Skip to main content

Cardiovascular and Respiratory Systems of the Fetus

  • Chapter

Abstract

Our knowledge of fetal physiology stems almost entirely from mammals other than the human. Most of the experimental evidence was produced in Artiodactyla, particularly in sheep and goat, and in rodents such as guinea pig, rabbit, rat, and mouse (Fig. 118.1) [75]. Only a few observations have been made in nonhuman primates. However, a number of responses and mechanisms in these species are phylogenetically old and hence may bear some relationship to those in the human. For example, the intrauterine environment as far as blood gas status and acid-base balance are concerned are largely similar in chronically instrumented fetal sheep and in human fetuses. Furthermore, the general neurohumoral circulatory and metabolic responses to acute and chronic O2 deficiency are comparable to some extent. Consequently, the chronically prepared sheep model has been most widely used to study fetal physiology. In this chapter an attempt is made to describe some important developmental features of the cardiovascular and respiratory system, some relevant aspects of energy metabolism and growth, and their integration by hormonal and nervous mechanisms.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   349.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acheson GH, Dawes GS, Mott JC (1957) Oxygen consumption and the arterial oxygen saturation in foetal and newborn lambs. J Physiol (Lond) 135:623–642

    CAS  Google Scholar 

  2. Acker H, Lübbers DW (1977) The kinetics of local tissue PO2 decrease after perfusion stop within the carotid body of the cat in vivo and in vitro. Pflugers Arch 369:135–140

    PubMed  CAS  Google Scholar 

  3. Alexander DP, Forsling ML, Martin MJ, Nixon DA, Ratcliffe JG, Redstone D, Tunbridge D (1972) The effect of maternal hypoxia on fetal pituitary hormone release in the sheep. Biol Neonate 21:219–228

    PubMed  CAS  Google Scholar 

  4. Alexander G (1964) Studies on the placenta of the sheep: effect of surgical reduction in the number of caruncles. J Reprod Fertil 7:307–322

    PubMed  CAS  Google Scholar 

  5. Alexander G, Hales JRS, Stevens D, Donnelly JB (1987) Effects of acute and prolonged exposure to heat on regional blood flows in pregnant sheep. J Dev Physiol 9:1–15

    PubMed  CAS  Google Scholar 

  6. Apgar VA (1953) A proposal for a new method of evaluation of the newborn infant. Curr Res Anesth Anal 32:260–267

    CAS  Google Scholar 

  7. Asakura H, Ball, KT, Power GG (1990) Interdependence of arterial PO2 and O2 consumption in the fetal sheep. J Dev Physiol 13:205–213

    PubMed  CAS  Google Scholar 

  8. Ashwal S, Majcher JS, Longo LD (1981) Patterns of fetal lamb regional cerebral blood flow during and after prolonged hypoxia: Studies during the posthypoxic recovery period. Am J Obstet Gynecol 139:365–372

    PubMed  CAS  Google Scholar 

  9. Avery, ME, Mead D (1959) Surface properties in relation to atelectasis and hyaline membrane disease. Am J Dis Child 97:517–523

    CAS  Google Scholar 

  10. Barclay AE, Franklin KJ, Prichard MML (1944) The foetal circulation and cardiovascular system, and the changes that they undergo at birth. Blackwell Scientific, Oxford

    Google Scholar 

  11. Barcroft J (1946) Researches on prenatal life. Blackwell Scientific, Oxford

    Google Scholar 

  12. Barett CT, Heymann MA, Rudolph AM (1972) Alpha- and beta-adrenergic function in fetal sheep. Am J Obstet Gynecol 89:252–260

    Google Scholar 

  13. Behrman RE, Less MH, Peterson EM, De Lannoy CW, Seeds AE (1970) Distribution of the circulation in normal and asphyxiated fetal primate. Am J Obstet Gynecol 108:956–969

    PubMed  CAS  Google Scholar 

  14. Berger R, Gjedde A, Heck J, Müller E, Krieglstein J, Jensen A (1994) Extension of the 2-deoxyglucose method to the fetus in utero: theory and normal values for the cerebral glucose consumption in fetal guinea pigs. J Neurochem 63:271–279

    PubMed  CAS  Google Scholar 

  15. Berger R, Jensen A, Krieglstein J, Steiglmann JP (1991) Effects of acute asphyxia on brain energy metabolism in fetal guinea pigs near term. J Dev Physiol 16:9–11

    PubMed  CAS  Google Scholar 

  16. Berger R, Jensen A, Krieglstein J, Steiglmann JP (1991) Cerebral energy metabolism in guinea pig fetuses during development. J Dev Physiol 16:317–319

    PubMed  CAS  Google Scholar 

  17. Berger R, Jensen A, Krieglstein J, Steiglmann JP (1992) Cerebral energy metabolism in immature and mature fetuses during acute asphyxia. J Dev Physiol 18:125–128

    PubMed  CAS  Google Scholar 

  18. Bissonnette JM, Hohimer AR, Willeke GB (1989) Effect of asphyxia on respiratory activity in fetal sheep. J Dev Physiol 12:157–161

    PubMed  CAS  Google Scholar 

  19. Blanco CE, Dawes GS, Walker DW (1983) Effect of hypoxia on polysynaptic hindlimb reflexes of unanesthetized fetal and newborn lambs. J Physiol (Lond) 339:453–466

    CAS  Google Scholar 

  20. Blanco CE, Dawes GS, Hanson MA, McCooke HB (1984). The response to hypoxia of arterial chemoreceptors in fetal sheep and new-born lambs. J Physiol (Lond) 351:25–37

    CAS  Google Scholar 

  21. Blanco CE, Dawes GS, Hanson MA, McCooke HB (1985) Studies of carotid baroreceptor afferents in fetal and newborn lambs. In: Jones CT, Nathanielsz PW (eds) Physiological development of the fetus and newborn. Academic, London, pp 595–598

    Google Scholar 

  22. Block BS, Schlafer DH, Wentworth RA, Kreitzer LA, Nathanielsz PW (1990) Intrauterine asphyxia and the breakdown of physiologic circulatory compensation in fetal sheep. Am J Obstet Gynecol 162:1325–1331

    PubMed  CAS  Google Scholar 

  23. Block BS, Schlafer DH, Wentworth RA, Kreitzer LA, Nathanielsz PW (1990) Regional blood flow distribution in fetal sheep with intrauterine growth retardation produced by decreased umbilical placental perfusion. J Dev Physiol 13:81–85

    PubMed  CAS  Google Scholar 

  24. Bocking AD, Harding R (1986) Effects of reduced uterine blood flow on electrocortical activity, breathing, and skeletal muscle activity in fetal sheep. Am J Obstet Gynecol 154:655–662

    PubMed  CAS  Google Scholar 

  25. Bocking AD, McMillen IC, Harding R, Thornburn GD (1986) Effect of reduced uterine blood flow on fetal and maternal cortisol. J Dev Physiol 8:237–245

    PubMed  CAS  Google Scholar 

  26. Boddy K, Dawes GS, Fisher R, Pinter S, Robinson JS (1974) Foetal respiratory movements, electrocortical and cardiovascular responses to hypoxaemia and hypercapnia in sheep. J Physiol (Lond) 243:599–618

    CAS  Google Scholar 

  27. Boddy K, Jones CT, Mantell C, Ratcliffe JG Robinson JS (1974) Changes in plasma ACTH and corticosteroid of the maternal and fetal sheep during hypoxia. Endocrinology 94:588–591

    PubMed  CAS  Google Scholar 

  28. Braems G, Jensen A (1991) Hypoxia reduces oxygen consumption of fetal skeletal muscle cells in monolayer culture: a preliminary report. J Dev Physiol 16:209–215

    PubMed  CAS  Google Scholar 

  29. Braems G, Dussler I, Jensen A (1990) Oxygen availability determines oxygen consumption of fetal myocardial cells in monolayer culture. Scientific program and abstracts, 36th annual meeting of the Society for Gynecologic Investigation, p 243

    Google Scholar 

  30. Brace RA, Cheung CY (1986) Fetal cardiovascular and endocrine responses to prolonged fetal hemorrhage. Am J Physiol 251:R417–R424

    PubMed  CAS  Google Scholar 

  31. Brace RA (1987) Fetal blood volume responses to fetal haemorrhage: autonomic nervous contribution. J Dev Physiol 9:97–103

    PubMed  CAS  Google Scholar 

  32. Bristow J, Rudolph AM, Itskovitz J, Barnes R (1983) Hepatic oxygen and glucose metabolism in the fetal lamb. J Clin Invest 71:1047–1061

    PubMed  CAS  Google Scholar 

  33. Brumley GW, Chernick V, Hodson WA, Normand C, Fenner A, Avery ME (1967) Correlation of mechanical stability, morphology, pulmonary surfactant and phospholipid content in the developing lamb lung. J Clin Invest 46:863–873

    PubMed  CAS  Google Scholar 

  34. Burri PH (1985) Development and growth of the human lung. In: Fishman AP, Fisher AB (eds) Handbook of physiology, vol 1, Sect 3. respiratory system, chap 1, American Pysiological Society, Bethesda, pp 1–46

    Google Scholar 

  35. Campbell AGM, Dawes GS, Fishan AP, Hyman AI (1967) Regional redistribution of blood flow in the mature fetal lamb. Circ Res 21:229–235

    PubMed  CAS  Google Scholar 

  36. Carter AM (1989) Factors affecting gas transfer across the placenta and the oxygen supply to the fetus. J Dev Physiol 12:305–322

    PubMed  CAS  Google Scholar 

  37. Carter AM, Gu W (1988) Cerebral blood flow in the fetal guinea-pig. J Dev Physiol 10:123–129

    PubMed  CAS  Google Scholar 

  38. Cassin S, Dawes GS, Mott JC, Rss BB, Strang LB (1964) The vascular resistance of the foetal and newly ventilated lungs of the lamb. J Physiol (Lond) 171:61–79

    CAS  Google Scholar 

  39. Cassin S, Dawes GS, Ross BB (1964) Pulmonary blood flow and vascular resistance in immature foetal lambs. J Physiol (Lond) 171:80–89

    CAS  Google Scholar 

  40. Cassin S (1980) Role of prostaglandins and thromboxanes in the control of the pulmonary circulation in the fetus and newborn. Sem Perinatol 4:101–107

    CAS  Google Scholar 

  41. Cassin S, Tod M, Philips J, Frisinger S, Jordan J, Gibbs C (1981) Effects of prostacyclin on the fetal pulmonary circulation. Pediatr Pharmacol 1:197–207

    CAS  Google Scholar 

  42. Cassin S (1982) Humoral factors affecting pulmonary blood flow in the fetus and newborn infant. In: Peckhan GJ, Heymann MA (eds) Cardiovascular sequelae of asphyxia in the newborn. Report of the 83rd Ross conference on pediatric research. Ross Laboratories, Columbus, Ohio, pp 10–18

    Google Scholar 

  43. Chaillis JRG, Mitchell BF, Lye SJ (1984) Activation of fetal adrenal function. J Dev Physiol 6:93–105

    Google Scholar 

  44. Challis JRG, Richardson BS, Rurak D, Wlodek ME, Patrick JE (1986) Plasma adrenocorticotropic hormone and cortisol and adrenal blood flow during sustained hypoxemia in fetal sheep. Am J Obstet Gynecol 155:1332–1336

    PubMed  CAS  Google Scholar 

  45. Challis JRG, Fraher L, Oosterhuis J, White SE, Bocking AD (1989) Fetal and maternal endocrine responses to prolonged reductions in uterine blood flow in pregnant sheep. Am J Obstet Gynecol 160:926–932

    PubMed  CAS  Google Scholar 

  46. Chao CR, Hohimer AR, Bissonette JM (1989) Cerebral carbohydrate metabolism during severe ischemia in fetal sheep. J Cereb Blood Flow Metab 9:53–57

    PubMed  CAS  Google Scholar 

  47. Charlton V, Johengen M (1985) Effects of intrauterine nutritional supplementation on fetal growth retardation. Biol Neonate 48:125–142

    PubMed  CAS  Google Scholar 

  48. Charlton V, Johengen M (1987) Fetal intravenous nutritional supplementation ameliorates the development of embolization-induced growth retardation in sheep. Pediatr Res 22:55–61

    PubMed  CAS  Google Scholar 

  49. Cheung CY, Brace RA (1988) Fetal hypoxia elevates plasma atrial natriuretic factor concentration. Am J Obstet Gynecol 159:1263–1268

    PubMed  CAS  Google Scholar 

  50. Clapp JF III (1978) The relationship between blood flow and oxygen uptake in the uterine and umbilical circulation. Am J Obstet Gynecol 132:410–413

    PubMed  Google Scholar 

  51. Clapp JF III, Peress NS, Wesley M, Mann LI (1988) Brain damage after intermittent partial cord occlusion in the chronically instrumented fetal lamb. Am J Obstet Gynecol 159:504–509

    PubMed  CAS  Google Scholar 

  52. Clapp JF III, Szeto HH, Larrow R, Hewitt J, Mann LI (1981) Fetal metabolic response to experimental placental vascular damage. Am J Obstet Gynecol 140:446–451

    PubMed  Google Scholar 

  53. Clapp JF III, Thabault NC, Hubel CA, McLaughlin MK, Auletta FJ (1982) Ovine placental cortisol production. Endocrinology 111:1728–1730

    PubMed  CAS  Google Scholar 

  54. Clapp JF III (1988) Fetal endocrine and metabolic response to placental insufficiency. In: Künzel W, Jensen A (eds) The endocrine control of the fetus. Springer, Berlin Heidelberg New York, pp 246–253

    Google Scholar 

  55. Coceani F, Adeagbo ASO, Cutz E, Olley PM (1984) Autonomic mechanisms in the ductus venosus of the lamb. Am J Physiol 247:H17–24

    PubMed  CAS  Google Scholar 

  56. Cohen WR, Piasecki GJ, Jackson BT (1982) Plasma catecholamines during hypoxemia in fetal lamb. Am J Physiol 243:R520–R525

    PubMed  CAS  Google Scholar 

  57. Cohen WR, Piasecki GJ, Cohn HE, Young JB, Jackson BT (1984) Adrenal secretion of catecholamines during hypoxemia in fetal lambs. Endocrinology 114:383–390

    PubMed  CAS  Google Scholar 

  58. Cohn HE, Sacks EJ, Heymann MA, Rudolph AM (1974) Cardiovascular responses to hypoxemia and acidemia in fetal lambs. Am J Obstet Gynecol 120:817–824

    PubMed  CAS  Google Scholar 

  59. Cohn HE, Piasecki GJ, Jackson BT (1978) The role of autonomic nervous control in the fetal cardiovascular response to hypoxemia. In: Longo LD, Reneau DD (eds) Fetal and newborn cardiovascular physiology, vol 2. Garland, New York, pp 249–258

    Google Scholar 

  60. Cohn HE, Piasecki GJ, Jackson BT (1982) The effect of beta-adrenergic stimulation on fetal cardiovascular function during hypoxemia. Am J Obstet Gynecol 144:810–816

    PubMed  CAS  Google Scholar 

  61. Cohn HE, Jackson BT, Piasecki G J, Cohen WR, Novy MJ (1985) Fetal cardiovascular responses to asphyxia induced by decreased uterine perfusion. J Dev Physiol 7:289–298

    PubMed  Google Scholar 

  62. Colebatch HJH, Dawes GS, Goodwin JW, Nadeau RA (1965) The nervous control of the circulation in the foetal and newly expanded lungs of the lamb. J Physiol 178:544–562

    PubMed  CAS  Google Scholar 

  63. Comline RS, Silver M (1961) The release of adrenaline and noradrenaline from the adrenal glands of the foetal sheep. J Physiol (Lond) 156:424–444

    CAS  Google Scholar 

  64. Court DJ, Parer JT, Block BSB, Llanos AJ (1984) Effects of beta-adrenergic blockade on blood flow distribution during hypoxaemia in fetal sheep. J Dev Physiol 6:349–358

    PubMed  CAS  Google Scholar 

  65. Courtice GP, Kwong TE, Lumbers ER, Potter EK (1984) Excitation of the cardiac vagus by vasopressin in mammals. J Physiol (Lond) 354:547–556

    CAS  Google Scholar 

  66. Creasy RK, DeSwiet M, Kahanpaa KV, Young WP, Rudolph AM (1973) Pathophysiological changes in the foetal lamb with growth retardation. In: Comline RS, Cross KW, Dawes GS, Nathanielsz PW (eds) Foetal and neonatal physiology. Cambridge University Press, Cambridge, pp 398–402

    Google Scholar 

  67. Dagbjartsson A, Karlsson K, Kjellmer I, Rosén KG (1985) Maternal treatment with a cardioselective beta-blocking agent — consequences for the ovine fetus during intermittent asphyxia. J Dev Physiol 7:387–396

    PubMed  CAS  Google Scholar 

  68. Dalton KJ, Dawes GS, Patrick JE (1977) Diurnal, respiratory, and other rhythms of fetal heart rate in lambs. Am J Obstet Gynecol 127:414–424

    PubMed  CAS  Google Scholar 

  69. Daniel SS, Husain MK, Milliez J, Stark RI, Yeh MN, James LS (1978) Renal response of fetal lamb to complete occlusion of umbilical cord. Am J Obstet Gynecol 131:514–519

    PubMed  Google Scholar 

  70. Dawes GS (1962) The umbilical circulation. Am J Obstet Gynecol 84:1634–1648

    PubMed  CAS  Google Scholar 

  71. Dawes GS (1986) The rediscovery of fetal breathing and its consequences. In: Johnston BM, Gluckman PD (eds) Respiratory control and lung development in the fetus and newborn. Perinatology Press, Ithaca N Y, pp 209–222

    Google Scholar 

  72. Dawes GS, Mott JC, Widdicombe JG (1954) The foetal circulation in the lamb. J Physiol (Lond) 126:563–587

    CAS  Google Scholar 

  73. Dawes GS, Mott JC (1959) The increase in oxygen consumption of the fetal lamb after birth. J Physiol (Lond) 146:295–315

    CAS  Google Scholar 

  74. Dawes GS (1968) Foetal and neonatal physiolgy. Year Book Medical Publisher, Chicago

    Google Scholar 

  75. Dawes GS, Lewis BV, Milligan JE, Roach MR, Talner NS (1968) Vasomotor responses in the hind limbs of foetal and newborn lambs to asphyxia and aortic chemoreceptor stimulation. J Physiol (Lond) 195:516–538

    Google Scholar 

  76. Dawes GS, Fox HE, Leduc BM, Liggins GC, Richards RT (1972) Respiratory movements and rapid-eye-movement sleep in the foetal lamb. J Physiol (Lond) 220:119–143

    CAS  Google Scholar 

  77. Dawes GS (1973) Breathing and rapid-eye-movement sleep before birth. In: Foetal and neonatal physiology, proceedings of the Sir Joseph Barcroft centenary symposium. Cambridge University Press, Cambridge, pp 49–62

    Google Scholar 

  78. Dawes GS, Gardner WN, Johnston BM, Walker DW (1983) Breathing in fetal lambs: the effect of brain stem section. J Physiol (Lond) 335:535–553

    CAS  Google Scholar 

  79. De Lemos RA (1970) Acceleration of appearance of pulmonary surfactant in the fetal lamb by administrtion of corticosteroids. Am Rev Respir Dis 102:459–461

    Google Scholar 

  80. De Vries JIP, Visser GHA, Huisjes JH, Prechtl HFR (1982). The emergence of fetal behaviour. In: Neurobiology of development: EBBS workshop. University of Groningen Press, Groningem, pp 45–46

    Google Scholar 

  81. Drummond WH, Rudolph AM, Keil LC, Gluckman PD, MacDonald AA, Heymann MA (1980) Arginine vasopressin and prolactin after hemorrhage in the fetal lamb. Am J Physiol 238:E214–E219

    PubMed  CAS  Google Scholar 

  82. Edelstone DI, Rudolph AM, Heymann MA (1978) Liver and ductus venosus blood flows in fetal lambs in utero. Cire Res 42:426–433

    CAS  Google Scholar 

  83. Edelstone DI, Rudolph AM, Heymann MA (1980) Effects of hypoxaemia and decreasing umbilical flow on liver and ductus venosus blood flows in fetal lambs. Am J Physiol 238:H656–H663

    PubMed  CAS  Google Scholar 

  84. Edelstone DI Holzman IR (1982) Fetal intestinal oxygen consumption at various levels of oxygenation. Am J Physiol 242:H50–H54

    PubMed  CAS  Google Scholar 

  85. Edelstone DI, Holzman IR (1984) Regulation of perinatal intestinal oxygenation. Semin Perinatal 8:226–233

    CAS  Google Scholar 

  86. Elliot JM, West MJ, Chalmers J (1985) Effects of vasopressin on heart rate in conscious rabbits. J Cardiovasc Pharmacol 7:6–11

    Google Scholar 

  87. Emmanoulides GC, Townsend DE, Bauer RA (1986) Effects of single umbilical artery ligation in the lamb. Pediatrics 42:919–927

    Google Scholar 

  88. Emson PC, De Quidt ME (1984) NPY — a new member of the pancreatic polypeptide family. Trends Neurosci 7:31–35

    CAS  Google Scholar 

  89. Fillenz M (1966) Innervation of the cat spleen. J Physiol (Lond) 185:2–3

    Google Scholar 

  90. Fisher DJ, Heymann MA, Rudolph AM (1982) Fetal myocardial oxygen and carbohydrate consumption during acutely induced hypoxemia. Am J Physiol 242:H657—H661

    PubMed  Google Scholar 

  91. Fisher DJ, Heymann MA, Rudolph AM (1982) Fetal myocardial oxygen and carbohydrate metabolism in sustained hypoxemia in utero. Am J Physiol 243:H959—H963

    PubMed  Google Scholar 

  92. Fisher DJ (1986) Acidemia reduces cardiac output and left ventricular contractility in conscious lambs. J Dev Physiol 8:23–31

    PubMed  CAS  Google Scholar 

  93. Friedman WF (1973) The intrinsic physiologic properties of the developing heart. In: Friedman WF, Lesch M, Sonnenblick EH (eds) Neonatal heart disease. Grune and Stratton, New York, pp 21–49

    Google Scholar 

  94. Gilbert RD, Cummings LA, Juchau MR, Longo LD (1979) Placental diffusing capacity and fetal development in exercising or hypoxic guinea pigs. J Appl Physiol 46:828–834

    PubMed  CAS  Google Scholar 

  95. Gilbert RD (1980) Control of fetal cardiac output during changes in blood volume. Am J Physiol 238:H80–H86

    PubMed  CAS  Google Scholar 

  96. Gilbert RD (1982) Effects of afterload and baroreceptors on cardiac function in fetal sheep. J Dev Physiol 4:299–309

    PubMed  CAS  Google Scholar 

  97. Gleason CA, Rudolph AM (1985) Gluconeogenesis by the fetal sheep liver in vivo. J Dev Physiol 7:185–195

    PubMed  CAS  Google Scholar 

  98. Gleason CA, Rudolph AM (1986) Oxygenation does not stimulate hepatic gluconeogenesis in fetal lamb. Pediatr Res 20:532–535

    PubMed  CAS  Google Scholar 

  99. Gu W, Jones CT, Parer JT (1985) Metabolic and cardiovascular effects on fetal sheep of sustained reduction of uterine blood flow. J Physiol (Lond) 368:109–129

    CAS  Google Scholar 

  100. Guissani DA, Spencer JAD, Moore PJ, Hanson MA (1990) The effect of carotid sinus nerve section on the initial cardiovascular response to acute isocapnic hypoxia in fetal sheep in utero. J Physiol (Lond) 432:33P

    Google Scholar 

  101. Guissani DA, Spencer JAD, Moore PJ, Hanson MA (1991) Effect of phentolamine on initial cardiovascular response to isocapnic hypoxia in intact and carotid sinus denervated fetal sheep. J Physiol (Lond) 438:56P

    Google Scholar 

  102. Hanson MA (1988) The importance of baro- and chemo-reflexes in the control of the fetal cardiovascular system. J Dev Physiol 10:491–511

    PubMed  CAS  Google Scholar 

  103. Hanson MA (1993) The control of heart rate and blood pressure in the fetus: theoretical considerations. In: Hanson MA, Spencer JAD, Rodeck CH (eds) Fetus and neonate, vol 1: the circulation. Cambridge University Press, Cambridge, pp 1–22

    Google Scholar 

  104. Harding R, Poore ER, Cohen GL (1981) The effect of brief episodes of diminished uterine blood flow on breathing movements, sleep states and heart rate in fetal sheep. J Dev Physiol 3:231–243

    PubMed  CAS  Google Scholar 

  105. Harris JL, Krüger TR, Parer JT (1982) Mechanisms of late decelerations of the fetal heart rate during hypoxia. Am J Obstet Gynecol 144:491–496

    PubMed  CAS  Google Scholar 

  106. Heymann MA (1984) Control of the pulmonary circulation in the perinatal period. J Dev Physiol 6:281–290

    PubMed  CAS  Google Scholar 

  107. Heymann MA (1988) Control of the pulmonary circulation in the perinatal period. In: Künzel W, Jensen A (eds) The endocrine control of the fetus. Springer, Berlin Heidelberg New York, pp 31–37

    Google Scholar 

  108. Hislop A, Reid L (1972) Intra-pulmonary arterial development during fetal life-branching pattern and structure. J Anat 113:35–48

    PubMed  CAS  Google Scholar 

  109. Hökegard KH, Karlsson K, Kjellmer I, Rosén KG (1979) ECG-changes in the fetal lamb during asphyxia in relation to beta-adrenoceptor stimulation and blockade. Acta Physiol Scand 105:195–203

    PubMed  Google Scholar 

  110. Hoerter J, Mazet F, Vassort G (1982) Perinatal growth of the rabbit cardiac cell: possible implications for the mechanism of relaxation. J Mol Cell Cardiol 13:725–740

    Google Scholar 

  111. Humphreys PW, Strang LB (1967) Effects of gestation and prenatal asphyxia on pulmonary surface properties of the foetal rabbit. J Physiol (Lond) 192:53–62

    CAS  Google Scholar 

  112. Itskovitz J, Goetzman BW, Rudolph AM (1982) The mechanism of late deceleration of the heart rate and its relationship to oxygenation in normoxemic and chronically hypoxemic fetal lambs. Am J Obstet Gynecol 142:66–73

    PubMed  CAS  Google Scholar 

  113. Itskovitz J, Goetzman BW, Rudolph AM (1982) Effects of hemorrhage on umbilical venous return and oxygen delivery in fetal lambs. Am J Physiol 242:H543–H548

    PubMed  CAS  Google Scholar 

  114. Itskovitz J, LaGamma EF, Rudolph AM (1983) Heart rate and blood pressure responses to umbilical cord compression in fetal lambs with special reference to the mechanism of variable deceleration. Am J Obstet Gynecol 147:451–457

    PubMed  CAS  Google Scholar 

  115. Itskovitz J, LaGamma EF, Rudolph AM (1983) The effect of reducing umbilical blood flow on fetal oxygenation. Am J Obstet Gynecol 145:813–818

    PubMed  CAS  Google Scholar 

  116. Itskovitz J, LaGamma EF, Rudolph AM (1987) Effects of cord compression on fetal blood flow distribution and O2 delivery. Am J Physiol 252:H100–H109

    PubMed  CAS  Google Scholar 

  117. Iwamoto HS (1989) Cardiovascular responses to reduced oxygen delivery: studies in fetal sheep at 0.55–0.7 gestation. In: Gluckman PD, Johnston BM, Nathanielsz PW (eds) Advances in fetal physiology: reviews in honor of GC Liggins. Perinatology Press, Ithaca, New York, pp 43–54

    Google Scholar 

  118. Iwamoto HS, Kaufman T, Keil LC, Rudolph AM (1989) Responses to acute hypoxemia in the fetal sheep at 0.6–0.7 gestation. Am J Physiol 256:H613–H620

    PubMed  CAS  Google Scholar 

  119. Iwamoto HS, Rudolph AM, Keil LC, Heymann MA (1979) Hemodynamic responses of the sheep fetus to vasopressin infusion. Circ Res 44:430–436

    PubMed  CAS  Google Scholar 

  120. Iwamoto HS, Rudolph AM (1981) Role of renin-angiotensin system in response to hemorrhage in fetal sheep. Am J Physiol 240:H848–H854

    PubMed  CAS  Google Scholar 

  121. Iwamoto HS, Rudolph AM, Mirkin BL, Keil LC (1983) Circulatory and humoral responses of sympathectomized fetal sheep to hypoxemia. Am J Physiol 245:H767–H772

    PubMed  CAS  Google Scholar 

  122. Iwamoto HS, Rudolph AM (1985) Metabolic responses of the kidney in fetal sheep: effect of acute and spontaneous hypoxemia. Am J Physiol 249:F836–F841

    PubMed  CAS  Google Scholar 

  123. Jacobs H, Jobe A, Ikegami M, Glatz T, Jones S J, Barajas L (1982) Premature lambs rescued from respiratory failure with natural surfactant: clinical and biophysical correlates. Pediatr Res 16:424–429

    PubMed  CAS  Google Scholar 

  124. Jacobs R, Robinson JS, Owens JA, Falconer J, Webster MED (1988) The effect of prolonged hypobaric hypoxia on growth of fetal sheep. J Dev Physiol 10:97–112

    PubMed  CAS  Google Scholar 

  125. Jelinek J, Jensen A (1991) Catecholamine concentrations in plasma and organs of the fetal guinea pig during normoxaemia, hypoxaemia and asphyxia. J Dev Physiol 15:145–152

    PubMed  CAS  Google Scholar 

  126. Jensen A (1989) Die Zentralisation des fetalen Kreislaufs. Thieme, Stuttgart

    Google Scholar 

  127. Jensen A (1992) The role of the sympathetic nervous system in preventing perinatal brain damage. In: Künzel W (ed) Oxygen, basis of the regulation of vital functions in the fetus. Springer, Berlin Heidelberg New York, pp 77–107

    Google Scholar 

  128. Jensen A, Hanson MA (1995) Circulatory responses to acute asphyxia in intact and chemodenervated fetal sheep near term. Reprod Fertil Dev (in press)

    Google Scholar 

  129. Jensen A, Künzel W (1980) The difference between fetal transcutaneous PO2 and arterial PO2 during labour. Gynecol Obstet Invest 11:249–264

    PubMed  CAS  Google Scholar 

  130. Jensen A, Künzel W, Kastendieck E (1985) Repetitive reduction of uterine blood flow and its influence on fetal transcutaneous PO2 and cardiovascular variables. J Dev Physiol 7:75–87

    PubMed  CAS  Google Scholar 

  131. Jensen A, Bamford OS, Dawes GS, Hofmeyr G, Parkes MJ (1986) Changes in organ blood flow between high and low voltage electrocortical activity in fetal sheep. J Dev Physiol 8:187–194

    PubMed  CAS  Google Scholar 

  132. Jensen A, Hohmann M, Künzel W (1987) Redistribution of fetal circulation during repeated asphyxia in sheep: effects on skin blood flow, transcutaneous PO2, and plasma catecholamines. J Dev Physiol 9:41–55

    PubMed  CAS  Google Scholar 

  133. Jensen A, Künzel W, Hohmann M (1985) Dynamics of fetal organ blood flow redistribution and catecholamine release during acute asphyxia. In: Jones CT, Nathanielsz PW (eds) The physiological development of the fetus and newborn. Academic, London, pp 405–410

    Google Scholar 

  134. Jensen A, Künzel W, Kastendieck E (1987) Fetal sympathetic activity, transcutaneous PO2, and skin blood flow during repeated asphyxia in sheep. J Dev Physiol 9:337–346

    PubMed  CAS  Google Scholar 

  135. Jensen A, Hohmann M, Künzel W (1987) Dynamic changes in organ blood flow and oxygen consumption during acute asphyxia in fetal sheep. J Dev Physiol 9:543–559

    PubMed  CAS  Google Scholar 

  136. Jensen A, Gips H, Hohmann M, Künzel W (1988) Adrenal endocrine and circulatory responses to acute prolonged asphyxia in surviving and non-surviving fetal sheep near term. In: Künzel W, Jensen A (eds) The endocrine control of the fetus. Springer, Berlin Heidelberg New York, pp 64–79

    Google Scholar 

  137. Jensen A, Lang U (1988) Dynamics of circulatory centralization and release of vasoactive hormones during acute asphyxia in intact and chemically sympathectomized fetal sheep. In: Künzel W, Jensen A (eds) The endocrine control of the fetus. Springer, Berlin Heidelberg New York, pp 135–149

    Google Scholar 

  138. Jensen A, Lang U, Künzel W (1987) Microvascular dynamics during acute asphyxia in chronically prepared fetal sheep near term. Adv Exp Med Biol 220:127–131

    PubMed  CAS  Google Scholar 

  139. Jensen A, Roman C, Rudolph AM (1991) Effects of reducing uterine blood flow on fetal blood flow distribution and oxygen delivery. J Dev Physiol 15:309–323

    PubMed  CAS  Google Scholar 

  140. Jogee M, Myatt L, Elder MG (1983) Decreased prostacyclin production by placental cells in culture from pregnancies complicated by fetal growth retardation. Br J Obstet Gynaecol 90:247–250

    PubMed  CAS  Google Scholar 

  141. Johnson GN, Palahniuk RJ, Tweed WA, Jones MV, Wade JG (1979) Regional cerebral blood flow changes during severe fetal asphyxia produced by slow partial umbilical cord compression. Am J Obstet Gynecol 135:48–52

    PubMed  CAS  Google Scholar 

  142. Jones CT, Robinson RO (1975) Plasma catecholamines in foetal and adult sheep. J Physiol (Lond) 285:395–408

    Google Scholar 

  143. Jones CT (1977) The development of some metabolic responses to hypoxia in foetal sheep. J Physiol (Lond) 266:743–762

    Google Scholar 

  144. Jones CT, Boddy K, Robinson JS, Ratcliffe JG (1977) Developmental changes in the responses of the adrenal glands of the foetal sheep to endogenous adrenocorticotrophin as indicated by hormone responses to hypoxaemia. J Endocrinol 72:279–292

    PubMed  CAS  Google Scholar 

  145. Jones CT (1980) Circulating catecholamines in the fetus, their origin, actions and significance. In: Parves H, Parves S (eds) Biogenic amines in development. Elsevier North-Holland, Amsterdam, pp 63–86

    Google Scholar 

  146. Jones CT, Ritchie JWK (1983) The effects of adrenergic blockade on fetal response to hypoxia. J Dev Physiol 5:211–222

    PubMed  CAS  Google Scholar 

  147. Jones CT, Robinson JS (1983) Studies on experimental growth retardation in sheep. Plasma catecholamines in fetuses with small placenta. J Dev Physiol 5:77–87

    PubMed  CAS  Google Scholar 

  148. Jones CT (1985) Reprogramming of metabolic development by restriction of fetal growth. Biochem Soc Trans 13:89–91

    PubMed  CAS  Google Scholar 

  149. Jones CT, Rose JC, Kelly RT, Hardgrave BY (1985) Catecholamine responses in fetal lambs subjected to hemorrhage. Am J Obstet Gynecol 151:475–478

    PubMed  CAS  Google Scholar 

  150. Jones CT, Lafeber HN, Price DA, Parer JT (1987) Studies on the growth of the fetal guinea pig. Effects of reduction in uterine blood flow on the plasma sulphation-promoting activity and on the concentration of insuli-like growth factors-I and -II. J Dev Physiol 9:181–201

    PubMed  CAS  Google Scholar 

  151. Jones CT, Roebuck MM, Walker DW, Johnston BM (1988) The role of the adrenal medulla and peripheral sympathetic nerves in the physiological responses of the fetal sheep to hypoxia. J Dev Physiol 10:17–36

    PubMed  CAS  Google Scholar 

  152. Jones CT, Gu W, Harding JE, Price DA, Parer JT (1988) Studies on the growth of the fetal sheep. Effects of surgical reduction in placental size, or experimental manipulation of uterine blood flow on plasma sulphation promoting activity and on the concentration of insulin-like growth factors I and II. J Dev Physiol 10:179–189

    PubMed  CAS  Google Scholar 

  153. Jones MD, Sheldon RE, Peeters LL, Meschia G, Battaglia FC, Makowski EL (1977) Fetal cerebral oxygen consumption at different levels of oxygenation. J Appl Physiol 43:1080–1084

    PubMed  CAS  Google Scholar 

  154. Kelly RT, Rose JC, Meiss PJ, Hargrave BY, Morris M (1983) Vasopressin is important for restoring cardiovascular homeostasis in fetal lambs subjected to hemorrhage. Am J Obstet Gynecol 146:807–812

    PubMed  CAS  Google Scholar 

  155. Kikkawa Y, Kaibara M, Motoyama EK, Orzalesi MM, Cook CD (1971) Morphologic development of rabbit lung and its acceleration with cortisol. Am J Pathol 64:423–442

    PubMed  CAS  Google Scholar 

  156. Kitanaka T, Alonso JG, Gilbert RD, Siu BL, Clemons GK, Longo LD (1989) Fetal responses to long-term hypoxemia in sheep. Am J Physiol 245:R1348–1354

    Google Scholar 

  157. Kitterman JA, Liggins GC, Campos GA, Clements JA, Forster CS, Lee CH, Creasy RK (1981) Prepartum maturation of the lung in fetal sheep: relation to cortisol. J Appl Physiol 51:384–390

    PubMed  CAS  Google Scholar 

  158. Koos BJ, Kitanaka T, Matsuda K, Gilbert RD, Longo LD (1988) Fetal breathing adaption to prolonged hypoxaemia in sheep. J Dev Physiol 10:161–166

    PubMed  CAS  Google Scholar 

  159. Kotas RV, Avery ME (1971) Accelerated appearance of pulmonary surfactant in the fetal rabbit. J Appl Physiol 30:358–361

    PubMed  CAS  Google Scholar 

  160. Kotas RV, Farrel PM, Ulane RE, Chez RA (1977) Fetal rhesus monkey lung development: lobar differences and discordances between stability and Distensibility. J Appl Physiol 43:92–98

    PubMed  CAS  Google Scholar 

  161. Kotas RV, Fletcher BD, Torday JS, Avery ME (1971) Evidence of independent regulators of organ maturation in fetal rabbits. Pediatrics 47:57–64

    PubMed  CAS  Google Scholar 

  162. Künzel W, Kastendieck E, Böhme U, Feige A (1975) Uterine hemodynamics and fetal response to vena caval occlusion in sheep. J Perinat Med 3:260–268

    PubMed  Google Scholar 

  163. Künzel W, Mann LI, Bhakthavathsalan A, Airomlooi J, Liu M (1977) The effect of umbilical vein occlusion on fetal oxygenation, cardiovascular parameters, and fetal electroencephalogram. Am J Obstet Gynecol 128:201–208

    PubMed  Google Scholar 

  164. Künzel W, Moll W (1972) Uterine O2 consumption and blood flow of the pregnant uterus. Z Geburtsh Perinatol 176:108–117

    Google Scholar 

  165. Künzel W, Kastendieck E, Hohmann M (1983) Heart rate and blood pressure and metabolic changes in the sheep fetus following reduction of uterine blood flow. Gynecol Obstet Invest 15:300–317

    PubMed  Google Scholar 

  166. Lafeber H, Jones CT, Rolph T (1979) Some of the consequences in the intra-uterine growth retardation. In: Visser HKA (ed) Nutrition and growth of the fetus. Nijhoff, the Hague, pp 43–62

    Google Scholar 

  167. Lafeber HN, Rolph TP, Jones CT (1984) Studies on the growth of the fetal guinea pig. The effects of ligation of the uterine artery on organ growth and development. J Dev Physiol 6:441–459

    PubMed  CAS  Google Scholar 

  168. LaGamma EF, Itskovitz J, Rudolph AM (1982) Effects of naloxone on fetal circulatory responses to hypoxemia. Am J Obstet Gynecol 143:933–940

    PubMed  CAS  Google Scholar 

  169. Leffler CW, Tyler TL, Cassin S (1978) Effect of indomethacin on pulmonary vascular response to ventilation of fetal goats. Am J Physiol 234:H346–H351

    PubMed  CAS  Google Scholar 

  170. Leffler CW, Hessler JR (1979) Pulmonary and systemic vascular effects of exogenous prostaglandin I in fetal lambs. Eur J Pharmacol 54:37–42

    PubMed  CAS  Google Scholar 

  171. Levin DL, Rudolph AM, Heymann MA, Phibbs RH (1976) Morphological development of the pulmonary vascular bed in fetal lambs. Circulation 53:144–151

    PubMed  CAS  Google Scholar 

  172. Lewis AB, Heymann MA, Rudolph AM (1976) Gestational changes in pulmonary vascular responses in fetal lambs in utero. Cire Res 39:536–541

    CAS  Google Scholar 

  173. Lewis AB, Wolf WJ, Sischo W (1984) Fetal cardiovascular and catecholamine responses to hypoxemia after chemical sympathectomy. Pediatr Res 18:318–322

    PubMed  CAS  Google Scholar 

  174. Lewis AB, Wolf WJ, Sischo W (1984) Cardiovascular and catecholamine responses to successive episodes of hypoxemia in the fetus. Biol Neonate 45:105–111

    PubMed  CAS  Google Scholar 

  175. Lewis AB, Sischo W (1985) Cardiovascular and catecholamine responses to hypoxemia in chemically sympathectomized fetal lambs. Dev Pharmacol Ther 8:129–140

    PubMed  CAS  Google Scholar 

  176. Lewis PJ, Moncada S, O’Grady J (eds) (1983) Prostacyclin in pregnancy. Raven, New York

    Google Scholar 

  177. Liggins GC, Schellenberg JC (1988) Endocrine control of lung development. In: Künzel W, Jensen A (eds) The endocrine control of the fetus. Springer, Berlin Heidelberg New York, pp 236–245

    Google Scholar 

  178. Llanos AJ, Green JR, Creasy RK, Rudolph AM (1980) Increased heart rate response to parasympathetic and beta adrenergic blockade in growth retarded fetal lambs. Am J Obst Gynecol 136:808–813

    CAS  Google Scholar 

  179. Llanos AJ, Court D, Holbrook H, Block BS, Vega R, Parer JT (1983) Cardiovascular effects of naloxone (NLX) during asphyxia in fetal sheep. 30th annual meeting, Society for Gynecological Investigation, Washington DC, p300

    Google Scholar 

  180. Lotgering FK, Wallenburg HCS (1986) Hemodynamic effects of caval and uterine venous occlusion in pregnant sheep. Am J Obstet Gynecol 155:1164–1170

    PubMed  CAS  Google Scholar 

  181. Lou HC, Lassen NA, Tweed WA, Johnson G, Jones M, Palahniuk RJ (1979) Pressure passive cerebral blood flow and breakdown of the blood-brain barrier in experimental asphyxia. Acta Paediatr Scand 68:57–63

    PubMed  CAS  Google Scholar 

  182. MacDonald AA, Rose JC, Heymann MA, Rudolph AM (1980) Heart rate response of fetal and adult sheep to hemorrhage stress. Am J Physiol 239:H780–H793

    Google Scholar 

  183. Makowski EL, Schneider JM, Tsoulos NG, Colwill JR, Battaglia FC, Meschia G (1972) Cerebral blood flow, oxygen consumption and glucose utilization of fetal lambs in utero. Am J Obstet Gynecol 114:292–303

    PubMed  CAS  Google Scholar 

  184. Maloney JE, Adamson TM, Brodecky V, Dowling MH, Ritchie BC (1975) Modification of respirtory centre output in the unanesthetized fetal sheep “in utero”. J Appl Physiol 39:552–558

    PubMed  CAS  Google Scholar 

  185. Mann LI, Prichard JW, Symmes D (1970) EEG, ECG, and acid-base observations during acute fetal hypoxia. Am J Obstet Gynecol 106:39–51

    PubMed  CAS  Google Scholar 

  186. Martin CB (1985) Pharmacological aspects of fetal heart rate regulation during hypoxia. In: Künzel W (ed) Fetal heart rate monitoring. Springer, Berlin Heidelberg New York, pp 170–184

    Google Scholar 

  187. Martin CB, Murata Y, Petrie RH, Paret JT (1974) Respiratory movements in fetal rhesus monkeys. Am J Obstet Gynecol 119:939–948

    PubMed  Google Scholar 

  188. Martin CB, Voersmans TMG, Jongsma HW (1987) Effect of reducing uteroplacental blood flow on movements and on electrocortical activity of fetal sheep. Gynecol Obstet Invest 23:34–39

    PubMed  Google Scholar 

  189. Martin AA, Kapoor R, Scroop GC (1987b) Hormonal factors in the control of heart rate in normoxaemic and hypoxaemic fetal, neonatal and adult sheep. J Dev Physiol 9:465–480

    PubMed  CAS  Google Scholar 

  190. Maylie JG (1982) Excitation-contraction coupling in neonatal and adult myocardium of cat. Am J Physiol 242:H834–843

    PubMed  CAS  Google Scholar 

  191. Mellor D (1983) Nutritional and placental determinants of foetal growth rate in sheep and consequences for the newborn lamb. Br Vet J 139:307–324

    PubMed  CAS  Google Scholar 

  192. Meschia G, Cotter JR, Breathnack CS, Barron DH (1965) The hemoglobin, oxygen, carbon dioxide concentrations in the umbilical bloods of sheep and goats sampled via indwelling plastic catheters. Q J Exp Physiol 26:185–195

    Google Scholar 

  193. Mitchell MD, Bibby JG, Hicks BR (1978) Possible role for prostacyclin in human parturition. Prostagladins 16:931–937

    CAS  Google Scholar 

  194. Moore KL (1988) The developing human: clinically oriented embryology, 4th edn. Saunders, Philadelphia

    Google Scholar 

  195. Mott JC, Walker DW (1983) Neural and endocrine regulation of circulation in the fetus and newborn. In: Shepherd JP, Abboud FM (eds) Handbook of physiology: the cardiovascular system III: peripheral circulation and organ blood flow, part 2. American Physiological Society, Bethesda, pp 837–883

    Google Scholar 

  196. Myers RE (1979) Lactic acid accumulation as cause of brain edema and cerebral necrosis resulting from oxygen deprivation. In: Korobkin R, Guilleminault C (eds) Advances in perinatal neurology. Spectrum, New York, pp 85–114

    Google Scholar 

  197. Myers RE (1977) Experimental models of perinatal brain damage: relevance to human pathology. In: Gluck L (ed) Intrauterine asphyxia and the developing fetal brain. Year Book Publishers, New York, pp 37–97

    Google Scholar 

  198. Nathanielz PW, Bailey A, Poore ER, Thorburn GD, Harding R (1980) The relationship between myometrial activity and sleep state and breathing in fetal sheep throughout the last third of gestation. Am J Obstet Gynecol 138:653–659

    Google Scholar 

  199. Owens JA, Falconer J, Robinson JS (1987) Effect of restriction of placental growth on oxygen delivery to and consumption by the pregnant uterus and fetus. J Dev Physiol 9:137–150

    PubMed  CAS  Google Scholar 

  200. Owens JA, Falconer J, Robinson JS (1987) Effect of restriction of placental growth on fetal and utero-placental metabolism. J Dev Physiol 9:225–238

    PubMed  CAS  Google Scholar 

  201. Papile LA, Rudolph AM, Heymann MA (1985) Auto-regulation of cerebral blood flow in the preterm fetal lamb. Pediatr Res 19(2):159–161

    PubMed  CAS  Google Scholar 

  202. Parer JT, De Lannoy CW, Hoversland AS, Metcalfe J (1968) Effect of decreased uterine blood flow on uterine oxygen consumption in pregnant macaques. Am J Obstet Gynecol 100:813–820

    PubMed  CAS  Google Scholar 

  203. Parer JT, Krueger TR, Harris JL, Reuss L (1978) Autonomic influences on umbilical circulation during hypoxia in fetal sheep. Abstracts of scientific papers. Quilligan Symposium, San Diego

    Google Scholar 

  204. Parer JT (1980) The effect of acute maternal hypoxia on fetal oxygenation and the umbilical circulation in the sheep. Eur J Obstet Gynecol Reprod Biol 10:125–136

    PubMed  CAS  Google Scholar 

  205. Parer JT (1983) The influence of beta-adrenergic activity on fetal heart rate and the umbilical circulation during hypoxia in fetal sheep. Am J Obstet Gynecol 147:592–597

    PubMed  CAS  Google Scholar 

  206. Parisi VM, Walsh SW (1989) Fetoplacental vascular responses to prostacyclin after thromboxane-induced vasoconstriction. Am J Obstet Gynecol 160:502–507

    PubMed  CAS  Google Scholar 

  207. Paulick RP, Meyers RL, Rudolph CD, Rudolph AM (1990) Venous and hepatic vascular responses to indomethacin and prostaglandin E1in the fetal lamb. Am J Obstet Gynecol 163:1357–1363

    PubMed  CAS  Google Scholar 

  208. Paulick RP, Kastendieck E, Wernze H (1985) Catecholamines in arterial and venous umbilical blood: placental extraction, correlation with fetal hypoxia, and transcutaneous partial pressure. J Perinat Med 13:31–42

    PubMed  CAS  Google Scholar 

  209. Peeters LLH, Sheldon RE, Jones MD Jr, Makowski EL, Meschia G (1979) Blood flow to fetal organs as a function of arterial oxygen content. Am J Obstet Gynecol 135:637–646

    PubMed  CAS  Google Scholar 

  210. Purves MJ, James IM (1969) Observations on the control of cerebral blood flow in the sheep fetus and newborn lamb. Circ Res 25:651–667

    PubMed  CAS  Google Scholar 

  211. Rankin JHG, Meschia G, Makowski EL, Battaglia FC (1971) Relationship between uterine and umbilical venous PO2 in sheep. Am J Physiol 220:1688–1692

    PubMed  CAS  Google Scholar 

  212. Reid LM (1979) The pulmonary circulation: remodelling in growth and disease. Am Rev Respir Dis 119:531–546

    PubMed  CAS  Google Scholar 

  213. Reid LM (1982) The development of the pulmonary circulation. In: Peckham GJ, Heymann MA (eds) Cardiovascular sequelae of asphyxia in the newborn. Report of the 83rd Ross conference on pediatric research. Ross Laboratories, Columbus, Ohio, pp 2–10

    Google Scholar 

  214. Reid DL, Jensen A, Phernetton TM, Rankin JHG (1990) Relationship between plasma catecholamine levels and electrocortical state in the mature fetal lamb. J Dev Physiol 13:75–79

    PubMed  CAS  Google Scholar 

  215. Reller MD, Morton MJ, Thornburg KL (1986) Right ventricular function in the hypoxaemic fetal sheep. J Dev Physiol 8:159–166

    PubMed  CAS  Google Scholar 

  216. Reller MD, Morton MJ, Giraud GD, Reid DL, Thornburg KL (1989) The effect of acute hypoxaemia on ventricular function during beta-adrenergic and cholinergic blockade in the fetal sheep. J Dev Physiol 11:263–269

    PubMed  CAS  Google Scholar 

  217. Reuss ML, Rudolph AM (1980) Distribution and recirculation of umbilical and systemic venous blood flow in fetal lambs during hypoxia. J Dev Physiol 2:71–84

    PubMed  CAS  Google Scholar 

  218. Reuss ML, Parer JT, Harris JL, Krueger TR (1982) Hemodynamic effects of alpha-adrenergic blockade during hypoxia in fetal sheep. Am J Obstet Gynecol 142:410–415

    PubMed  CAS  Google Scholar 

  219. Richardson BS, Hohimer AR, Bissonette JM, Machida CM (1983) Cerebral metabolism in hypoglycemic and hyperglycemic fetal lambs. Am J Physiol 245:R730–R736

    PubMed  CAS  Google Scholar 

  220. Richardson BS, Rurak D, Patrick JE, Homan J, Carmichael L (1989) Cerebral oxidative metabolism during sustained hypoxemia in fetal sheep. J Dev Physiol 11:37–43

    PubMed  CAS  Google Scholar 

  221. Robbilard JE, Weitzman RE, Fisher DA, Smith FG Jr (1979) The dynamics of vasopressin release and blood volume regulation during fetal hemorrhage in the lamb fetus. Pediatr Res 13:606–610

    Google Scholar 

  222. Robbilard JE, Weitzman RE, Burmeister L, Smith FG Jr (1981) Developmental aspects of the renal response to hypoxaemia in the lamb fetus. Circ Res 48:128–138

    Google Scholar 

  223. Robbilard JE, Gomez RA, Meernik JG, Kuehl WD, Van Orden D (1982) Role of angiotensin II on the adrenal and vascular responses to hemorrhage during development in fetal lambs. Circ Res 50:645–650

    Google Scholar 

  224. Robillard JE, Ayres NA, Gomez RA, Nakamura KT, Smith JR, FG (1984) Factors controlling aldosterone secretion during hypoxemia in fetal lambs. Pediatr Res 18:607–611

    PubMed  CAS  Google Scholar 

  225. Robinson JS, Kingston EJ, Jones CT, Thornburn GD (1979) Studies on experimental growth retardation in sheep. The effect of removal of endometrial caruncles on fetal size and metabolism. J Dev Physiol 1:379–398

    PubMed  CAS  Google Scholar 

  226. Robinson JS, Jones CT, Kingston EJ (1983) Studies on experimental growth retardation in sheep. The effects of maternal hypoxaemia. J Dev Physiol 5:89–100

    PubMed  CAS  Google Scholar 

  227. Robinson JS, Falconer J, Owens JA (1985) Intrauterine growth retardation: clinical and experimental. Acta Paediatr Scand [Suppl] 319:135–142

    CAS  Google Scholar 

  228. Rose JC, Morris M, Meis PJ (1981) Hemorrhage in newborn lambs: effects on arterial blood pressure, ACTH, cortisol, and vasopressin. Am J Physiol 240:E585–E590

    PubMed  CAS  Google Scholar 

  229. Rosén KG, Isaksson O (1976) Alteration in fetal heart rate and ECG correlated to glycogen, creatinephosphate and ATP levels during graded hypoxia. Biol Neonate 30:17–24

    Google Scholar 

  230. Rosenthal M, Lamanna JC, Jöbsis FF, Levasseur JE, Kontos HA, Patterson JL (1976) Effects of respiratory gases on cytochrome a in intact cerebral cortex: is there a critical PO2? Brain Res 108:143–153

    PubMed  CAS  Google Scholar 

  231. Rudolph AM, Heymann MA (1967) Circulation of the fetus in utero: methods for studying distribution of blood flow, cardiac output and organ blood flow. Circ Res 21:163–184

    PubMed  CAS  Google Scholar 

  232. Rudolph AM, Heymann MA (1970) Circulatory changes during growth in the fetal lamb. Circ Res 26:289–299

    PubMed  CAS  Google Scholar 

  233. Rudolph AM, Heymann MA (1973) Control of the fetal circulation. In: Proceedings of the Sir Joseph Barcroft Centenary Symposium: foetal and neonatal physiology. Cambridge University Press, Cambridge, pp 89–111

    Google Scholar 

  234. Rudolph AM, Heymann MA (1976) Cardiac output in the fetal lamb: the effects of spontaneous und induced changes of heart rate on right and left ventricular output. Am J Obstet Gynecol 124:183–192

    PubMed  CAS  Google Scholar 

  235. Rudolph AM (1979) Fetal and neonatal pulmonary circulation. Annu Rev Physiol 41:383–395

    PubMed  CAS  Google Scholar 

  236. Rudolph AM, Heymann MA, Lewis AB (1977) Physiology and pharmacology of the pulmonary circulation in the fetus and newborn. In: Hodson WA (ed) Lung biology in health and disease. Development of the lung. Dekker, New York, pp 497–523

    Google Scholar 

  237. Rudolph AM, Itskovitz J, Iwamoto H, Reuss L, Heymann MA (1981) Fetal cardiovascular responses to stress. Semin Perinatol 5:109–121

    PubMed  CAS  Google Scholar 

  238. Rudolph AM (1983) Hepatic and ductus venosus blood flows during fetal life. Hepatology 3:254

    PubMed  CAS  Google Scholar 

  239. Rudolph AM (1984) The fetal circulation and its response to stress. J Dev Physiol 6:11–19

    PubMed  CAS  Google Scholar 

  240. Rudolph AM (1985) Distribution and regulation of blood flow in the fetal and neonatal lamb. Circ Res 57:811–821

    PubMed  CAS  Google Scholar 

  241. Rudolph CD, Roman C, Rudolph AM (1989) Effect of acute umbilical cord compression on hepatic carbohydreate metabolism in the fetal lamb. Pediatr Res 25(3):228–233

    PubMed  CAS  Google Scholar 

  242. Rurak DW (1978) Plasma vasopressin levels during hypoxaemia and the cardiovascular effects of exogenous vasopressin in foetal and adult sheep. J Physiol (Lond) 277:341–357

    CAS  Google Scholar 

  243. Schellenberg J-C (1986) The development of connective tissue and its role in pulmonary mechanics. In: Johnston BM, Gluckman PD (eds) Respiratory control and lung development in the fetus and newborn. Perinatology Press, Ithaca, pp 3–62

    Google Scholar 

  244. Schulze BS (1871) Der Scheintod Neugeborener. Letter to Dr C Ludwig, Mauke’s Verlag (Hermann Dufft), Jena

    Google Scholar 

  245. Scroop GC, Marker JD, Stankewytsch-Janusch B, Seamark RF (1986) Angiotensin I and II and the assessment of baroreceptor function in fetal and neonatal sheep. J Dev Physiol 8:123–137

    PubMed  CAS  Google Scholar 

  246. Shelley H (1960) Blood sugars and tissue carbohydrate in foetal and infant lambs and rhesus monkeys. J Physiol (Lond) 153:527–552

    CAS  Google Scholar 

  247. Siesjö BK (1978) Brain energy metabolism. Wiley, Chichester

    Google Scholar 

  248. Siesjö BK, Bengtsson F (1988) Calcium, calcium antagonists, and ischemic cell death in the brain. In: Krieglstein J (ed) Pharmacology of cerebral ischemia. Wissenschaftliche Verlagsgesellschaft, Stuttgart, pp 23–29

    Google Scholar 

  249. Skillman CA, Plessinger MA, Woods JR, Clark KE (1985) Effect of graded reductions in uteroplacental blood flow on the fetal lamb. Am J Physiol 249:H1098–H1105

    PubMed  CAS  Google Scholar 

  250. Skillman CA, Clark KE (1987) Fetal beta-endorphin levels in response to reductions in uterine blood flow. Biol Neonate 51:217–223

    PubMed  CAS  Google Scholar 

  251. Smith RW, Morris JA, Assali NS (1964) Effects of chemical mediators on the pulmonary and ductus arteriosus circulation in the fetal lamb. Am J Obstet Gynecol 89:252–260

    PubMed  CAS  Google Scholar 

  252. Stark RI, Wardlaw SL, Daniel SS, Husain MK, Sanocka UM, James LS, Vande Wiele RL (1982) Vasopressin secretion induced by hypoxia in sheep: developmental changes and relationship to beta-endorphin release. Am J Obstet Gynecol 143:204–215

    PubMed  CAS  Google Scholar 

  253. Stark RI, Daniel SS, Husain MK, Sanocka UM, Zubrow AB, James LS (1984) Vasopressin concentration in the amniotic fluid as an index of fetal hypoxia: mechanism of release in sheep. Pediatr Res 18:552–558

    PubMed  CAS  Google Scholar 

  254. Stein GW (1783) Theoretische Anleitung zur Geburtshülfe. Johann Jacob Cramer, Cassel

    Google Scholar 

  255. Taeusch HW Jr, Wyzogrodski I, Wang NS, Avery ME (1974) Pulmonary pressure-volume relationships in premature fetal and newborn rabbits. J Appl Physiol 37:809–813

    PubMed  Google Scholar 

  256. Thornburg KL, Morton MJ (1983) Filling and arterial pressures as determinants of RV stroke volume in the sheep fetus. Am J Physiol 244:H656–H663

    PubMed  CAS  Google Scholar 

  257. Toubas PL, Silverman NH, Heymann MA, Rudolph AM (1981) Cardiovascular effects of acute hemorrhage in fetal lambs. Am J Physiol 240:H45–H48

    PubMed  CAS  Google Scholar 

  258. Towell ME, Figueroa J, Markovitz S, Elias B, Nathanielsz P (1987) The effect of mild hypoxemia maintained for twenty-four hours on maternal and fetal glucose, lactate, cortisol, and arginine vasopressin in pregnant sheep at 122 to 139 days’ gestation. Am J Obstet Gynecol 157:1550–1557

    PubMed  CAS  Google Scholar 

  259. Trudinger BJ, Stevens D, Connelly A, Hales JRS, Alexander G, Bradley L, Fawcett A, Thompson RS (1987) Umbilical artery flow velocity waveforms and placental resistance: the effects of embolization of the umbilical circulation. Am J Obstet Gynecol 157:1443–1448

    PubMed  CAS  Google Scholar 

  260. Tweed WA, Cote J, Pash M, Lou H (1983) Arterial oxygenation determines autoregulation of cerebral blood flow in the fetal lamb. Pediatr Res 17:246–249

    PubMed  CAS  Google Scholar 

  261. Tyler TL, Leffler CW, Cassin S (1977) Effects of prostaglandin precursors, prostaglandins, and prostaglandin metabolites on pulmonary circulation of perinatal goats. Chest 71S:271S–273S

    Google Scholar 

  262. Von Ahlfeld F (1888) Über bisher noch nicht beschriebene intrauterine Bewegungen des Kindes. Breitkopf und Hartel, Leipzig, pp 203–210 (Verhandlungen der Deutschen Gesellschaft für Gynäkologie)

    Google Scholar 

  263. Von Ahlfeld F (1905) Die intrauterine Fähigkeit der Thorax-und Zwerchfellmuskulatur. Intrauterine Atmung. Monatsschr Geburtsh Gynakol 21:143–169

    Google Scholar 

  264. Wagner KR, Ting P, Westfall MV, Yamaguchi S, Bacher JD, Myers RE (1986) Brain metabolic correlates of hypoxia-ischemic cerebral necrosis in mid-gestational sheep fetuses: significance of hypotension. J Cereb Blood Flow Metab 6:425–434

    PubMed  CAS  Google Scholar 

  265. Walker AM, Cannata JP, Dowling MH, Ritchie BC, Maloney JE (1978) Sympathetic and parasympathetic control of heart rate in unanesthetized fetal and newborn lambs. Biol Neonate 33:135–143

    PubMed  CAS  Google Scholar 

  266. Walker AM, Cannata JP, Dowling MH, Ritchie BC, Maloney JE (1979) Age-dependent pattern of autonomic heart rate control during hypoxia in fetal and newborn lambs. Biol Neonate 35:198–208

    PubMed  CAS  Google Scholar 

  267. Walker AM, de Preu ND, Horne RSC, Berger PJ (1990) Anatomic control of heart rate differs with electrocortical activity and chronic hypoxaemia in fetal lambs. Biol Neonate 14:43–48

    CAS  Google Scholar 

  268. Wardlaw SL, Stark RI, Daniels S, Frantz AG (1981) Effects of hypoxia on beta-endorphin and beta-lipotropin release in fetal, newborn and maternal sheep. Endocrinology 108:1710–1715

    PubMed  CAS  Google Scholar 

  269. Weismann DN, Robillard JE (1988) Renal hemodynamic responses to hypoxemia during development: relationships to circulating vasoactive substances. Pediatr Res 23:155–162

    PubMed  CAS  Google Scholar 

  270. Wigglesworth JS (1964) Experimental growth retardation in the foetal rat. J Pathol Bacteriol 88:1–13

    PubMed  CAS  Google Scholar 

  271. Wilkening RB, Anderson S, Martensson L, Meschia G (1982) Placental transfer as a function of uterine blood flow. Am J Physiol 242:H429–H436

    PubMed  CAS  Google Scholar 

  272. Wilkening RB, Meschia G (1983) Fetal oxygen uptake, oxygenation, and acid-base balance as a function of uterine blood flow. Am J Physiol 244:H749–H755

    PubMed  CAS  Google Scholar 

  273. Wilson DF, Owen ChS, Erecinska M (1979) Quantitative dependence of mitochondrial oxidative phosphorylation on oxygen concentration: a mathematical model. Arch Biochem Biophys 195:494–504

    PubMed  CAS  Google Scholar 

  274. Wlodek ME, Challis JRG, Richardson B, Patrick J (1989) The effects of hypoxaemia with progressive acidaemia on fetal renal function in sheep. J Dev Physiol 12:323–328

    PubMed  CAS  Google Scholar 

  275. Yaffe H, Parer JT, Block BS, Llanos AJ (1987) Cardiorespiratory responses to graded reductions of uterine blood flow in the sheep fetus. J Dev Physiol 9:325–336

    PubMed  CAS  Google Scholar 

  276. Zink J, Van Petten GR (1980) The effects of norepinephrine on blood flow through the fetal liver and ductus venosus. Am J Obstet Gynecol 137:71–77

    PubMed  CAS  Google Scholar 

  277. Zweifel P (1876) Die Respiration des Fötus. Arch Gynakol 9:293–305

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jensen, A. (1996). Cardiovascular and Respiratory Systems of the Fetus. In: Greger, R., Windhorst, U. (eds) Comprehensive Human Physiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60946-6_119

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60946-6_119

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64619-5

  • Online ISBN: 978-3-642-60946-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics