophyseal hormone-responsive renal adenylate cyclase. IV. Random-hit matrix model for coupling in a hormone-sensitive adenylate cyclase system. J Biol Chem 253: 3238–3250

    PubMed  CAS  Google Scholar 

  • Birnbaumer L (1973) Hormone-sensitive adenylyl cyclases: useful models for studying hormone receptor functions in cell-free systems. Biochim Biophys Acta 300: 129–158

    PubMed  CAS  Google Scholar 

  • Birnbaumer L, Pohl SL (1973) Relation of glucagon-specific binding sites to glucagon-dependent stimulation of adenylyl cyclase activity in plasma membranes of rat liver. J Biol Chem 248: 2056–2061

    PubMed  CAS  Google Scholar 

  • Birnbaumer L, Rodbell M (1969) Adenyl cyclase in fat cells. II. Hormone receptors. J Biol Chem 244: 3477–3482

    PubMed  CAS  Google Scholar 

  • Birnbaumer L, Pohl SL, Rodbell M (1969) Adenyl cyclase in fat cells. I. Properties and the effects of adrenocorticotropin and fluoride. J Biol Chem 244: 3468–3476

    PubMed  CAS  Google Scholar 

  • Birnbaumer L, Pohl SL, Rodbell M (1971) The glucagon-sensitive adenyl cyclase system in plasma membranes of rat liver II. Comparison between glucagon and fluoride-stimula activities. J Biol Chem 246: 1857–1862

    PubMed  CAS  Google Scholar 

  • Blazquez E, Rubalcava B, Montesano R, Orci L, Unger RH (1976) Development of insulin and glucagon binding and the adenylate cyclase response in liver membranes of the prenatal, postnatal, and adult rat; evidence of glucagon “resistance”. Endocrinology 98: 1014–1023

    Article  PubMed  CAS  Google Scholar 

  • Blecher M, Giorgio NA, Johnson CB (1973) Hormone receptors: properties of glucagon-binding proteins isolated from liver plasma membranes. J Biol Chem 249: 428–437

    Google Scholar 

  • Blundell TL, Humbel RE (1980) Hormone families: pancreatic hormones and homologous growth factors. Nature 287: 771–777

    Article  Google Scholar 

  • Bockaert J, Hunzicker-Dunn M, Birnbaumer L (1976) Hormone-stimulated desensitization of hormone-dependent adenylyl cyclase. J Biol Chem 251: 2653–2663

    PubMed  CAS  Google Scholar 

  • Braun S, Levitzki A (1979) Adenosine receptor permanently coupled to turkey erythrocyte adenylate cyclase. Biochemistry 18: 2134–2138

    Article  PubMed  CAS  Google Scholar 

  • Braun T, Dods RF (1975) Development of a Mn2 + -sensitive “soluble” adenylate cyclase in rat testis. Proc Natl Acad Sci USA 72: 1097–1101

    Article  PubMed  CAS  Google Scholar 

  • Bregman MD, Levy D (1977) Labeling of glucagon binding components in hepatocyte plasma membrane. Biochem Biophys Res Commun 78: 584–590

    Article  PubMed  CAS  Google Scholar 

  • Bregman MD, Trivedi D, Hruby VJ (1980) Glucagon amino groups: evaluation of modifications leading to antagonism and agonism. J Biol Chem 255: 11725–11731

    PubMed  CAS  Google Scholar 

  • Cassel D, Pfeuffer T (1978) Mechanism of cholera toxin action: covalent modification of the guanyl nucleotide-binding protein of the adenylate cyclase system. Proc Natl Acad Sci USA 75: 2669–2673

    Article  PubMed  CAS  Google Scholar 

  • Cassel D, Selinger Z (1977) Mechanism of adenylate cyclase activation by cholera toxin: inhibition of GTP hydrolysis at the regulatory site. Proc Natl Acad Sci USA 74: 3307–3311

    Article  PubMed  CAS  Google Scholar 

  • Cassel D, Selinger Z (1978) Mechanism of adenylate cyclase activation through the B-adren- ergic receptor: catecholamine-induced displacement of bound GDP by GTP. Proc Natl Acad Sci USA 75: 4155–4159

    Article  PubMed  CAS  Google Scholar 

  • Cherksey BD, Zadunaisky JA, Murphy RB (1980) Cytoskeletal constraint of the β-adrenergic receptor in frog erythrocyte membranes. Proc Natl Acad Sci USA 77: 6401–6405

    Article  PubMed  CAS  Google Scholar 

  • Cooper DMF, Londos C (1979) Evaluation of the effects of adenosine on hepatic and adipocyte adenylate cyclase under conditions where adenosine is not generated endoge- nously. J Cyclic Nucleotide Res 5: 289–302

    PubMed  CAS  Google Scholar 

  • DeHaen C (1974) A new kinetic analysis of the effects of hormones and fluoride ion. J Biol Chem 249: 2756–2762

    CAS  Google Scholar 

  • DeLean A, Stadel JM, Lefkowitz RJ (1980) A ternary complex model explains the agonist- specific binding properties of the adenylate cyclase-coupled β-adrenergic receptor. J Biol Chem 255: 7108–7117

    CAS  Google Scholar 

  • Eckstein F, Cassel D, Levkovitz H, Lowe M, Selinger Z (1979) Guanosine 5’-0-(2-thiodi- phosphate): an inhibitor of adenylate cyclase stimulation by guanine nucleotides and fluoride ions. J Biol Chem 254: 9829–9834

    PubMed  CAS  Google Scholar 

  • Epand RM, Rosselin G, Hoa DHB, Cote TE, Laburthe M (1981) Structural requirements for glucagon receptor binding and activation of adenylate cyclase in liver. J Biol Chem 256: 1128–1132

    PubMed  CAS  Google Scholar 

  • Ezra E, Salomon Y (1980) Mechanisms of desensitization of adenylate cyclase by lutropin: GTP-dependent uncoupling of the receptor. J Biol Chem 255: 653–658

    PubMed  CAS  Google Scholar 

  • Farfel Z, Kaslow HR, Bourne HR (1979) A regulatory component of adenylate cyclase is located on the inner surface of human erythrocyte membranes. Biochem Biophys Res Commun 90: 1237–1241

    Article  PubMed  CAS  Google Scholar 

  • Frandsen EK, Gronvald FC, Heding LG, Johansen NL, Lundt BF, Moody AJ, Markussen J, Volund A (1981) Glucagon: structure-function relationships investigated by sequence deletions. Hoppe-Seyler’s Z Physiol Chem 362: 665–677

    Article  CAS  Google Scholar 

  • Gill M (1977) Mechanism of action of cholera toxin. Adv Cyclic Nucleotide Res 8: 85–118

    PubMed  CAS  Google Scholar 

  • Hagmann J, Fishman PH (1980) Modulation of adenylate cyclase in intact macrophages by microtubules. Opposing actions of colchicine and chemotactic factor. J Biol Chem 255: 2659–2662

    Google Scholar 

  • Houslay MD, Palmer RW (1978) Changes in the form of Arrhenius plots of the activity of glucagon-stimulated adenylate cyclase and other hamster liver plasma membrane enzymes occuring on hibernation. Biochem J 174: 909–919

    PubMed  CAS  Google Scholar 

  • Houslay MD, Ellory JC, Smith GA, Hesketh TR, Stein JM, Warren GB, Metcalfe JC (1977) Exchange of partners in glucagon receptor adenylate cyclase complexes: physical evidence for the independent, mobile receptor model. Biochim Biophys Acta 467: 208–219

    Article  PubMed  CAS  Google Scholar 

  • Houslay MD, Dipple I, Elliott KR (1980) Guanosine 5’-triphosphate and guanosine’ (beta gammo-imido) triphosphate effect a collision coupling mechanism between the glucagon receptor and catalytic unit of adenylate cyclase. Biochem J 186: 649–658

    PubMed  CAS  Google Scholar 

  • Howlett AC, Gilman AF (1980) Hydrodynamic properties of the regulatory component of adenylate cyclase. J Biol Chem 255: 2861–2866

    PubMed  CAS  Google Scholar 

  • Hudson TH, Johnson GL (1980) Peptide mapping of adenylate cyclase regulatory proteins that are cholera toxin substrates. J Biol Chem 255: 7480–7486

    PubMed  CAS  Google Scholar 

  • Iyengar R, Birnbaumer L (1979) Coupling of the glucagon receptor to adenylyl cyclase by GDP: evidence for two levels of regulation of adenylyl cyclase. Proc Natl Acad Sci USA 76: 3180–3193

    Article  Google Scholar 

  • Iyengar R, Swartz TL, Birnbaumer L (1979) Coupling of glucagon receptor to adenylyl cyclase: requirement of a receptor-related guanyl nucleotide binding site for coupling of receptor to enzyme. J Biol Chem 254: 1119–1123

    PubMed  CAS  Google Scholar 

  • Iyengar R, Mintz PW, Swartz TL, Birnbaumer L (1980b) Divalent cation-induced desensitization of glucagon-stimulatable adenylyl cyclase in rat liver plasma membrane. GTP- dependent stimulation by glucagon. J Biol Chem 255: 11875–11882

    PubMed  CAS  Google Scholar 

  • Johnson GL, Coffino P, Bourne HR ( 1981 a) Somatic genetic analysis of hormone action. In: Jacobs S, Cuatrecasas P (eds) Membrane receptors, series B, vol 11. Chapman and Hall, London New York, p 173

    Google Scholar 

  • Johnson GL, Macandrew VI, Pilch PF (1981b) Identification of the glucagon receptor in rat liver membranes by photoaffinity crosslinking. Proc Natl Acad Sci USA 78: 875–878

    Article  PubMed  CAS  Google Scholar 

  • Kaslow HR, Johnson GL, Brothers VM, Bourne HR (1980) A regulatory component of adenylate cyclase from human erythrocyte membranes. J Biol Chem 255: 3736–3741

    PubMed  CAS  Google Scholar 

  • Kempner ES, Schlegel W (1979) Size determination of enzymes by radiation inactivation. Anal Biochem 92: 2–10

    Article  PubMed  CAS  Google Scholar 

  • Kennedy MS, Insel PA (1979) Inhibitors of microtubule assembly enhance beta-adrenergic and prostaglandin Ex-stimulated cyclic AMP accumulation in S 49 lymphoma cells. Mol Pharmacol 16: 215–223

    PubMed  CAS  Google Scholar 

  • Kimura N, Nagata N (1979) Mechanism of glucagon stimulation of adenylate cyclase in the presence of GDP in rat liver plasma membranes. J Biol Chem 254: 3451–3457

    PubMed  CAS  Google Scholar 

  • Kimura N, Shimada N (1980) Glucagon-stimulated GTP hydrolysis in rat liver plasma membranes. FEBS Lett 117: 172–174

    Article  PubMed  CAS  Google Scholar 

  • Lad PM, Welton AF, Rodbell M (1977) Evidence for distinct guanine nucleotide sites in the regulation of the glucagon receptor and of adenylate cyclase activity. J Biol Chem 252: 5942–5946

    PubMed  CAS  Google Scholar 

  • Lad PM, Preston MS, Welton AF, Nielsen TB, Rodbell M (1979) Effects of phospholipase A2 and filipin on the activation of adenylate cyclase. Biochim Biophys Acta 551: 368–381

    PubMed  CAS  Google Scholar 

  • Lad PM, Nielsen TB, Lin MC, Cooper DMF, Preston MS, Rodbell M ( 1980 a) Toward a unifying hypothesis for the effects of cholera toxin catalysed ADP-ribosylation in di-verse adenylate cyclase systems. In: Smulson EF, Sugimura T (eds) Novel ADP-ribosylations of regulatory enzymes and proteins. Elsevier North Holland, Amsterdam Oxford New York, p 381

    Google Scholar 

  • Lefkowitz RJ, Wessels MR, Stadel JM (1980) Hormones, receptors, and cyclic AMP: their role in target cell refractoriness. Curr Top Cell Regul 17: 205–230

    PubMed  CAS  Google Scholar 

  • Levey GS (1971) Restoration of glucagon responsiveness of solubilized myocardial adenyl cyclase by phosphatidylserine. Biochem Biophys Res Commun 43: 108–113

    Article  PubMed  CAS  Google Scholar 

  • Limbird LE, Lefkowitz RJ (1978) Agonist-induced increase in apparent beta-adrenergic receptor size. Proc Natl Acad Sci USA 75: 228–232

    Article  PubMed  CAS  Google Scholar 

  • Limbird LE, Hickey AR, Lefkowitz RJ (1979) Unique uncoupling of the frog erythrocyte adenylate cyclase system by manganese. Loss of hormone and guanine nucleotide-sen- sitive enzyme activities without loss of nucleotide-sensitive, high affinity agonist binding. J Biol Chem 254: 2677–2683

    PubMed  CAS  Google Scholar 

  • Limbird LE, Gill DM, Lefkowitz RJ (1980) Agonist-promoted coupling of the beta-adrenergic receptor with the guanine nucleotide regulatory protein of the adenylate cyclase system. Proc Natl Acad Sci USA 77: 775–779

    Article  PubMed  CAS  Google Scholar 

  • Lin MC, Salomon Y, Rendell M, Rodbell M ( 1975 a) The hepatic adenylate cyclase system. II. Substrate binding and utilization and the effects of magnesium ion and pH. J Biol Chem 250: 4246–4252

    PubMed  CAS  Google Scholar 

  • Lin MC, Nicosia S, Lad PM, Rodbell M (1977) Effects of GTP on binding of 3H-glucagon to receptors in rat hepatic plasma membranes. J Biol Chem 252: 2790–2792

    PubMed  CAS  Google Scholar 

  • Lin MC, Cooper DMF, Rodbell M (1980) Selective effects of organic mercurials on the GTP-regulatory proteins of adenylate cyclase systems. J Biol Chem 255:7250–7254

    PubMed  CAS  Google Scholar 

  • Londos C, Rodbell M (1975) Multiple inhibitory and activating effects of nucleotides and magnesium on adrenal adenylate cyclase. J Biol Chem 250: 3459–3465

    PubMed  CAS  Google Scholar 

  • Londos C, Wolff J, Cooper DMF ( 1979 b) Action of adenosine on adenylate cyclase. In: Baer HP, Drummond GI (eds) Physiological and regulatory functions of adenosine and adenine nucleotides. Raven, New York, p 271

    Google Scholar 

  • Martin BR, Stein JM, Kennedy EL, Doberska CA, Metcalfe JC (1979) Transient complexes: a new structural model for the activation of adenylate cyclase by hormone receptors. Biochem J 184: 253–260

    PubMed  CAS  Google Scholar 

  • Martin BR, Stein JM, Kennedy EL, Doberska CA (1980) The effect of fluoride on the state of aggregation of adenylate cyclase in rat liver plasma membranes. Biochem J 188: 136–140

    Google Scholar 

  • Moss J, Vaughan M (1979) Activation of adenylate cyclase by choleragen. Annu Rev Biochem 48: 581–600

    Article  PubMed  CAS  Google Scholar 

  • Mourelle M, Rubalcava B (1981) Regeneration of the liver after carbon tetrachloride: dif-ferences in adenylate cyclase and pancreatic hormone receptors. J Biol Chem 256: 1656–1660

    PubMed  CAS  Google Scholar 

  • Nielsen TB, Lad PM, Preston MS, Rodbell M (1980) Characteristics of the guanine nu-cleotide regulatory component of adenylate cyclase in human erythrocyte membranes. Biochim Biophys Acta 629: 143–155

    PubMed  CAS  Google Scholar 

  • Nielsen TB, Lad PM, Preston MS, Kempner E, Schlegel W, Rodbell M (1981) Structure of the turkey erythrocyte adenylate cyclase system. Proc Natl Acad Sci USA 78: 722–726

    Article  PubMed  CAS  Google Scholar 

  • Northrup JK, Sternweis PC, Smigel MD, Schleifer LS, Ross MR, Gilman AG (1980) Puri-fication of the regulatory component of adenylate cyclase. Proc Natl Acad Sci USA 77: 6516–6520

    Article  Google Scholar 

  • Plas C, Nunez J (1975) Glycogenolytic response to glucagon of cultured fetal hepatocytes. Refractoriness following exposure to glucagon. J Biol Chem 250: 5304–5311

    PubMed  CAS  Google Scholar 

  • Pohl SL, Krans HMJ, Kozyreff V, Birnbaumer L, Rodbell M (1971) The glucagon sensitive adenyl cyclase system in plasma membranes of rat liver. VI. Evidence for a role of membrane lipids. J Biol Chem 246: 4447–4454

    PubMed  CAS  Google Scholar 

  • Reilly TM, Blecher M (1981) Restoration of glucagon responsiveness in spontaneously transformed rat hepatocytes ( RL-PR-C) by fusion with normal progenitor cells and rat liver plasma membranes. Proc Natl Acad Sci USA 78: 182–186

    Article  PubMed  CAS  Google Scholar 

  • Reilly T, Beckner S, Blecher M (1980) Uncoupling of the glucagon receptor adenylate cyclase system by glucagon in cloned differentiated rat hepatocytes. J Receptor Res 1: 277–311

    CAS  Google Scholar 

  • Rendell M, Salomon Y, Lin MC, Rodbell M, Berman M (1975) The hepatic adenylate cyclase system. III. A mathematical model for the steady state kinetics of catalysis and nucleotide regulation. J Biol Chem 250: 4253–4260

    PubMed  CAS  Google Scholar 

  • Rendell MS, Rodbell M, Berman M (1977) Activation of hepatic adenylate cyclase by guanyl nucleotides: modeling of the transient kinetics suggests an “excited” state of GTPase is a control component of the system. J Biol Chem 252: 7909–7912

    PubMed  CAS  Google Scholar 

  • Rodbell M ( 1972 a) Cell surface receptor sites. In: Goldberger R (ed) Current topics in biochemistry. Academic, London New York, p 187

    Google Scholar 

  • Rodbell M (1972b) Regulation of glucagon action at it receptors. In: Lefebvre PJ, Unger RH (eds) Glucagon. Pergamon, Oxford New York, p 61

    Google Scholar 

  • Rodbell M (1978) The role of nucleotide regulatory components in the coupling of hormone receptors and adenylate cyclase. In: Folco G, Paoletti R (eds) Molecular biology and pharmacology of cyclic nucleotides. Elsevier/North Holland Biomedical, Amsterdam Oxford New York, p 1

    Google Scholar 

  • Rodbell M (1980) The role of hormone receptors and GTP-regulatory proteins in membrane transduction. Nature 284: 17–22

    Article  PubMed  CAS  Google Scholar 

  • Rodbell M, Krans HMJ, Pohl SL, Birnbaumer L (1971a) The glucagon-sensitive adenyl cyclase system in plasma membranes of rat liver. IV. Effects of gluanyl nucleotides on binding of 125I-glucagon. J Biol Chem 246: 1872–1876

    PubMed  CAS  Google Scholar 

  • Rodbell M, Birnbaumer L, Pohl SL, Krans HMJ (1971b) The glucagon-sensitive adenyl cyclase system in plasma membranes of rat liver. V. An obligatory role of guanyl nucleotides in glucagon action. J Biol Chem 246: 1877–1882

    PubMed  CAS  Google Scholar 

  • Rodbell M, Birnbaumer L, Pohl SL, Sundby F (1971c) The reaction of glucagon with its receptor: evidence for discrete regions of activity and binding in the glucagon molecule. Proc Natl Acad Sci USA 68: 900–913

    Article  Google Scholar 

  • Rodbell M, Lin MC, Salomon Y (1974) Evidence for interdependent action of glucagon and nucleotides on the hepatic adenylate cyclase system. J Biol Chem 249: 59–65

    PubMed  CAS  Google Scholar 

  • Rodbell M, Lin MC, Salomon Y, Londos C, Harwood JP, Martin BR, Rendell M, Berman M (1975) Role of adenine and guanine nucleotides in the activity and response of adenylate cyclase systems to hormones: evidence for multisite transition states. Adv Cyclic Nucleotide Res 5: 3–29

    PubMed  CAS  Google Scholar 

  • Ross EM, Gilman AG (1980) Biochemical properties of hormone-sensitive adenylate cyclase. Annu Rev Biochem 49: 533–564

    Article  PubMed  CAS  Google Scholar 

  • Rubalcava B, Rodbell M (1973) The role of acidic phospholipids in glucagon action on rat liver adenylate cyclase. J Biol Chem 248: 3831–3837

    PubMed  CAS  Google Scholar 

  • Salomon Y, Lin MC, Londos C, Rendell M, Rodbell M (1975) The hepatic adenylate cyclase system. I. Evidence for transition states and structural requirements for guanine nucleotide activation. J Biol Chem 250: 4239–4245

    Google Scholar 

  • Schlegel W, Kempner ES, Rodbell M (1979) Activation of adenylate cyclase in hepatic membranes involves interactions of the catalytic unit with multimeric complexes of regulatory proteins. J Biol Chem 254: 5168–5176

    PubMed  CAS  Google Scholar 

  • Schleifer LS, Garrison JC, Sternweis PC, Northup JK, Gilman AG (1980) The regulatory component of adenylate cyclase from uncoupled S 49 lymphoma cells differs in charge from the wild type protein. J Biol Chem 255: 2641–2644

    PubMed  CAS  Google Scholar 

  • Schramm M (1979) Transfer of glucagon receptor from liver membranes to a foreign adenylate cyclase by a membrane fusion procedure. Proc Natl Acad Sci USA 76: 1174–1178

    Article  PubMed  CAS  Google Scholar 

  • Schramm M, Rodbell M (1975) A persistent active state of the adenylate cyclase system produced by the combined actions of isoproterenol and guanylyl-imidodiphosphate in frog erythrocyte membranes. J Biol Chem 250: 2232–2237

    PubMed  CAS  Google Scholar 

  • Shinozawa T, Sen I, Wheeler G, Bitensky M (1979) Predictive value of the analogy between hormone-sensitive adenylate cyclase and light-sensitive photoreceptor cyclic GMP phosphodiesterase: a specific role for a light-sensitive GTPase as a component in the activation sequence. J Supramol Struct 10: 185–190

    Article  PubMed  CAS  Google Scholar 

  • Sonne O, Berg T, Christoffersen T (1978) Binding of 125I-labeled glucagon and glucagon- stimulated accumulation of adenosine 3/5/-monophosphate in isolated intact rat he- patocytes: evidence for receptor heterogeneity. J Biol Chem 253: 3203–3210

    PubMed  CAS  Google Scholar 

  • Srikant CB, Freeman D, McCorkle K, Unger RH (1977) Binding and biologic activity of glucagon in liver cell membranes of chronically hyperglucagonemic rats. J Biol Chem 252: 7434–7436

    PubMed  CAS  Google Scholar 

  • Stengel D, Hanoune J (1979) Solubilization and physical characterization of the adenylate cyclase from rat liver plasma membranes. Eur J Biochem 102: 21–34

    Article  PubMed  CAS  Google Scholar 

  • Storm DR, Dolginow YD (1973) Glucagon stimulation of adenylate cyclase sulfhydryl reactivity: evidence for hormone-induced conformational changes. J Biol Chem 248: 5208–5210

    PubMed  CAS  Google Scholar 

  • Strittmatter S, Neer EJ (1980) Properties of the separated catalytic and regulatory units of brain adenylate cyclase. Proc Natl Acad Sci USA 77: 6344–6348

    Article  PubMed  CAS  Google Scholar 

  • Strosberg AD, Vauquelin G, Durieu O, Klutchko C, Bottari S, Andre C (1980) Towards the chemical and functional characterization of the β-adrenergic receptor: a review. Trends Biochem Sci 5: 11–14

    Article  CAS  Google Scholar 

  • Sutherland EW (1972) Studies on the mechanism of hormone action. Science 177: 401–408

    Article  PubMed  CAS  Google Scholar 

  • Tolkovsky AM, Levitzki A (1978) Mode of coupling between the β-adrenergic receptor and adenylate cyclase in turkey erythrocytes. Biochemistry 17: 3795–3810

    Article  PubMed  CAS  Google Scholar 

  • Toscano WA, Westcott KR, Laporte DC, Storm DR (1979) Evidence for a dissociable protein subunit required for calmodulin stimulation of brain adenylate cyclase. Proc Natl Acad Sci USA 76: 5582–5586

    Article  PubMed  CAS  Google Scholar 

  • Watanabe AM, McConnaughey MM, Strawbridge RA, Fleming JW, Jones LR, Besch HR (1978) Muscarinic cholinergic receptor modulation of β-adrenergic receptor affinity for catecholamines. J Biol Chem 253: 4833–4836

    PubMed  CAS  Google Scholar 

  • Welton AF, Lad PM, Newby AC, Yamamura H, Nicosia N, Rodbell M (1977) Solubilization and separation of the glucagon receptor and adenylate cyclase in guanine nucleotide-sensitive states. J Biol Chem 252: 5947–5950

    PubMed  CAS  Google Scholar 

  • Williams LT, Lefkowitz RJ (1977) Slowly reversible binding of catecholamine to a nu- cleotide-sensitive state of the β-adrenergic receptor. J Biol Chem 252: 7207–7213

    PubMed  CAS  Google Scholar 

  • Wright DE, Rodbell M (1979) Glucagon 1–6 binds to the glucagon receptor and activates adenylate cyclase. J Biol Chem 254: 268–269

    PubMed  CAS  Google Scholar 

  • Wright DE, Rodbell M (1980 b) Properties of amidinated glucagons. Eur J Biochem 111:11–16

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rodbell, M. (1983). The Actions of Glucagon at Its Receptor: Regulation of Adenylate Cyclase. In: Lefèbvre, P.J. (eds) Glucagon I. Handbook of Experimental Pharmacology, vol 66 / 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-68866-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-68866-9_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-68868-3

  • Online ISBN: 978-3-642-68866-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics