Skip to main content

Temperature Stress and Basic Bioenergetic Strategies for Stress Defence

  • Chapter
Algal Adaptation to Environmental Stresses

Abstract

Common sense tells us that “life implies work”. Therefore, every living cell must extract energy from the environment and convert it into a biologically utilizable form, viz. ATP. This fundamental process of biological energy conversion universally uses energy either from light (phototrophic processes) or from the oxidation of reduced material in the dark (chemotrophic, dissimilatory processes). Mechanistically speaking, chemotrophic energy conversion relies either on substrate level phosphorylation (ATP generation by intramolecular redox processes in a soluble cytosolic system) or on respiration which depends on electron transport processes in biological membranes and needs external oxidants of sufficiently positive redox potential (Schlegel 1975). Also photosynthesis generally depends on the membrane-bound electron transport; the only known exception, halobacterial photophosphorylation through bacteriorhodopsin-mediated light-driven conformational proton-pumping (Oesterhelt et al. 1977; Lanyi 1978; Renthal 1992), nevertheless belongs to the major category of chemiosmotic energy conversion which, like electron transport-dependent photosynthesis and respiration, inevitably needs membrane-bound charge separation systems (see Nicholls and Ferguson 1992).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

RET:

Respiratory electron transport

PET:

Photosynthetic electron transport

CM:

Cytoplasmic or plasma membrane (plasmalemma)

ICM:

Intracytoplasmatic or thylakoid membrane

LPT:

Thermotropic lipid phase transition temperature

COX:

Cytochrome-c oxidase

RC:

(Photosynthetic) reaction centre

References

  • Adams MWW, Mortenson LE, Chen J-S (1981) Hydrogenase. Biochim Biophys Acta 594: 105–176

    Google Scholar 

  • Anemiiller S, Schmidt CL, Pacheco I, Schäfer G, Teixera M (1994) A cytochrome aa3-type quinol oxidase from Desulfurolobus ambivalens, the most acidophilic archaeon. FEMS Microbiol Lett 117: 275–280

    Google Scholar 

  • Apte SK, Bhagawat AA (1989) Salinity stress-induced proteins in two nitrogen-fixing Anabaena strains differentially tolerant to salt. J Bacteriol 171: 909–915

    PubMed  CAS  Google Scholar 

  • Apte SK, Haselkorn R (1990) Cloning of salinity stress-induced genes from the salt-tolerant nitrogen-fixing cyanobacterium Anabaena torulosa. Plant Mol Biol 15: 723–733

    PubMed  CAS  Google Scholar 

  • Armond PA, Staehelin LA (1979) Lateral and vertical displacement of integral membrane proteins during lipid phase transition in Anacystis nidulans. Proc Natl Acad Sci USA 76: 1901–1905

    PubMed  CAS  Google Scholar 

  • Arnon DI (1960) The role of light in photosynthesis. Sci Am 203: 104–118

    Google Scholar 

  • Asada K (1992) Ascorbate peroxidase — a hydrogen-scavenging enzyme in plants. Physiol Plant 85: 235–241

    CAS  Google Scholar 

  • Asada K, Takahashi M (1987) Production and scavenging of active oxygen in photosynthesis. In: Kyle DJ, Arntezen CJ, Osmond CB (eds) Photoinhibition. Elsevier, Amsterdam, pp 227–287

    Google Scholar 

  • Asada K, Kanematsu S, Uchida K (1977) Superoxide dismutase in photosynthetic organisms. Arch Biochem Biophys 179: 243–256

    PubMed  CAS  Google Scholar 

  • Asada K, Miyake C, Sano S, Amako K (1993) Scavenging of hydrogen peroxide in photosynthetic organisms-from catalase to ascorbate peroxidase. In: Welinder KG, Rasmussen SK, Penei C, Greppin H (eds) Plant peroxidases: biochemistry and physiology. University of Geneva Press, Geneva, pp 242–250

    Google Scholar 

  • Asada K, Yoshikawa K, Takahashi M, Maeda Y, Enmanji K (1975) Superoxide dismutases from a blue-green alga Plectonema boryanum. J Biol Chem 250: 2801–2807

    PubMed  CAS  Google Scholar 

  • Babcock GT, Wikström M (1992) Oxygen activation and the conservation of energy in cell respiration. Nature 356: 301–308

    PubMed  CAS  Google Scholar 

  • Balch WE, Fox GE, Magrum LJ, Woese CR, Wolfe RS (1979) Methanogens: réévaluation of a unique biological group. Microbiol Rev 43: 260–296

    PubMed  CAS  Google Scholar 

  • Baldry CW, Walker DA, Bucke C (1966) The temperature dependence of algal respiration and photosynthesis. Biochem J 101: 642–649

    PubMed  CAS  Google Scholar 

  • Baltscheffsky H (1974) On the evolution of electron transport in photosynthesis and respiration. In: Dose K, Fox SW, Deborin GA, Perovskaya TE (eds) Dynamics of energy- transducing membranes. Elsevier, Amsterdam, pp 21–27

    Google Scholar 

  • Bannister JV, Bannister WH, Rotilio G (1987) Aspects of the structure, function, and application of superoxide dismutase. CRC Crit Rev Biochem 22: 118–180

    Google Scholar 

  • Barghoorn ES, Schopf JW (1965) Microorganisms from the late Precambrian of Central Australia. Science 150:337-339 Barghoorn ES, Schopf JW (1966) Microorganisms three billion years old from the Precambrian of South Africa. Science 152: 758–763

    Google Scholar 

  • Bergman B, Siddiqui PJA, Carpenter EJ, Peschek GA (1993) Cytochrome oxidase: subcellular distribution and relationship to nitrogenase expression in the nonheterocystous marine cyanobacterium Trichodesmium thiebautii. Appi Environ Microbiol 59: 3239–3244

    CAS  Google Scholar 

  • Berkner LV, Marshall LC (1967) The rise of oxygen in the earth’s atmosphere with notes on the Martian atmosphere. Adv Geophys 12: 309–331

    CAS  Google Scholar 

  • Blankenship RE (1992) Origin and early evolution of photosynthesis. Photosynth Res 33:91–111

    PubMed  CAS  Google Scholar 

  • Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37: 911 - 917c

    PubMed  CAS  Google Scholar 

  • Borbely G, Suranyi G (1988) Cyanobacterial heat shock proteins and stress responses. Meth Enzymol 167: 622–629

    CAS  Google Scholar 

  • Borbely G, Suranyi G, Korcz A, Palfi Z (1985) Effect of heat shock protein synthesis in the cyanobacterium Synechococcus sp. strain PCC 6301. J Bacteriol 161: 1125–1130

    PubMed  CAS  Google Scholar 

  • Borbely G, Suranyi G, Kos P (1990) Stress responses of cyanobacteria and the pleiotropic effects of light deprivation. FEMS Microbiol Ecol 74: 141–152

    CAS  Google Scholar 

  • Bothe H, Boison G, Schmitz O (1999) Hydrogenases in cyanobacteria. In: Peschek G A, Loeffelhardt W, Schmetterer G (eds) The phototrophic prokaryotes. Kluwer Academic/Plenum Publishers, New York, pp 589–601

    Google Scholar 

  • Brand JJ (1979) Spectral changes in membrane fragments and artificial liposomes of Anacystis nidulans induced by chilling. Arch Biochem Biophys 193: 385–391

    PubMed  CAS  Google Scholar 

  • Broda E (1975) The evolution of the bioenergetic processes. Pergamon Press, Oxford

    Google Scholar 

  • Broda E (1977a) The evolution of photosynthesis. Precambrian Res 4: 117–132

    CAS  Google Scholar 

  • Broda E (1977b) The length of the transition period from the reducing to the neutral biosphere. Origins of Life 8: 87–90

    PubMed  CAS  Google Scholar 

  • Broda E, Peschek GA (1979) Did respiration or photosynthesis come first? J Theor Biol 81: 201–212

    PubMed  CAS  Google Scholar 

  • Broda E, Peschek GA (1980) Evolutionary considerations on the thermodynamics of nitrogen fixation. BioSystems 13: 47–56

    PubMed  CAS  Google Scholar 

  • Broda E, Peschek GA (1983) Nitrogen fixation as evidence for the reducing nature of the early biosphere. BioSystems 16: 1–8

    PubMed  CAS  Google Scholar 

  • Buetow DE (1968) The biology of Euglena. Academic Press, New York Büttner M, Xie DL, Nelson H, Pinther W, Hauska G, Nelson N (1992) Photosynthetic reaction center genes in green sulfur bacteria and in photosystem I are related. Proc Natl Acad Sci USA 89: 8135–8139

    Google Scholar 

  • Cadenas E (1989) Biochemistry of oxygen toxicity. Annu Rev Biochem 58: 79–110

    PubMed  CAS  Google Scholar 

  • Canini A, Civitareale P, Marini S, Grilli Caiola MG, Rotilio G (1992) Purification of iron superoxide dismutatses from the cyanobacterium Anabaena cylindrica Lemm. And the localization of the enzyme in heterocysts by immunogold labelling. Planta 187: 438–444

    Google Scholar 

  • Carafoli E, Scarpa A (eds.) (1982) Transport ATPases. Ann NY Acad Sci, vol. 402, 604pp

    Google Scholar 

  • Castenholz RW (1988) Thermophilic cyanobacteria: special problems. Methods Enzymol 167: 98–100

    Google Scholar 

  • Chatton E (1937) Titres et Trouvaux Scientifiques. Sete, France

    Google Scholar 

  • Chisholm SW, Olson RJ, Zettler ER, Goericke R, Waterbury JB, Welschmeyer NA (1988) A novel free-living prochlorophyte abundant in the oceanic euphotic zone. Nature 334: 340–343

    Google Scholar 

  • Danson MJ, Hough DW, Lunt GG (1992) The Archaebacteria: biochemistry and biotechnology. Biochemical Society Symposium 58, Portland Press, London

    Google Scholar 

  • Desikachary TV (1959) Cyanophyta. Indian Council of Agricultural Research, New Delhi

    Google Scholar 

  • Devault D (1980) Quantum mechanical tunneling in biological systems. Q Rev Biophys 13: 387–564

    PubMed  CAS  Google Scholar 

  • Dimroth P (1987) Sodium ion transport decarboxylases and other aspects of sodium ion cycling in bacteria. Microbiol Rev 51: 320–340

    PubMed  CAS  Google Scholar 

  • Drobner E, Huber H, Wächtershäuser G, Rose D, Stetter KO (1990) Pyrite formation linked with hydrogen evolution under anaerobic conditions. Nature 346: 742–744

    CAS  Google Scholar 

  • Duke CS, Allen MM (1990) Effect of nitrogen starvation on polypeptide composition, ribulose-l,5-bisphosphate carboxylase/oxygenase, and thylakoid carotenoprotein content of Synechocystis sp. strain PCC 6803. Plant Physiol 94: 752–759

    PubMed  CAS  Google Scholar 

  • Dworsky A, Meyer B, Regelsberger G, Fromwald S, Peschek GA (1995) Functional and immunological characterization of both mitochondria-like and chloroplast-like electron/proton transport proteins in isolated and purified cyanobacterial membranes. Bioelectrochem Bioenerg 88: 35–43

    Google Scholar 

  • Ellis RJ (1990) Molecular chaperones: the plant connection. Science 250: 954–958

    PubMed  CAS  Google Scholar 

  • Elstner EF, Pils I (1979) Ethane formation and chlorophyll bleaching in DCMU-treated E. gracilis cells and isolated spinach chloroplast lamellae. Z Naturforsch 34c: 1040–1043

    Google Scholar 

  • Erber WW A, Nitschmann WH, Muchi R, Peschek GA (1986) Endogenous energy supply to the plasma membrane of dark aerobic cyanobacterium Anacystis nidulans: ATPase- independent efflux of H+ and Na+ from respiring cells. Arch Biochem Biophys 247: 28–39

    PubMed  CAS  Google Scholar 

  • Falkner G, Wagner F, Falkner R (1996) The bioenergetic coordination of a complex biological system is revealed by its adaptation to changing environmental conditions. Acta Biotheor 44: 283–299

    Google Scholar 

  • Förster T (1948) Zwischenmolekulare Energiewanderung und Fluoreszenz. Ann Phys 2: 55–75

    Google Scholar 

  • Fritsch FE (1945) The structure and reproduction of the algae, vol II. Cambridge University Press, Cambridge Fromme P, Witt, HT, Schubert WD, Klukas O, Saenger W, Krauß N (1996) Structure of photosystem I at 4.5 Å resolution: a short review including evolutionary aspects. Biochim Biophys Acta 1275: 76–83

    Google Scholar 

  • Fromwald S, Dworsky A, Peschek GA (1995) F-type and P-type ATPases in cyanobacteria: implications for energy conservation and utilization. In: Mathis P (ed) Photosynthesis: from light to biosphere, vol III. Kluwer, Dordrecht, pp 47–50

    Google Scholar 

  • Fry IV, Peschek GA (1988) Electron paramagnetic resonance-detectable Cu2+ in Synechococcus 6301 and 6311: aa3-type cytochrome-c oidase of cytoplasmic membrane. Methods Enzymol 167: 450–458

    PubMed  CAS  Google Scholar 

  • Fry IV, Huflejt M. Erber WWA, Peschek GA, Packer L (1986) The role of respiration during adaptation of the freshwater cyanobacterium Synechococcus 6311 to salinity. Arch Biochem Biophys 244: 686–691

    PubMed  CAS  Google Scholar 

  • Furtado D, Williams WP, Brain APR, Quinn PJ (1979) Phase separations in membranes of Anacystis nidulans grown at different temperatures. Biochim Biophys Acta 555: 352–357

    PubMed  CAS  Google Scholar 

  • Gallon JR, Chaplin AE (1988) Nitrogen fixation. In: Rogers LJ, Gallon JR (eds) Biochemistry of the algae and cyanobacteria. Clarendon Press, Oxford, pp 147–173

    Google Scholar 

  • Gallon JR, Stal LJ (1992) N2 fixation in the nonheterocystous cyanobacteria: an overview. In: Carpenter EJ, Capone DG, Rueter JG (eds) Marine pelagic cyanobacteria: Trichodesmium and other diazotrophs. Kluwer, Dordrecht, pp 115–140

    Google Scholar 

  • Geitier L (1925) Synoptische Darstellung der Cyanophyceen in morphologischer und systematischer Hinsicht. Beih Bot Zentralbl II 41: 163–294

    Google Scholar 

  • Gest H (1972) Energy conversion and generation of reducing power in bacterial photosynthesis. Adv Microb Physiol 7: 243–282

    CAS  Google Scholar 

  • Gilbert DL (1981) Significance of oxygen on Earth. In: Gilbert DL (ed) Oxygen and living processes. An interdisciplinary approach. Springer, Berlin Heidelberg New York, pp 73–101

    Google Scholar 

  • Glover HE, Prezelin BB, Campbell L, Wyman M, Garside C (1988) A nitrate-dependent Synechococcus bloom in surface Sargasso Sea water. Nature 331: 161–163

    CAS  Google Scholar 

  • Gombos Z, Tanaka Y, Zsiros Q, Varkonyi ZS, Murata N (1999) Lipids of photosyntheticraembranes in cyanobacteria — roles in protection against low-temperature stress. In; Peschek GA, Loeffelhardt W, Schmetterer G (eds) The phototrophic prokaryotes. Kluwer Academic/Plenum Publishers, New York, pp 647–655

    Google Scholar 

  • Gray MW, Doolittle WF (1982) Has the endosymbiont hypothesis been proven? Microbiol Rev 46: 1–42

    PubMed  CAS  Google Scholar 

  • Green LS, Laudenbach DE, Grossman AR (1989) A region of a cyanobacterial genome required for sulfate transport. Proc Natl Acad Sci USA 86: 1949–1953

    PubMed  CAS  Google Scholar 

  • Grilli Caiola M, Canini A, Galiazzo F, Rotilio G (1991) Superoxide dismutase in vegetative cells, heterocysts and akinetes of Anabaena cylindrica Lemm. FEMS Microbiol Lett 80: 161–166

    Google Scholar 

  • Haidane JBS (1954) The origins of life. New Biol 16: 12–27

    Google Scholar 

  • Haldane JBS (1970) The origins of life. In: Cloud P (ed) Adventures in earth history. WH Freeman, San Francisco, pp 377–384

    Google Scholar 

  • Hicks DB, Krulwich TE (1995) The respiratory chain of alkaliphilic bacteria. Biochim Biophys Acta 1229: 303–314

    PubMed  Google Scholar 

  • Higgins IJ, Best DJ, Hammond RC, Scott D (1981) Methane-oxidizing microorganisms. Microbiol Rev 45: 556–590

    PubMed  CAS  Google Scholar 

  • Hill R, Bendall F (1960) Function of two cytochrome components in chloroplasts. Nature 186: 136–137

    CAS  Google Scholar 

  • Hippeli S, Elstner EF (1999) Transition metal ion-catalyzed oxygen activation during pathogenic processes. FEBS Lett 443: 1–7

    PubMed  CAS  Google Scholar 

  • Hishiyama H, Hayashi T, Watanabe T, Murata N (1994) Photosynthetic oxygen evolution is stabilized by cytochrome c550 against heat inactivation in Synechococcus sp. PCC 7002. Plant Physiol 105: 1313–1319

    Google Scholar 

  • Hoch G, Kok B (1961) Photosynthesis. Annu Rev Plant Physiol 12: 155–194

    CAS  Google Scholar 

  • Hochman A, Goldberg I (1991) Purification and Characterization of catalase-peroxidase and a typical catalase from the bacterium Klebsiella pneumoniae. Biochim Biophys Acta 1077: 299–307

    PubMed  CAS  Google Scholar 

  • Hoffmann P (1998) Oxygenic photosynthesis — a photon-driven hydrogen generator: the energetic/entropic basis of life. Photosynthetica 35: 1–11

    CAS  Google Scholar 

  • Holm-Hansen O (1968) Ecology, physiology and biochemistry of blue-green algae. Annu Rev Microbiol 22: 47–70

    PubMed  CAS  Google Scholar 

  • Hoshina S (1981) Temperature dependence of optical properties of chlorophyll a incorporated into phosphatidyl choline liposomes. Biochim Biophys Acta 638: 334–340

    CAS  Google Scholar 

  • Iwata S, Ostermeier C, Ludwig B, Michel H (1995) Structure at 2.8 Å resolution of cytochrome-c oxidase from Paracoccus denitrificans. Nature 376: 660–669

    PubMed  CAS  Google Scholar 

  • Jackson JB, Crofts AR (1968) Energy-linked reduction of nicotinamide adenine dinucleotides in cells of Rhodospirillum rubrum. Biochem Biophys Res Commun 32: 909–915

    Google Scholar 

  • Kanervo E, Aro E-M, Murata N (1995) Low unsaturation level of thylakoid membrane lipids limits turnover of the D1 protein of photosystem II at high irradiance. FEBS Lett 364: 239–242

    PubMed  CAS  Google Scholar 

  • Kates M (1992) Archaebacterial lipids: structure, biosynthesis and function. In: Danson MJ, Hough DW, Lunt GG (eds) The Archaebacteria: biochemistry and biotechnology. Portland Press, London

    Google Scholar 

  • Keister DL, Yike NJ (1967) Energy-linked reactions in photosynthetic bacteria. Arch Biochem Biophys 121: 415–422

    PubMed  CAS  Google Scholar 

  • Kelly DP (1971) Autotrophy: concepts of lithotrophic bacteria and their organic metabolism. Annu Rev Microbiol 25: 177–210

    PubMed  CAS  Google Scholar 

  • Kluyver AJ, Donker HJL (1926) Das Einheitsprinzip der Biochemie. Chem d Zelle und Gew 13: 124–130

    Google Scholar 

  • Knoll AH (1992) The early evolution of eukaryotes: a geological perspective. Science 256: 622–627

    PubMed  CAS  Google Scholar 

  • Koika H, Katoh S (1979) Heat stabilities of cytochromes and ferredoxin isolated from a thermophilic blue-green alga, Synechococcus sp. Plant Cell Physiol 20: 1157–1161

    Google Scholar 

  • Laidler KJ (1965) Chemical kinetics, 2nd edn. McGraw-Hill, New York Lanyi JK (1978) Light energy conversion in Halobacterium halobium. Microbiol Rev 42:682–699

    Google Scholar 

  • Lee AG (1975) Segregation of chlorophyll a incorporated into lipid bilayers. Biochemistry 14: 4397–4402

    PubMed  CAS  Google Scholar 

  • Lehel C, Wada H, Kovacs E, Török Z, Gombos Z, Horvath I, Murata N, Vigh L (1992) Heat shock protein synthesis of the cyanobacterium Synechocystis PCC 6803: purification of the GroEL-related chaperonin. Plant Mol Biol 18: 327–336

    PubMed  CAS  Google Scholar 

  • Lindquist S, Craig EA (1988) Stress tolerance in Saccharomyces cerevisiae. Annu Rev Genet 22: 631–677

    PubMed  CAS  Google Scholar 

  • Löppert H-G, Broda E (1973) Salt respiration in Chlorella fusca. Z Allg Mikrobiol 13: 499–502

    PubMed  Google Scholar 

  • Lundegardh H (1961) Salt-stimulated respiration in plant tissues. Nature 192: 243–245

    PubMed  CAS  Google Scholar 

  • Marcus RA (1956) On the theory of oxidation-reduction reactions involving electron transfer. J Chem Phys 24: 966–978

    CAS  Google Scholar 

  • Marcus RA, Sutin N (1985) Electron transfer in chemistry and biology. Biochim Biophys Acta 811: 265–322

    CAS  Google Scholar 

  • Margulis L (1970) Origin of eukaryotic cells. Yale University Press, New Haven, Connecticut

    Google Scholar 

  • Margulis L (1996) Archaeal-eubacterial mergers in the origin of eukaryota: phylogenetic classification of life. Proc Natl Acad Sci USA 93: 1071–1076

    PubMed  CAS  Google Scholar 

  • Melchior DL (1982) Lipid phase transition and regulation of membrane fluidity in prokaryotes. Curr Top Membr Transp 17: 263–316

    CAS  Google Scholar 

  • Melchior DL, Steim JM (1976) Thermotropic transitions in biomembranes. Annu Rev Biophys Bioenerg 5: 205–238

    CAS  Google Scholar 

  • Mereschkowsky C (1905) Über Natur und Ursprung der Chromatophoren im Pflanzenreiche. Biol Zentralbl 25: 593–604

    Google Scholar 

  • Miller SL, Orgel LE (1974) The origins of life on Earth. Prentice Hall, Englewood Cliffs

    Google Scholar 

  • Miller SL, Urey HC (1959) Organic compound synthesis on the primitive earth. Science 130: 245–250

    PubMed  CAS  Google Scholar 

  • Miyake C, Michihata F, Asada K (1991) Scavenging of hydrogen peroxide in prokaryotic and eukaryotic algae: acquisition of ascorbate peroxidase duriung the evolution of cyanobacteria. Plant Cell Physiol 32: 33–43

    CAS  Google Scholar 

  • Molitor V, Peschek GA (1986) Respiratory electron transport in plasma and thylakoid membrane preparations from the cyanobacterium Anacystis nidulans. FEBS Lett 195: 145–150

    CAS  Google Scholar 

  • Molitor V, Trnka M, Peschek GA (1987) Isolated and purified plasma and thylakoid membranes of the cyanobacterium Anacystis nidulans contain immunologically cross- reactive aa3-type cytochrome oxidase. Curr Microbiol 14: 263–268

    CAS  Google Scholar 

  • Molitor V, Trnka M, Erber W, Steffan I, Riviere M-E, Arrio B, Springer-Lederer H, Peschek G A (1990a) Impact of salt adaptation on esterified fatty acids and cytochrome oxidase in plasma and thylakoid membranes from the cyanobacterium Anacystis nidulans. Arch Microbiol 154: 112–119

    CAS  Google Scholar 

  • Molitor V, Kuntner O, Sleytr UB, Peschek GA (1990b) The ultrastructure of plasma and thylakoid membrane vesicles from the freshwater cyanobacterium Anacystis nidulans adapted to salinity. Protoplasma 157: 112–119

    Google Scholar 

  • Möller IM, Crane FL (1990) Redox processes in the plasma membrane. In: Larsson C, Möller IM (eds) The plant plasma membrane. Springer, Berlin Heidelberg New York, pp 93–126

    Google Scholar 

  • Möller IM, Askerlund P, Widell S (1992) Electron transport constituents in the plant plasma membrane. In: Crane FL, Morre DJ, Loew HE (eds) Oxidoreduction at the plasma membrane: relation to growth and transport, vol II, Plants. CRC Press, Boca Raton, pp 35–56

    Google Scholar 

  • Morris JG (1975) The physiology of obligate anaerobiosis. Adv Microb Physiol 12: 169–246

    CAS  Google Scholar 

  • Moser CC, Keske JM, Warncke K, Farid RS, Dutton PL (1992) Nature of biological electron transfer. Nature 355: 7960–802

    Google Scholar 

  • Moser CC, Page CC, Chen X, Dutton PL (1999) Intraprotein electron transfer. In: Peschek GA, Loeffelhardt W, Schmetterer G (eds) The phototrophic prokaryotes. Kluwer Academic/Plenum Publishers, New York, pp 105–111

    Google Scholar 

  • Mulkidjanian AY, Cherepanov DA, Haumann M, Junge W (1996) Photosystem II of green plants: topology of core pigments and redox cofactors as inferred from electrochromic difference spectra. Biochemistry 35: 3093–3107

    PubMed  CAS  Google Scholar 

  • Murata N, Fork DC (1975) Temperature dependence of chlorophyll a fluorescence in relation to the physical phase of membrane lipids in algae and higher plants. Plant Physiol 56: 791–796

    PubMed  CAS  Google Scholar 

  • Murata N, Nishida I (1987) Lipids of blue-green algae (cyanobacteria). In: Stumpf PK (ed) The biochemistry of plants, vol 9. Academic Press, Orlando, Florida, pp 315–347

    Google Scholar 

  • Murata N, Wada H (1995) Acyl-lipid desaturases and their importance in the tolerance and acclimatization to cold of cyanobacteria. Biochem J 308: 1–8

    PubMed  CAS  Google Scholar 

  • Murata N, Troughton JH, Fork DC (1975) Relationships between the transition of the physical phase of membrane lipids and photosynthetic parameters in Anacystis nidulans and lettuce and spinach chloroplasts. Plant Physiol 56: 508–517

    PubMed  CAS  Google Scholar 

  • Mutsuda M, Ishikawa T, Takeda T, Shigeoka S (1996) The catalase-peroxidase of Synechococcus PCC7942: purification, nucleotide sequence analysis and expression in Escherichia coli. Biochem J 316: 251–257

    PubMed  CAS  Google Scholar 

  • Nedbal L, Samson G, Whitmarsh J (1992) Redox state of a one-electron component controls the rate of photoinhibition of photosystem II. Proc Natl Acad Sci USA 89: 7929–7933

    PubMed  CAS  Google Scholar 

  • Neidhardt FC, Van Bogelen FC (1987) Heat shock response. In: Neidhardt FC, Van Bogelen (eds) Escherichia coli and Salmonella typhimurium. Cellular and molecular biology. ASM, Washington, DC, pp 1334–1345

    Google Scholar 

  • Neisser A, Fromwald S, Schmatzberger A, Peschek G A (1994) Immunological and functional localization of both F-type and P-type ATPases in cyanobacterial plasma membranes. Biochem Biophys Res Commun 200: 884–892

    PubMed  CAS  Google Scholar 

  • Nicholls DG, Ferguson SJ (1992) Bioenergetics 2. Academic Press, London

    Google Scholar 

  • Nicholson P, Osborn RW, Howe CJ (1987) Induction of protein synthesis in response to ultraviolet light, nalidixic acid and heat shock in the cyanobacterium Phormidium laminosum. FEBS Lett 221: 110–114

    CAS  Google Scholar 

  • Nitschke W, Rutherford AW (1991) Photosynthetic reaction centers: variations on a common structural theme? Trends Biochem Sci 16: 241–245

    PubMed  CAS  Google Scholar 

  • Nitschmann WH, Peschek GA (1985) Modes of proton translocation across the cell membrane of respiring cyanobacteria. Arch Microbiol 141: 330–336

    CAS  Google Scholar 

  • Nitschmann WH, Peschek G A (1986) Oxidative phosphorylation and energy buffering in cyanobacteria. J Bacteriol 168: 1205–1211

    PubMed  CAS  Google Scholar 

  • Nitschmann WH, Schmetterer G, Muchi R, Peschek GA (1982) Active sodium extrusion reduces bet efficiencies of oxidative phosphorylation in the strictly photoautotrophic cyanobacterium Anacystis nidulans. Biochim Biophys Acta 682: 293–296

    CAS  Google Scholar 

  • Obinger C, Regelsberger G, Strasser G, Burner U, Peschek GA (1997) Purification and characterization of a homodimeric catalase-peroxidase from the cyanobacterium Anacystis nidulans. Biochem Biophys Res Commun 235: 545–552

    PubMed  CAS  Google Scholar 

  • Obinger C, Regelsberger G, Pircher A, Sevcik-Klöckler A, Strasser G, Peschek GA (1998) Scavenging of superoxide and hydrogen peroxide in blue-green algae (cyanobacteria). Physiol Plant 104: 693–698

    CAS  Google Scholar 

  • Obinger C, Regelsberger G, Pircher A, Sevcik-Klöckler A, Strasser G, Peschek G A (1999) Hydrogen peroxide removal in cyanobacteria. Characterization of a catalase-peroxidase from Anacystis nidulans. In: Peschek GA, Loeffelhardt W, Schmetterer G (eds) The phototrophic prokaryotes. Kluwer Academic/Plenum Publishers, New York, pp 719–731

    Google Scholar 

  • Oesterhelt D, Gottschlich R, Hartmann R, Michel H, Wagner G (1977) Light energy conversion in halobacteria. In: Haddock BA, Hamilton WA (eds) Microbial energetics. Cambridge University Press, London, pp 333–349

    Google Scholar 

  • Olson JM (1970) The evolution of photosynthesis. Science 168:438–446 Ono T, Murata N (1977) Temperature-dependence of the delayed fluorescence of chlorophyll a in blue-green algae. Biochim Biophys Acta 502: 477–485

    Google Scholar 

  • Ono T, Murata N (1979) Temperature dependence of the photosynthetic activities in the thylakoid membranes from the blue-green alga Anacystis nidulans. Biochim Biophys Acta 545: 69–76

    PubMed  CAS  Google Scholar 

  • Oparin AI (1924) The origin of life (Translated in J D Bernal 1967). Plenum Press, London Pearce J, Leach CK, Carr NG (1969) The incomplete tricarboxylic acid cycle in the blue-green alga Anabaena variabilis. J Gen Microbiol 55: 371–378

    Google Scholar 

  • Pearson HW, Howsley R (1980) Concomitant photoautotrophic growth and nitrogenase activity by cyanobacterium Plectonema boryanum in continuous culture. Nature 288: 263–265

    CAS  Google Scholar 

  • Peschek G A (1981a) Phylogeny of photosynthesis and the evolution of electron transport: the bioenergetic backbone. Photosynthetica 15: 5432–555

    Google Scholar 

  • Peschek GA (1981b) Occurrence of cytochrome aa3 in Anacystis nidulans. Biochim Biophys Acta 635: 470–475

    PubMed  CAS  Google Scholar 

  • Peschek GA (1981c) Spectral properties of a cyanobacterial cytochrome c oxidase: evidence for cytochrome aa3. Biochem Biophys Res Commun 98: 72–79

    PubMed  CAS  Google Scholar 

  • Peschek G A (1996a) Cytochrome oxidase and the eta operon of cyanobacteria. Biochim Biophys Acta 1275: 27–32

    Google Scholar 

  • Peschek G A (1996b) Structure-function relationships in the dual-function photosynthetic- respiratory electron-transport assembly of cyanobacteria (blue-green algae). Biochem Soc Trans 24: 729–733

    PubMed  CAS  Google Scholar 

  • Peschek GA (1999) Photosynthesis and respiration of cyanobacteria. In: Peschek GA, Loeffelhardt W, Schmetterer G (eds) The phototrophic prokaryotes. Kluwer Academic/ Plenum Publishers, New York, pp 201–209

    Google Scholar 

  • Peschek GA, Schmetterer G (1978) Reversible photooxidative loss of pigments and of intracytoplasmic membranes in the blue-green alga Anacystis nidulans. FEMS Microbiol Lett 3: 295–297

    Google Scholar 

  • Peschek GA, Muchi R, Schmetterer G (1981) Temperature dependence of horse heart cytochrome c oxidation by membrane preparations of Anacystis nidulans: characterization of two distinct Arrhenius discontinuities. Curr Microbiol 6: 233–237

    CAS  Google Scholar 

  • Peschek GA, Muchi R, Kienzl PF, Schmetterer G (1982) Characteristic temperature dependences of respiratory and photosynthetic electron-transport activities in membrane preparations from Anacystis nidulans grown at different temperatures. Biochim Biophys Acta 679: 35–43

    CAS  Google Scholar 

  • Peschek GA, Czerny T, Schmetterer G, Nitschmann WH (1985) Transmembrane proton electrochemical gradients in dark aerobic and anaerobic cells of the cyanobacterium (blue-green alga) Anacystis nidulans. Plant Physiol 79: 278–284

    PubMed  CAS  Google Scholar 

  • Peschek GA, Hinterstoisser B, Riedler M, Muchi R, Nitschmann WH (1986) Exogenous energy supply to the plasma membrane of dark aerobic cyanobacterium Anacystis nidulans: thermodynamic and kinetic characterization of the ATP synthesis effected by an artificial proton motive force. Arch Biochem Biophys 247: 40–48

    PubMed  CAS  Google Scholar 

  • Peschek GA, Molitor V, Trnka M, Wastyn M, Erber W (1988a) Characterization of cytochrome-c oxidase in isolated and purified plasma and thylakoid membranes from cyanobacteria. Methods Enzymol 167: 437–449

    CAS  Google Scholar 

  • Peschek GA, Nitschmann WH, Czerny T (1988b) Respiratory proton extrusion and plasma membrane energization. Methods Enzymol 167: 361–379

    CAS  Google Scholar 

  • Peschek GA, Wastyn M, Trnka M, Molitor V, Fry IV, Packer L (1989a) Characterization of the cytochrome-c oxidase in isolated and purified plasma membranes from the canobacterium Anacystis nidulans. Biochemistry 28: 3057–3063

    PubMed  CAS  Google Scholar 

  • Peschek GA, Wastyn M, Molitor V, Kraushaar H, Obinger C, Matthijs HCP (1989b) Self- contained or accessory respiration in the phototrophic cyanobacteria (blue-green algae)? In: Kotyk A, Skoda J, Paces V, Kosta V (eds) Highlights of modern biochemistry, vol 1. VSP Publishers, Zeist, The Netherlands, pp 893–902

    Google Scholar 

  • Peschek GA, Hinterstoisser B, Wastyn M, Kuntner O, Pineau B, Missbichler A, Lang J (1989c) Chlorophyll precursors in the plasma membrane of a cyanobacterium, Anacystis nidulans. J Biol Chem 264: 11827–11832

    PubMed  CAS  Google Scholar 

  • Peschek GA, Villgratter K, Wastyn M (1991) Respiratory protection of the nitrogenase in dinitrogen-fixing cyanobacteria. Plant Soil 137: 17–24

    CAS  Google Scholar 

  • Peschek GA, Niederhauser H, Obinger C (1992) Cyanobacterial cytochrome oxidase: a candidate for the primordial enzyme? EBEC Short Rep, Elsevier, Amsterdam, vol 7, 48 pp

    Google Scholar 

  • Peschek GA, Obinger C, Fromwald S, Bergman B (1994a) Correlation between immuno-gold labels and activities of the cytochrome-c oxidase (aa3-type) in membranes of salt stressed cyanobacteria. FEMS Microbiol Lett 124: 431–438

    CAS  Google Scholar 

  • Peschek G A, Obinger C, Sherman DM, Sherman LA (1994b) Immunochemical localization of the cytochrome-c oxidase in a cyanobacterium, Synechococcus PCC 7942 (Anacystis nidulans) Biochim Biophys Acta 1187:369–372

    CAS  Google Scholar 

  • Pringsheim EG (1963) Farblose Algen. Ein Beitrag zur Evolutionsforschung. VED Gustav Fischer, Jena

    Google Scholar 

  • Pringsheim EG, Wiessner W (1961) Colourless blue-green algae. Arch Mikrobiol 40: 231–241

    CAS  Google Scholar 

  • Purschke WG, Schmidt CL, Petersen A, Schäfer G (1997) The terminal quinol oxidase of the hyperthermophilic archaeon Acidianus ambivalens exhibits a novel subunit structure and gene organization. J Bacteriol 179: 1344–1353

    PubMed  CAS  Google Scholar 

  • Quinn PJ (1988) Thermotropic lipid phase segregation in biological membranes. In: Aloia RC, Curtain CC, Gordon LM (eds) Physiological regulation of membrane fluidity, vol 3. Alan R Liss, New York

    Google Scholar 

  • Rabinowitch E, Govindjee (1969) Photosynthesis. John Wiley, New York Raven JA, Smith FA (1976) The evolution of chemiosmotic energy coupling. J Theor Biol 57: 301–312

    Google Scholar 

  • Reed RH (1988) Osmotioc adjustment: organic solutes. Methods Enzymol 167: 528 - 534

    CAS  Google Scholar 

  • Reed RH, Stewart WDP (1988) The response of cyanobacteria to salt stress. In: Rogers LJ, Gallon JR (eds) Biochemistry of the algae and cyanobacteria. Oxford University Press, Oxford, pp 217–231

    Google Scholar 

  • Reed RH, Borowitzka LJ, Mackay MA, Chudek JA, Fister R, Warr SRC, Moore DH, Stewart WDP (1986) Organic solute accumulation in osmotically stressed cyanobacteria. FEMS Microbiol Rev 39: 51–56

    CAS  Google Scholar 

  • Regelsberger G, Obinger C, Zoder R, Altmann F, Peschek G A (1999) Purification and characterization of a hydroperoxidase from the cyanobacterium Synechocystis PCC6803: identification of its gene by peptide mass mapping using matrix assisted laser desorption ionization time-of-flight mass spectrometry. FEMS Lett 170: 1–12

    CAS  Google Scholar 

  • Renger G (1997) Photosynthetic water cleavage. In: Gräber P, Milazzo G (eds) Treatise on bioelectrochemistry, vol. 2: bioenergetics. Birkhäuser, Basel, pp 310–358

    Google Scholar 

  • Renger G (1999) Studies on structure and mechanism of photosynthetic water oxidation. In: Peschek GA, Loeffelhardt W, Schmetterer G (eds) The phototrophic prokaryotes. Kluwer Academic/Plenum Publishers, New York, pp 35–50

    Google Scholar 

  • Renthal R (1992) Bacteriorhodopsin. In: Ernster L (ed) Molecular mechanisms in

    Google Scholar 

  • Rhoads DC, Morse JW (1970) Evolutionary and ecological significance of oxygen-deficient marine basins. Lethaia 4: 413–428 (Oslo)

    Google Scholar 

  • Rippka R, Waterbury J, Cohen-Bazire G (1974) A cyanobacterium which lacks thylakoids Arch Mikrobiol 100: 419–436

    CAS  Google Scholar 

  • Rivas E, Luzzati V (1969) Polymorphisme des lipides polaires et des galacto-lipides de chloroplastes de mais, en présence d’eau. J Mol Biol 41: 261–275

    PubMed  CAS  Google Scholar 

  • Riviere M-E, Arrio B, Steffan I, Molitor V, Kuntner O, Peschek GA (1990) Changes of some physical properties of isolated and purified plasma and thylakoid membrane vesicles from the freshwater cyanobacterium Synechococcus 6301 (Anacystis nidulans) during adaptation to salinity. Arch Biochem Biophys 280: 159–166

    PubMed  CAS  Google Scholar 

  • Round FE (1980) The evolution of pigmented and unpigmented unicells — a reconsideration of the protista. BioSystems 12: 61–69

    PubMed  CAS  Google Scholar 

  • Rutten GM (1966) Geologic data on atmospheric history. Paleogeogr Paleoclimatol Paleoecol 2: 47–57

    Google Scholar 

  • Saraste M, Holm L, Lemieux L, Lübben M, van der Oost J (1991) The happy family of cytochrome oxidases. Biochem Soc Trans 19: 608–612

    PubMed  CAS  Google Scholar 

  • Satoh K, Murata N (1998) Stress responses of photosynthetic organisms. Molecular

    Google Scholar 

  • Satoh N, Murata N, Miura Y, Ueta N (1979) Effect of growth temperature on lipid and fatty acid composition in the blue-green algae, Anabaena variabilis and Anacystis nidulans. Biochim Biophys Acta 572: 19–28

    Google Scholar 

  • Scandalios JG (1993) Oxygen stress and superoxide dismutases. Plant Physiol 101:7-12 Schäfer G, Engelhard M, Müller V (1999) Bioenergetics of the archaea. Microbiol Mol Biol Rev 63: 570–620

    Google Scholar 

  • Scherer S (1983) Basic functional states in the evolution of light-driven cyclic electron transport. J Theor Biol 104: 289–299

    CAS  Google Scholar 

  • Scherer S (1984) Transmembrane electron transport and the neutral theory of evolution Origins Life 14: 725–731

    CAS  Google Scholar 

  • Scherer S, Potts M (1989) Novel water stress protein from a desiccation-tolerant cyanobacterium. J Biol Chem 264: 12546–12553

    PubMed  CAS  Google Scholar 

  • Scherer S, Stürzl E, Böger P (1981) Arrhenius plots indicate localization of photosynthetic and respiratory electron transport in different membrane regions of Anabaena. Z Naturforsch 36c: 1036–1040

    Google Scholar 

  • Schidlowsky M (1971) Probleme der atmosphärischen Evolution im Präkambrium. Geol Rundsch 60: 1351–1384

    Google Scholar 

  • Schlegel HG (1975) Mechanisms of chemo-autotrophy. In: Kinne O (ed) Marine ecology, vol II, Part I. John Wiley, London, pp 9–60

    Google Scholar 

  • Schmetterer G (1982) Formation of hydrocarbons by photobleaching cyanobacterium Anacystis nidulans. Z Naturforsch 37c: 205–209

    Google Scholar 

  • Schmetterer G, Peschek GA (1981a) Reversible photooxidative bleaching of Anacystis nidulans. In: Akoyunoglou G (ed) Photosynthesis V. Chloroplast development. Balaban Int Science Services, Pennsylvania, pp 721–726

    Google Scholar 

  • Schmetterer G, Peschek GA (1981b) Treatments effecting reversible photobleaching and thylakoid degradation in the blue-green alga Anacystis nidulans. Biochem Physiol Pflanz 176: 90–100

    CAS  Google Scholar 

  • Schmetterer G, Peschek GA, Sleytr UB (1983) Thylakoid degradation during photooxidative bleaching of the cyanobacterium Anacystis nidulans. Protoplasma 115: 202–207

    Google Scholar 

  • Singer SJ (1974) The molecular organization of membranes. Annu Rev Biochem 43:805-835 Singer SJ, Nicolson GL (1972) The fluid mosaic model of the structure of cell membranes. Science 175: 720–731

    Google Scholar 

  • Skulachev VP (1992) Chemiosmotic systems and the basic principles of cell energetics. In: Ernster L (ed) Molecular mechanisms in bioenergetics. Elsevier, Amsterdam, pp 37–73

    Google Scholar 

  • Smith AJ, Hoare DS (1977) Specialist phototrophs, lithotrophs, and methylotrophs: a unity among a diversity of prokaryotes? Bacteriol Rev 41: 419–448

    PubMed  CAS  Google Scholar 

  • Stanier RY (1974) The origins of photosynthesis in eukaryotes. Symp Soc Gen Microbiol 24: 219–242

    CAS  Google Scholar 

  • Stanier RY, van Niel CB (1962) The concept of a bacterium. Arch Mikrobiol 42: 17–35

    PubMed  CAS  Google Scholar 

  • Tandeau de Marsac N, Houmard J (1993) Adaptation of cyanobacteria to environmental stimuli: new steps towards molecular mechanism. FEMS Microbiol Rev 104:119-190 Tel-Or E, Huflejt ME, Packer L (1986) Hydroperoxide metabolism in cyanobacteria. Arch Biochem Biophys 246: 396–402

    Google Scholar 

  • Towe KM (1978) Early precambrian oxygen: a case against photosynthesis. Nature 274:657–661

    CAS  Google Scholar 

  • Tsukamoto Y, Ueki T, Mitsui T, Ono T, Murata N (1980) Relationship between growth temperature of Anacystis nidulans and phase transition temperature of its thylakoid membranes. Biochim Biophys Acta 602: 673–675

    PubMed  CAS  Google Scholar 

  • Tsukihara T, Aoyama H, Yamashita E, Tomizaki T, Yamaguchi H, Shinzawa-Itoh K, Nakashima R, Yaono R, Yoshikawa S (1995) Structures of metal sites of oxidized bovine heart cytochrome-c oxidase at 2.8 Â. Science 269: 1069–1074

    PubMed  CAS  Google Scholar 

  • Tsukihara T, Aoyama H, Yamashita E, Tomizaki T, Yamaguchi H, Shinzawa-Itoh K, Nakashima R, Yaono R, Yoshikawa S (1996) The whole structure of the 13-subunit oxidezed cytochrome c oxidase at 2.8 À Science 272: 1136–1144

    CAS  Google Scholar 

  • Van Baaien C (1987) Nitrogen fixation. In: Fay P, Van Baaien C (eds) The cyanobacteria. Elsevier, Amsterdam, pp 187–198

    Google Scholar 

  • Verwer W, Ververgaert PHJT, Leunissen-Bijvelt J, Verkleij AJ (1978) Particle aggregation in photosynthetic membranes of the blue-green alga Anacystis nidulans. Biochim Biophys Acta 504: 231–234

    PubMed  CAS  Google Scholar 

  • Wächtershäuser G (1988) Before enzymes and templates: theory of surface metabolism. Microbiol Rev 52: 452–484

    PubMed  Google Scholar 

  • Wächtershäuser G (1990) Evolution of the first metabolic cycles. Proc Natl Acad Sci USA 87: 200–204

    PubMed  Google Scholar 

  • Wada H, Hirasawa R, Ornata T, Murata N (1984) The lipid phase of thylakoid and cytoplasmic membranes from the blue-green algae (cyanobacteria), Anacystis nidulans and Anabaena variabilis. Plant Cell Physiol 25: 907–911

    Google Scholar 

  • Wagner F, Falkner R, Falkner G (1995) Information about previous phosphate fluctuations is stored via an adaptive response of the high-affinity phosphate uptake system of the cyanobacterium Anacystis nidulans. Planta 197: 147–155

    CAS  Google Scholar 

  • Wagner F, Sahan E, Falkner G (1999) The complex relation between phosphate uptake and photosynthetic CO2 fixation in the cyanobacterium Anacystis nidulans. In: Peschek GA, Loeffelhardt W, Schmetterer G (eds) The phototrophic prokaryotes. Kluwer Academic/Plenum Publishers, New York, pp 739–744

    Google Scholar 

  • Wasmann CC, Löffelhardt W, Bohnert HJ (1987) Cyanelles: organization and molecular biology. In: Fay P, Van Baaien C (eds) The cyanobacteria. Elsevier, Amsterdam, pp 303–324

    Google Scholar 

  • Wastyn M, Achatz A, Molitor V, Peschek GA (1988) Respiratory activities and aa3-type cytochrome oxidase in plasma and thylakoid membranes from vegetative cells and heterocysts of the cyanobacterium Anabaena ATCC 29413. Biochim Biophys Acta 935: 217–224

    CAS  Google Scholar 

  • Waterbury JB, Watson SW, Guilard RRL, Brand LE (1979) Widespread occurrence of a unicellular, marine, planktonic cyanobacterium. Nature 277: 293–294

    Google Scholar 

  • Webb R, Reddy KJ, Sherman LA (1990) Regulation and sequence of the Synechococcus sp. strain PCC 7942 groESL operon, encoding a cyanobacterial chaperonin. J Bacteriol 172: 5079–5088

    PubMed  CAS  Google Scholar 

  • Winkenbach F, Wolk CP (1973) Activities of enzymes of the oxidative and the reductive pentose phosphate pathways in heterocysts of a blue-green alga. Plant Physiol 52: 480–484

    PubMed  CAS  Google Scholar 

  • Woese CR, Fox GE (1977) The archaebacteria —a third kingdom of life? Proc Natl Acad Sci USA 74: 5088–5090

    PubMed  CAS  Google Scholar 

  • Woese CR, Magrum LJ, Fox GE (1978) Archaebacteria. J Mol Evol 11: 245–252

    CAS  Google Scholar 

  • Woese CR, Kandier O, Wheelis ML (1990) The tripartite system of living cells. Proc Natl Acad Sci USA 87: 4576–4579

    PubMed  CAS  Google Scholar 

  • Wolf HJ, Christiansen M, Hanson RS (1980) Ultrastructure of methanotrophic yeasts. J Bacteriol 141: 1340–1349

    PubMed  CAS  Google Scholar 

  • Wolfe RS (1992) Biochemistry of methanogenesis. In: Danson MJ, Hough DW, Lunt GG (eds) The Archaebacteria: biochemistry and biotechnology. Portland Press, London

    Google Scholar 

  • Yamamoto HY, Bangham AD (1978) Carotenoid organization in membranes. Thermal transition and spectral properties of carotenoid containing liposomes. Biochim Biophys Acta 507: 119–127

    PubMed  CAS  Google Scholar 

  • Yates MG, Jones CW (1974) Respiration and nitrogen fixation in Azotobacter spp. Adv Microb Physiol 11: 97–135

    Google Scholar 

  • Zohner A, Broda E (1979) Urey-Miller experiments on the origin and stability of nitrate in a reducing atmosphere. Origins Life 9: 291–298

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Peschek, G.A., Zoder, R. (2001). Temperature Stress and Basic Bioenergetic Strategies for Stress Defence. In: Rai, L.C., Gaur, J.P. (eds) Algal Adaptation to Environmental Stresses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59491-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59491-5_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63996-8

  • Online ISBN: 978-3-642-59491-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics