Skip to main content

Gene Therapy: A New Perspective for the Treatment of Malignant Melanoma

  • Chapter
Strategies for Immunointerventions in Dermatology
  • 82 Accesses

Abstract

Over the last 15 years various methods for delivering genes into mammalian cells have been developed. A great number of possible therapeutic applications have been envisaged. Medical specialists and the public have followed these recent developments with great interest. It is generally admitted that no attempts to introduce germline genetic alterations should be made. Therefore, this paper will focus on somatic gene therapy, in which genetic modifications are applied to somatic cells of an individual patient. The expected clinical benefit from genetic modification of somatic cells needs to be assessed carefully, and its potential risks have to be taken in consideration. Regardless of the technological strategy chosen by the scientist/physician, nonpropagat in g and nontrans- missive gene transfer delivery systems are mandatory at the present time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alijagic S, Moller P, Jurgovsky K, Czarnetzki BM, Schadendorf D (1993) Transfection of dendritic cells generated from peripheral blood with human tyrosinase induced specific T-cell activation. Eur J Immunol 25:3100–3107.

    Article  Google Scholar 

  2. Becker JC, Brabletz T, Czerny C, Termeer C, Brocker EB (1993) Tumor escape mechanisms from immunosurveillance: induction of unresponsiveness in a specific MHC-restricted CD4+ human T cell clone by the autologous MHC class 11+ melanoma. Int Immunol 5:1501–1508.

    Article  PubMed  CAS  Google Scholar 

  3. Becker JC, Czerny C, Brocker EB (1994) Maintenance of clonal anergv by endogenously produced IL-10. Int Immunol 6:1605–1612.

    Article  PubMed  CAS  Google Scholar 

  4. Bystryn JC (1989) Immunosurveillance and melanoma. J Invest Dermatol 92:S318–320.

    Article  Google Scholar 

  5. Chen Q, Daniel V, Maher DW, Hersey P (1994) Production of II 10 bv melanoma cells: examination of its role in immunosuppression mediated by melanoma. Int I Cancer 56:755–760.

    Article  CAS  Google Scholar 

  6. Culver KW (1995) The June 1995 RAC meeting. Gene Ther Newslett 12:1–2.

    Google Scholar 

  7. Culver KW (1996) Measuring success in clinical gene therapy research. Mol Med Today 6:234–236.

    Article  Google Scholar 

  8. Denfeld RW, Dietrich A, Wuttig C, Tanczos E, Weiss JM, Vanscheidt W, Schöpf E, Simon JC (1995) In situ expression of B7 and CD28 receptor families in human malignant melanoma: relevance for T-cell-mediated anti-tumor immunity. Int J Cancer 62:259–265.

    Article  PubMed  CAS  Google Scholar 

  9. Descamps V, Duffour M-T, Mathieu MC, Fernandez N, Cordier L, Abina MA, Kremer E, Perricaudet M, Haddada H (1996) Strategies for cancer gene therapy using adenoviral vectors. J Mol Med 74:183–189.

    Article  PubMed  CAS  Google Scholar 

  10. de Waal Malefyt R, Yssel H, de Vries JE (1993) Direct effects of IL-10 on subsets of human CD4+ T cell clones and resting T cells. Specific inhibition of IL-2 production and proliferation. J Immunol 150:4754–4765.

    Google Scholar 

  11. Döhring C, Angman L, Spagnoli G, Lanzavecchia A (1994) T-helper- and accessory-cell-independent cytotoxic responses to human tumor cells transfected with a B7 retroviral vector. Int J Cancer 57:754–759.

    Article  PubMed  Google Scholar 

  12. Donahue RE, Kessler SW, Bodine D, McDonagh K, Dunbar C, Goodman S, Agrcola B, Byrne E, Raffeid M, Moen R, Bacher J, Zsebo KM, Nienhuis AW (1992) Helper virus induced T cell lymphoma in nonhuman primates after retroviral mediated gene transfer. J Exp Med 176:1125–1135.

    Article  PubMed  CAS  Google Scholar 

  13. Dummer R, Welters H, Keilholz U, Tilgen W, Burg G (1990) Interleukin 2: immunologischer Hintergrund und Anwendung in der Tumortherapie. Hautarzt 41:53–55.

    PubMed  CAS  Google Scholar 

  14. Dummer R, Schafer E, Eilles C, Borner W, Burg G (1991) Lymphokine-activated killer-cell traffic in metastatic melanoma. Lancet 338:456–457.

    Article  PubMed  CAS  Google Scholar 

  15. Dummer R, Becker JC, Eilles C, Schafer E, Borner W, Burg G (1993) T cells migrate to tumour sites after extracorporeal interleukin 2 stimulation and reinfusion in a patient with metastatic melanoma. Br J Dermatol 128:399–403.

    Article  PubMed  CAS  Google Scholar 

  16. Fenton RT, Sznol M, Luster DG, Taub DD, Longo DL (1995) A phase I trial of B7-transfected parental lethally irradiated allogeneic melanoma cell lines to induce cell-mediated immunity against tumor-associated antigen presented by HLA-A2 or HLA-A1 in patients with stage IV melanoma NCI protocol T93–0161 BRMP protocol 9401. Hum Gene Ther 6:87–106.

    Article  PubMed  CAS  Google Scholar 

  17. Freeman GJ, Gray GS, Gimmi CD, Lombard DB, Zhou LJ, White M, Fingeroth JD, Gribben JG, Nadler LM (1991) Structure, expression, and T cell costimulatory activity of the murine homologue of the human B lymphocyte activation antigen B7. J Exp Med 174:625–631.

    Article  PubMed  CAS  Google Scholar 

  18. Freeman GJ, Gribben JG, Boussiotis VA, Ng JW, Restivo VJ, Lombard LA, Gray GS, Nadler LM (1993) Cloning of B7–2: a CTLA-4 counter-receptor that costimulates human T cell proliferation. Science 262:909–911.

    Article  PubMed  CAS  Google Scholar 

  19. Freeman GJ, Boussiotis VA, Anumanthan A, Bernstein GM, Ke XY, Rennert PD, Gray GS, Gribben JG, Nadler LM (1995) B7–1 and B7–2 do not deliver identical costimulatory signals, since B7–2 but not B7–1 preferentially costimulates the initial production of IL-4. Immunity 2:523–532.

    Article  PubMed  CAS  Google Scholar 

  20. Friedmann T (1996) Human gene therapy - an immature genie, but certainly out of the bottle. Nature Med 2:144–147.

    Article  PubMed  CAS  Google Scholar 

  21. Gilboa E, Lyerly HK (1994) Specific active immunotherapy of cancer using genetically modified tumor vaccines. Biol Ther Cancer Updates 4 (6):1–16.

    Google Scholar 

  22. Grabbe S, Beissert S, Schwarz T, Granstein RD (1995) Dendritic cells as initiators of tumor immune responses: a possible strategy for immunotherapy? Immunol Today 16:117–121.

    Article  PubMed  CAS  Google Scholar 

  23. Guinan EC, Gribben JG, Boussiotis VA, Freeman GJ, Nadler LM (1994) Pivotal role of the B7:CD28 pathway in transplantation tolerance and tumor immunity. Blood 84:3261–3282.

    PubMed  CAS  Google Scholar 

  24. Günzburg WH, Salmons B (1995) Virus vector design in gene therapy. Mol Med To- day 1:410–417

    Article  Google Scholar 

  25. Hengge UR, Chan EF, Foster RA, Walker PS, Vogel JC (1995) Cytokine gene expression in epidermis with biological effects following injection of naked DNA. Nature Genet 10:161–166

    Article  PubMed  CAS  Google Scholar 

  26. Howard M, O’Garra A (1992) Biological properties of interleukin 10. Immunol Today 13: 198–200.

    Article  PubMed  CAS  Google Scholar 

  27. Itaya T, Yamagiwa S, Okada F (1987) Xenogenization of a mouse lung carcinoma (3LL) by transfection with an allogeneic class I major histocompatibility complex gene (H-2Ld). Cancer Res 47:3136–3141.

    PubMed  CAS  Google Scholar 

  28. Lanzavecchia A (1993) Identifying strategies for immune intervention. Science 260:937–944.

    Article  PubMed  CAS  Google Scholar 

  29. Ledley FD (1995) Nonviral gene therapy: the promise of genes as pharmaceutical products. Human Gene Ther 6:1129–1144.

    Article  CAS  Google Scholar 

  30. Li Y, McGowan P, Hellstrom I, Hellstrom KE, Chen L (1994) Costimulation of tumor-reactive CD4+ and CD8+ T34S lymphocytes by B7, a natural ligand for CD28, can be used to treat established mouse melanoma, J Immunol 153:421–428.

    PubMed  CAS  Google Scholar 

  31. Maeurer MJ, Storkus WJ, Kirkwood JM, Lotze MT (1996) New treatment options for patients with melanoma: review of melanoma-derived T-cell epitope-based peptide vaccines. Melanoma Res 6:11–24.

    Article  PubMed  CAS  Google Scholar 

  32. Matsuda M,Salazar F, Petersson M, Masucci G, Hansson J, Pisa P, Zhang QJ, Masucci MG, Kiessling R (1994) Interleukin 10 pretreatment protects target cells from tumor- and allo-spe- cific cytotoxic T cells and downregulates HLA class I expression, J Exp Med 180:2371–2376

    Article  PubMed  CAS  Google Scholar 

  33. Mattei S, Colombo MP, Melani C, Silvani A, Parmiani G, Herlyn M (1994) Expression of cytokine/growth factors and their receptors in human melanoma and melanocytes. Int J Cancer 56:853–857.

    Article  PubMed  CAS  Google Scholar 

  34. Miller N, Vile R (1995) Targeted vectors for gene therapy. FASEB J 9:190–199.

    PubMed  CAS  Google Scholar 

  35. Mitchell MS (1996) Immunotherapy of melanoma. I Invest Dermatol Symp Proc 1:215–218.

    CAS  Google Scholar 

  36. Nabel GJ, Nabel EG, Yang ZY, Fox BA, Plautz GE, Gao X, Huang I, Shu S, Gordon D, Chang AE (1993) Direct gene transfer with DNA liposome complexes in melanoma: expression, biologic activity, and lack of toxicity in humans. Proc Natl Acad Sci USA 90:11307–11311.

    Article  PubMed  CAS  Google Scholar 

  37. Old LJ (1981) Cancer immunology: the search for specificity - GHA Clowes Memorial Lecture. Cancer Res 41:365.

    Google Scholar 

  38. Pan Z-K, Ikonomidis G, Pardoll D, Paterson Y (1995) Regression ot established tumors in mice mediated by the oral admnistration of a recombinant Listeria monocytogenes vaccine. Cancer Res 55:4776–4779.

    PubMed  CAS  Google Scholar 

  39. Pardoll DM, Beckerleg AM (1995) Exposing the immunology of naked DN A vaccines. Immunity 3:165–169.

    Article  PubMed  CAS  Google Scholar 

  40. Parmiani G, Colombo MP (1995) Somatic gene therapy of human melanoma: preclinical studies and early clinical trials. Melanoma Res 5:295–301.

    Article  PubMed  CAS  Google Scholar 

  41. Pockaj BA, Sherry RM, Wei JP, Yannelli JR, Carter CS, Leitman SF, Carasquillo I A, Steinberg SM, Rosenberg SA, Yang JC (1994) Localization ot 111 indium-labeled tumor infiltrating lymphocytes to tumor in patients receiving adoptive immunotherapy. Augmentation with cyclophosphamide and correlation with response. Cancer 73:1731–1737.

    CAS  Google Scholar 

  42. Scanlon KJ, Ohta Y, Ishida H, Kijima H, Ohkawa I, Kaminski A, Tsai J, Horng G, Kashani-Sabet M (1995) Oligonucieotide-mediated modulation of mammalian gene expression. FASEB J 9:1288–1296.

    PubMed  CAS  Google Scholar 

  43. Schadendorf D (1997) Cytokines, autologous ceil immunostimulatory and gene therapy for cancer treatment. In: Bos JD (ed) Skin immune system, 2nd edn. (in press).

    Google Scholar 

  44. Shalaby WSW (1995) Development of oral vaccines to stimulate mucosal and systemic immunity: barriers and novel strategies. Clin Immunol Immunopathol 74 127–134.

    Article  PubMed  CAS  Google Scholar 

  45. Sizemore DR, Branstrom AA„ Sadoff JC (1995) Attenuated Shigella as a DNA vehicle for DNA-mediated immunization. Science 270:299–302.

    Article  PubMed  CAS  Google Scholar 

  46. Sule-Suso J, Arienti F, Melani C. Colombo MP, Parmiani G (1995)A B7–1-transfected human melanoma line stimulates proliferation and cytotoxicity of autologous and allogeneic lymphocytes. Eur J Immunol 2737–2742

    Google Scholar 

  47. Townsend SE, Allison JP (1993) Tumor rejection alter direct costimulation of CD8+ T cells by B7-transfected melanoma cells Science 259:368–370

    Article  PubMed  CAS  Google Scholar 

  48. Vile RG, Hart IR (1993) Use of tissue specific expression of the herpes simplex virus thymidine kinase gene to inhibit growth of established murine melanomas following direct intratumoral injection of DNA. Cancer Res 53:3860–3864.

    PubMed  CAS  Google Scholar 

  49. Viret C Gervois N, Guilloux Y, LeDrean E, Jotereau F (1995) T cell activation by antigens on human melanoma cells o-stimulation bv B7 1 is neither sufficient nor necessary to stimulate IL-2 secretion by melanoma- specific 1 tell clones in vitro. Int Immunol 7:1535–1543.

    Article  PubMed  CAS  Google Scholar 

  50. Wagner RW (1994) Gene inhibition using antisense oligodeoxynucleotides. Nature 372:333–335.

    Article  PubMed  CAS  Google Scholar 

  51. Zhang WW (1996) Antisense oncogene and tumor suppressor gene therapy of cancer. I Mol Med 74:191–204.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schadendorf, D., Dummet, R. (1997). Gene Therapy: A New Perspective for the Treatment of Malignant Melanoma. In: Burg, G., Dummer, R.G. (eds) Strategies for Immunointerventions in Dermatology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60752-3_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60752-3_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64539-6

  • Online ISBN: 978-3-642-60752-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics