Skip to main content

Synchronized Shuffle and Regular Languages

  • Chapter
Jewels are Forever
  • 141 Accesses

Summary

New representation results for three families of regular languages are stated, using a special kind of shuffle operation, namely the synchronized shuffle. First, it is proved that the family of regular star languages is the smallest family containing the language (a + bc)* and closed under synchronized shuffle and length preserving morphism. The second representation result states that the family of ε-free regular languages is the smallest family containing the language (a + bc)*d and closed under synchronized shuffle, union and length preserving morphism. At last, it is proved that Reg is the smallest family containing the two languages (a+ bb)* and a+(ab)+, closed under synchronized shuffle, union and length preserving morphism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Culik II K., Fich F.E. and Salomaa A. (1982) A homomorphic characterization of regular languages. Discrete Applied Mathematics 4, 149–152.

    Article  MathSciNet  MATH  Google Scholar 

  2. De Simone R. (1984) Langages infinitaires et produit de mixage. Theoretical Computer Science 31, 83–100.

    Article  MathSciNet  MATH  Google Scholar 

  3. Duboc C. (1986) Commutation dans les monoïdes libres: Un cadre théorique pour l’étude du parallélisme. Thèse de doctorat. Université de Rouen.

    Google Scholar 

  4. Karhumaki J., Linna M. (1983) A note on morphic characterization of languages. Discrete Applied Mathematics 5, 243–246.

    Article  MathSciNet  MATH  Google Scholar 

  5. Kimura T. (1976) An algebraic system for process structuring and interprocess communication. 8th ACM SIGACTS Symposium on Theory of Computing. 92–100.

    Google Scholar 

  6. Latteux M., Leguy J. (1983) On the composition of morphisms and inverse morphisms. Lecture Notes in Computer Science, 154, Springer-Verlag, pp. 420–432.

    Article  MathSciNet  Google Scholar 

  7. Mateescu A., Rozenberg G. and Salomaa A. (1998) Shuffle on Trajectories: Syntactic Constraints. Theoretical Computer Science, TCS, Fundamental Study, 197, 1–2, 1–56

    MathSciNet  MATH  Google Scholar 

  8. Ryl I. (1998) Langages de synchronisation. Thèse de doctorat. Université de Lille 1.

    Google Scholar 

  9. Turakainen R (1982) A homomorphic characterization of principal semi-AFLs without using intersection with regular sets. Inform. Sci. 27, 141–149.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Latteux, M., Roos, Y. (1999). Synchronized Shuffle and Regular Languages. In: Karhumäki, J., Maurer, H., Păun, G., Rozenberg, G. (eds) Jewels are Forever. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60207-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60207-8_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64304-0

  • Online ISBN: 978-3-642-60207-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics