Skip to main content

Genotyping β-globin Mutations (Hb S, Hb C, Hb E) by Multiplexing Probe Color and Melting Temperature

  • Chapter
Rapid Cycle Real-Time PCR

Abstract

Human β-globin has over 50 known mutations in exon 1 causing various hemoglobinopathies (1,2). The mutations include base pair substitutions, deletions and splicing defects. Hemoglobin S and C, (codon 6) and E (codon 26) are base pair substitutions that occur often enough to allow for routine screening (Hb S occurs at an allele frequency of 1:400 in African American’s)(3). High performance liquid chromatography (4) and isoelectric focusing (5) are routinely used for primary patient screening. However, phenotypic screening does not always necessarily coincide with the genotype, for example Hb S, Hb GNorfolk and HbFort-de-France all have the same isoelectrofocusing point (6). Genotyping can be done by allele specific amplification (7), DNA amplification followed by restriction digestion (8) or by fluorescently labeled allele specific primers and gel based detection with color photography (9). These methods require hours to days for completion. Recently, genotyping by determining the melting temperature (Tm) of hybridized fluorescently-labeled oligonucleotide probes was reported (10,11). We have extended the power of this technique by multiplexing different colored probes to simultaneously genotype multiple alleles (12). This procedure has been applied to homogenous genotyping of hemoglobin S, C, and E in a single tube by melting curve analysis by using different colored probes and Tm multiplexing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Titus H.J. Huisman, Marianne F.H. Carver, and Georgi D. Efremov. A Syllabus of Human Hemoglobin Variants (1996). The Sickle Cell Anemia Foundation, Augusta, GA, USA.

    Google Scholar 

  2. Hardison R, Chui DHK, Riemer C, Miller W, Carver M, Molchanova T, Efremov G, and Huis-man THJ (1998). Access to “A Syllabus of Human Hemoglobin Variants (1996)” via the World Wide Web. Hemoglobin 22: 113–127.

    Article  PubMed  CAS  Google Scholar 

  3. Bio-Rad Laboratories. 1994. Instruction manual: VARIANTTM b-thalassemia short program.700:188. Hercules: self published.

    Google Scholar 

  4. Newborn Screening for Sickle Cell Anemia Diseases and Other Hemoglobinopathies. NIH Consens Statement Online 1987 Apr 6–8; 6 (9): 1–22

    Google Scholar 

  5. Dubart A, Blouquit Y, Goossens M, Chabret C, Testa U, Beuzard Y, Rouyer-Fessard P, Dumez Y, Henrion R, Rosa J (1981). New Techniques for the Prenatal Diagnosis of hemoglobinopathies. Prog Clin Biol Res 55: 767–78

    PubMed  CAS  Google Scholar 

  6. Monte M, Beuzard Y, Rosa J (1976). Mapping of several abnormal hemoglobins by horizontal polyacrylamide gel isoelectric focusing. Am J Clin Pathol 66 (4): 753–9

    PubMed  CAS  Google Scholar 

  7. Conner BJ, Reyes AA, Morin C, Itakura K, Teplitz RL, Wallace RB (1983). Detection of sickle cell beta S-globin allele by hybridization with synthetic oligonucleotides. Proc Natl Acad Sci Jan; 80 (1): 278–82

    Article  CAS  Google Scholar 

  8. Zhang YH, McCabe LL, Wilborn M, Therrell BL Jr, McCabe ER (1994). Application of molecular genetics in public health: improved follow-up in a neonatal hemoglobinopathy screening program. Biochem Med Metab Biol Jun; 52 (1): 27–35.

    Article  CAS  Google Scholar 

  9. Embury SH, Kropp GL, Stanton TS, Warren TC, Cornett PA, Chehab FF (1990). Detection of the hemoglobin E mutation using the color complementation assay: application to complex genotyping. Blood 76 (3): 619–23

    PubMed  CAS  Google Scholar 

  10. Lay MJ, Wittwer CT (1997). Real-time fluorescence genotyping of factor V Leiden during rapid-cycle PCR. Clin Chem 43 (12): 2262–7

    PubMed  CAS  Google Scholar 

  11. Aslanidis C, Schmitz G (1999). High-speed apolipoprotein E genotyping and apolipoprotein B3500 mutation detection using real-time fluorescence PCR and melting curves. Clin Chem 45 (7): 1094–7

    PubMed  CAS  Google Scholar 

  12. Bernard PS, Pritham GH, Wittwer CT (1999). Color Multiplexing Hybridization Probes Using the Apolipoprotein E Locus as a Model System for Genotyping. Anal Biochem. 273: 221–228

    Article  PubMed  CAS  Google Scholar 

  13. Wetmur JG (1991). DNA probes: applications of the principles of nucleic acid hybridization. Crit Rev Biochem Mol Biol 26 (3–4): 227–59

    Article  PubMed  CAS  Google Scholar 

  14. Thomas SM, Moreno RF, Tilzer LL (1989). DNA extraction with organic solvents in gel barrier tubes. Nucleic Acids Res 17 (13): 5411

    Article  PubMed  CAS  Google Scholar 

  15. Walsh PS, Metzger DA, Higuchi R (1991) Chelex 100 as a Medium for Simple Extraction of DNA for PCR-Based Typing from Forensic Material. BioTechniques Vol. 10, No. 4: 506–513

    PubMed  CAS  Google Scholar 

  16. Bagwell CB, Adams EG (1993). Fluorescence spectral overlap compensation for any number of flow cytometry parameters. Ann N Y Acad Sci 677: 167–84

    Article  PubMed  CAS  Google Scholar 

  17. Doktycz MJ, Morris MD, Dormady SJ, Beattie KL, Jacobson KB (1995). Optical melting of 128 octamer DNA duplexes. Effects of base pair location and nearest neighbors on thermal stability. J Biol Chem 270 (15): 8439–45

    Article  PubMed  CAS  Google Scholar 

  18. Guo Z, Liu Q, Smith LM (1997). Enhanced discrimination of single nucleotide polymorphisms by artificial mismatch hybridization. Nat Biotechnol 15 (4): 331–5

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Herrmann, M.G. (2001). Genotyping β-globin Mutations (Hb S, Hb C, Hb E) by Multiplexing Probe Color and Melting Temperature. In: Meuer, S., Wittwer, C., Nakagawara, KI. (eds) Rapid Cycle Real-Time PCR. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59524-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59524-0_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66736-0

  • Online ISBN: 978-3-642-59524-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics