Summary
New representation results for three families of regular languages are stated, using a special kind of shuffle operation, namely the synchronized shuffle. First, it is proved that the family of regular star languages is the smallest family containing the language (a + bc)* and closed under synchronized shuffle and length preserving morphism. The second representation result states that the family of ε-free regular languages is the smallest family containing the language (a + bc)*d and closed under synchronized shuffle, union and length preserving morphism. At last, it is proved that Reg is the smallest family containing the two languages (a+ bb)* and a+(ab)+, closed under synchronized shuffle, union and length preserving morphism.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Culik II K., Fich F.E. and Salomaa A. (1982) A homomorphic characterization of regular languages. Discrete Applied Mathematics 4, 149–152.
De Simone R. (1984) Langages infinitaires et produit de mixage. Theoretical Computer Science 31, 83–100.
Duboc C. (1986) Commutation dans les monoïdes libres: Un cadre théorique pour l’étude du parallélisme. Thèse de doctorat. Université de Rouen.
Karhumaki J., Linna M. (1983) A note on morphic characterization of languages. Discrete Applied Mathematics 5, 243–246.
Kimura T. (1976) An algebraic system for process structuring and interprocess communication. 8th ACM SIGACTS Symposium on Theory of Computing. 92–100.
Latteux M., Leguy J. (1983) On the composition of morphisms and inverse morphisms. Lecture Notes in Computer Science, 154, Springer-Verlag, pp. 420–432.
Mateescu A., Rozenberg G. and Salomaa A. (1998) Shuffle on Trajectories: Syntactic Constraints. Theoretical Computer Science, TCS, Fundamental Study, 197, 1–2, 1–56
Ryl I. (1998) Langages de synchronisation. Thèse de doctorat. Université de Lille 1.
Turakainen R (1982) A homomorphic characterization of principal semi-AFLs without using intersection with regular sets. Inform. Sci. 27, 141–149.
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 1999 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Latteux, M., Roos, Y. (1999). Synchronized Shuffle and Regular Languages. In: Karhumäki, J., Maurer, H., Păun, G., Rozenberg, G. (eds) Jewels are Forever. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60207-8_4
Download citation
DOI: https://doi.org/10.1007/978-3-642-60207-8_4
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-64304-0
Online ISBN: 978-3-642-60207-8
eBook Packages: Springer Book Archive